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The time evolution of the baryon asymmetry of the universe due to superheavy Higgs bosons is obtained by
integrating the Boltzmann equations. The interactions included are decays, inverse decays, and annihilations of the
Higgs bosons. The minimal SU{5)model is used to calculate the interactions, although our results are more generally
applicable. Decays and inverse decays of these bosons damp preexisting asymmetries by exp( —0.3K) to
exp( —2.0K) where K = 2.9X 10"aHGeV/MH (aH and MH are the coupling strength and mass of the Higgs boson).
If both C and CI''are violated, then in an initially symmetrical universe a baryon asymmetry evolves and its value
depends upon K and a'/aH (a is the gauge coupling strength). For K+a„/a' the asymmetry produced is
kn~/s 2y, 10 'e, and for K&1 it is knB/s 2X10 'e(3K) "(e/2 = the baryon excess produced by the decay of a
pair of H, H bosons). In SU(5) for MH ~ 3 & 10" GeV preexisting asymmetries are not damped and the observed
asymmetry knB/s = 10 " ' can be produced if e 10 '. In a companion paper the role of gauge bosons is
considered.

I. INTRODUCTION

A. Background

Most grand unified theories (GUT's) predict the
existence of new, superheavy bosons (gauge and/
or Higgs) whose interactions violate B and L con-
servation (B =baryon number, I. = lepton number).
The existence of these bosons implies that the pro-
ton has a finite lifetime (7s = 10" ' yr). ' In addi-
tion, their existence may explain the presence of
baryons in the universe in the first place. It has
been suggested that the out-of-equilibrium decay
of these bosons in the very early universe (t
sl0 "sec) could have produced a slight excess of
baryons. " If the baryon excess to specific en-
tropy ratio produced were -10 ", then this mech-
anism would -explain the apparent absence of anti-
matter and the baryon to specific entropy ratio
kna/s = 10 '""observed today.

In the most general GUT which breaks down to
SU(3), x SU(2)~ x U(1) there are three types of su-
perheavy bosons (M a 10" GeV) whose interactions
violate B and I conservation, ' and so could possi-
bly produce a baryon excess. Classified according
to SU(2)~ and SU(3), they are X, Y—an isodoublet,
color triplet of vector bosons (charge +—s, +~s);
g', Y' —an isodoublet, color triplet of vector bosons
(charge as, +s); and H —an isosinglet, color triplet
of scalar bosons (charge as). The interactions of
all these bosons conserve B L(total baryo-n num-
ber minus total lepton number).

The superheavy gauge bosons of SU(5) are of the
X and Y variety. In a companion paper' (hereafter
referred to as FOT) we considered in detail their

role in generating or damping baryon asymme-
tries. In an arbitrary GUT the X and Y bosons will
couple to the same fermion channels but with dif-
ferent strength, so when the appropriate coupling
strength is used the results of FOT are applicable
in general to X and Y bosons. Since X' and Y' bo-
sons couple to similar channels as those of the X
and Y, we also take the results of FOT to be ap-
plicable to X' and Y' bosons (when the appropriate
coupling strength is used).

In this paper it is the third type of superheavy
boson that we shall consider. The H bosons are
Higgs bosons, and being isoscalar and spin-0 par-
ticles they couple to fermions differently than the
X, X', Y, apd Y' bosons. They also typically have
a smaller effective coupling constant (rr„-10 '-
10 '). It is also expected that they will be lighter
than the other types of superheavy bosons, so that
their impact on the baryon asymmetry may be the
final (and possibly most important) one.

One might expect that the results of FOT for X
and Y bosons should be qualitatively correct for H
bosons when the appropriate coupling constant is
used. However, there is one important difference
which has to do with the usually rather weak cou-
pling of these bosons to fermions. The key feature
of the decay scenario is that when the temperature
falls below the mass of the superheavy boson,
these bosons remain more abundant than they
would be if they were present in equilibrium num-
bers, because they cannot diminish rapidly enough.

There are two basic ways for them to disap-
pear —via decay into fermions or via annihilation.
For T ~ M (M = mass of superheavy boson) these
rates (decay and annihilation, respectively) are
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I"D- (yM,

I „-a'(r/M)'M,
(1.1a)

(1.1b)

where o. is the coupling strength of the superheavy
boson. Because of the temperature dependence and
the additional factor of e, it appears that I'~«I'~,
so that annihilations can be ignored. This is what
has been assumed in the past. For gauge bosons
this is a reasonable approximation but not neces-
sarily so for Higgs bosons. For H bosons„ the
couplings in (I.la) and (I.lb) are not equal. The n
in (1.1a) should be oz, the coupling strength of 8
bosons to fermions. However, since these bosons
are charged and colored, they can annihilate via
photons or gluons, and the n in (l.lb) should be the
gauge coupling constant [a=+, in SU(5)]. Thus for
Higgs bosons (1.1) should be

o'/az, and is kns/s=2x10 'e. For K»1, the
final asymmetryproducedis kns/s =2x 10 'e(3K)"
independent of n'/a„. In the intermediate range,
n„/n'& K~ 1, the production does depend weakly
upon n'/o. z. For physically interesting values of
o„and Mz (o.z- 10 '-10 ' and Mz- 10" GeV), K

is in this intermediate range. In the minimal SU(5)
theory +H ~ 7x 10 '; for ~~ ~ 3 x 10"GeV H bosons
do not significantly damp preexisting asymmetries
and c- 10 ' is needed to produce the observed
asymmetry, kns/s= 10 """.Unfortunately, in
the minimal SU(5) model (in which there are only
5 and 24 Higgs multiplets) e is less than 10 "
(Ref. 4). However, with the addition of one
more 5-piet of Higgs bosons g can be as large
as 10

In Sec. II the assumptions that we make are re-

r,-a m,
I „-n'(T/M)'M„.

(1.2a)

(1.2b)

viewed in detail and the "master equations" are de-
rived. In Sec. III the damping of initial asymme-
tries by H bosons is considered when C or CP is

For T Ms, th-e ratio I'„/I'~ is -o, '/o„, which is
appreciable when o.„~o.' (for o, =+, , this is u„
~ 5x 10 '). Over a large range of possible Higgs
couplings, annihilations can dominate decays,
making their inclusion crucial.

a good symmetry (e =0). In Sec. IV the evolution
of the baryon asymmetry when C and CP are vio-
lated (et 0) is,discussed. In Sec. V a summary of
our results is presented. The details of computing
the necessary matrix elements are found in the Ap-
pendix.

B. Description and brief summary

To make the project of calculating the effect of
Higgs bosons on the evolution of baryon asymme-
tries tractable we must make some simplifying as-
sumptions. In brief they are the following: (1) The
minimal SU(5) theory is used to calculate the vari-
ous rates needed. (2) The C and CP violations are
parametrized by e/2, the baryon excess produced
by the decay of an II,H pair. (3) Only decays (D),
inverse decays (ID), and annihilations of Higgs bo-
sons will be considered. (4) Partial equilibrium
will be assumed, i.e. , 8- and I.-conserving inter-
actions are assumed to be effective at maintaining
thermal distributions, including the possibility of
chemical potentials. (5) Maxwell-Boltzmann sta-
tistics are used. The notation and formalism is
that of POT, for more details we refer the reader
there.

We find that the results depend on two param-
eters: K—= (2.8x 10"o,z GeV/Mz) = (decay rate/
expansion rate for T - M„), and a'/n„= (I'&/I'&) at
T- M„, which is a measure of the importance of
annihilations compared to decays. When C or CP
is a good symmetry (e =0), H bosons can only
damp preexisting asymmetries. We find that this
damping is independent of o, '/o. „and is given by
-exp[-(0.3 to 2)K] = exp[-(1 to 6) x 10"a„GeV/MJ.

When both C and CP are violated (ee0), H bo-
sons can generate a baryon excess; for K«n„/o. ',
the asymmetry produced is independent of K and

H. MASTER EQUATIONS

Rather than discuss kinetic theory in the Fried-
mann universe again here, we refer the reader to
Sec. II of FQT. We will employ the same notation
and conventions here; in particular k= k& = c = 1.

A. Assumptions

When the density of the universe is dominated by
relativistic species (as it was in the early uni-
verse), the expansion rate is given by

H —= It/R = (8vG p/3) 'i' . (2.1)

t =0.30lm~T 'g

=0.154(160/g )' 'T~/T',

where m~ is the Planck mass (G '~'= 1.22x 10"
GeV), and T~ = 1.88x 10"GeV is the temperature
of the universe at the Planck time (0.538x 10 "
sec) for g =160.

(2.2)

If all particle species are present in thermal num-
bers then p=g (w'/30)T', where g is the effective
number of degrees of freedom of all species (g
=- total number of Bose degrees of freedom+ —,' of
the total number of Fermi degrees of freedom).
For the minimal SU(5) model at very high temper-
atures (T a 10'~ GeV) g = 160. The comoving time
coordinate (age) and temperature of the universe
are related by
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The particle content of the minimal SU(5) theory
is as follows: 3 generations of quarks and leptons;
24 gauge particles —&', P, y, 8 gluons and 12
superheavy bosons (X and Y, mass Mx = M„-10"
GeV), and a 24 and 5 of IIiggs bosons (34 degrees
of freedom in total), including an isosinglet, color
tripletof superheavy Higgs bosons with charge y —',(H,
mass M„& M„) which mediate B and L violations.
In this model the allowed C and CP violations are
probably too small' to produce kns/s= 10 ",
however, enlarging the theory to permit big enough
C and CP violations only changes. g and the num-
ber of superheavy species which mediate 8 and I
violations. The change in g affects the expansion
rate as g,', and the effect of each superheavy
species on the baryon asymmetry can be com-
puted.

Rather than follow the evolution of all the par-
ticle species and consider all the interactions, we
will follow only the fermions and the superheavy H
bosons and will consider only interactions which
involve the H bosons. We will assume that all
other species are present in thermal numbers.

We will also assume partial equilibrium, that is,
I3- and I -conserving interactions are completely
effective (rates I' &expansion rate H), so that all
particle distributions are thermal with possible
nonzero chemical potentials. This assumption is
justifiable for two reasons: (i) one expects B- and
L-conserving interactions to be effective for g ~ 3
x 10"GeV (Refs. 5 and 6) and the temper'atures of
interest (7 ~ M„s Mr- 10"GeV) are probably less
than 10"GeV; and (ii) as we found in FOT, the fin-
al results are insensitive to this assumption.

Since no species is expected to be degenerate we
will use Maxwell-Boltzmann statistics rather than
Fermi-Dirac and Bose-Einstein which were used
in FOT. With the assumption of partial equilibrium
particle phase-space distributions can be written
as

fi, (P, t) = F(t) exp(-P/T),

N„(p, t) =H(t)a(T) 'e x[p-(p' M+„')' '/T],

where E=U, D, I, or v, p =
~ p~ and a(T) =0.5(M/

T)'K, (M/T) (K, is a modified Bessel function of the
second kind'). U, D, L, v, and H refer to all up-
like quarks (total degeneracy gv = 18=2 spinsx 3
colorsx 3 generations), all downlike quarks (g~
= 18), all electronlike leptons '(g~ = 6), all neutrinos
(g„=3), and H bosons (g„=3 = 3 colors), respec-
tively. The corresponding antiparticle distributions
are denoted by U, D, L, v, and H.

The number density of species i (i=U, D, L, v,
or H) per proper volume is

n]= Ng P, t P]dII]=It g) g 7, 2 4

where dII, = (2w) 'g, O'P, /P,'. The quantity a(T) was
chosen so that (2.4) also holds for H bosons, that
is, H (t) reflects the abundance of H bosons relative
to their abundance if they were very relativistic
(similar to the other species).

The following quantities turn out to be more use-
ful: U, =U+U, D&=D+D, L&=L+L, v,-=v+ v, and
K, = H a H. The assumption of partial equilibrium
means that U+=D, =I,= v, =2. However, we do not
intend to extend the condition of partial equilibrium
to the H bosons also. If H, were equal to 2a (the
value it would have in equilibrium), there would be
no baryon generation. We will follow the evolution
of H, due to interactions (B and I, conserving and
nonconserving). For the H bosons the condition of
partial equilibrium only means that those H bosons
present are thermally distributed in energy (2.3).

B. Interactions

1. Decays and inverse decuys

With the assumptions discussed above there are
six quantities which evolve with time —U, D, I
v, H, and H, . The evolution of the —quantities
only involves interactions which do not conserve 8
and L. The only B— and L-violating interactions
which we include are decays (D) and inverse decays
(ID) of the H boson. The H boson has three decay
channels H - UD, UL, Dv.

Baryon-nonconserving processes mediated by H
bosons (e.g. , UD- UL) are not considered; these
processes are O(n„') while D and ID are O(n„),
and since n„-10 '-10 ' they are much less im-
portant (in FOT'we found that for n ~ 10 ' they
were negligible). In addition we are ignoring B-
and L-violating processes due to other superheavy
boson species. However, these processes are only
effective (I" &H) for T M (M = mass of superheavy
boson), so we assume for now that we can treat the
effect of each superheavy boson sequentially. The
details of this procedure will be discussed in a
third paper in this series.

2. Annihilations

The evolution of K, involves all interactions
which allow the number of H bosons to change.
The interactions which we consider are D, ID, and
annihilations. The seven annihilation processes
which we include are (i) H +H= U+U, (ii) H +H
-D+D, (iii) H+H=L+ L, (iv) H +H v+ v, (v)
H+H-G+G, (vi) H+H= y+ y, and (vii) H +H

y+G (G = gluon). All seven of these processes
are of order n' (n = gauge coupling constant, which
we assume to be = ~45).
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The reason for including these processes here
and not in POT is simple; for 7 ~ MH the decay
rate F~- n~M~, while the annihilation rate I'„
- o('M&(T/M„)'. For u„~ a'= 10 ', I'„ is al'~.
Since it is the nonequilibrium abundance of H bo-
sons which permits baryon generation, the effect
of annihilations could be crucial.

%e have ignored the process H- h Y, where h
= a light (at these energies massless) Weinberg-
Salam Higgs boson, which is of order ~- If, as
expected, M„ is less than M~, then this process
is kinematically forbidden, and the process H-h
+2 fermions mediated by a virtual Y is of order z'
and is also suppressed by a Y propagator.

On the other hand, if M„& M~, then the process
H -k Y would be very important since H -A, Y, Y- 2 fermions is a two-step decay process of order

However, in this case, the H boson effectively
behaves like a Y boson (interactions have the same
rates, etc.) and the results of FOT for gauge bo-
sons are applicable.

Finally, we have also ignored the contact inter-
actions involving two H bosons and two other par-
ticles, largely because the Yukawa couplings for
these processes are unspecified even in the mini-

mal SU(5) model. Even so, they are not expected
to be important.

3. C and CI' violation

In order for a baryon excess to evolve both C and
CP must be violated in the decays of the H bosons.
As in FOT we will parametrize these violations by
e, where e/2=net baryon excess produced by the
decay of a pair of H, H bosons. The details of how
this is done in a manner consistent with unitarity
are contained in Sec. III of POT.

The computation of all the required matrix ele-
ments for D, ID, and annihilations is done in the
Appendix. In computing these quantities we as-
sume that C or CP is conserved, the requisite C
and CP violations being added as discussed above.

C. The Boltzmann equations

Given the assumptions discussed in Subsection A
the Boltzmann equations reduce to a set of coupled
ordinary differential equations for U, D, L, v, H,
and their barred counterparts or U„D„L„,v„
and H, . A typical equation is (see Secs. II and III
of FOT for more details)

I(t) =(g,T'/v') '
J Q ~ 0 ~

l, m, ~ ~

r())M(() ~ ~ ~ f ~ f )('(), m, .-()&, . 1&w(-, @,/&)0+gd+gd& '''0&

—l(t) J())ll(() f fW((, j, k. . .—(, m, . . . )

xexp( —E /'T) dII; dII„dII ~ ~ ~ dII, dII ~ ~ ~ ', (2.5)

U' /(zK) = -yH /2 -a y(UD) /2 ay(UL ) /4—
+3ey(H, —2a)/4, (2.6a)

D' /(«) = (-y+ y/2) H ~y(UD) /2

—ay(Dv) /4+ 3ey(H+ —2a)/8, (2.6b)

wherei, j, k, l, m, . . . are U, D, L, v, H or their
barred counterparts (whenever H or H appear
there should also be a factor of a '), Er =E, + E~
+ E&+ ~ ~ = E&+ E + ~ ~, T is the universal tem-
perature and W=2 "(m!) '~5!I~'(2v)'5'(p, +p~+ p»
+ ~ ~ -p, -p —~ ~ ~ ). The matrix element ~5!I

' is
calculated according to the conventions of Bjorken
and Drell, ' n is the total number of incoming or
outgoing particles and there is a factor of (m!)
for each set of m incoming ox outgoing identical
par tie les.

The set of Eqs. (2.5) for our system is ~

L /(zK)=3yH /2 —3ay(UL) /4

+ 9ey(H, —2a)/8, (2.6c)

v'/(zK) =3yH —3ay(Dv) /2, (2.6(i)

H' /(«) = (3y+ 3y) H -—3~y(UD)

+3ay(UL, ) /2+3ay(Dv) /2, (2.6e)

H'J(zK) = -(9y+3y)(H, —2a) —yz(H, ' —4a'),

(2.6f)

where z = Mz/T, the prime denotes d/dz, and K
= (2.9x 10"GeV „n/M)H(1 60/g)'/'. The dimen-
sionless quantities y, y, and y& are related to the
decay, inverse decay, and annihilation rates, FD- yzz MH or y &AH M~, I go aynH MH or ayaH M
I'~-y&u&M~, and are given by
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T=-,'(M /T)e 'f [H —(M/T) I e dH
u/r

y= y(~a j~a)
I

T =] (e, M, ) (e /e'T') ''j Jff Ie. (HH 12)e-ep[ (H, -H, )/T]dII„dH —dII, dII„

y~= 1.34(o( /o(H)(T/Mz) /[1+6(T/MH) ] + 1 22(o) /c(a)(T/M~) /[1+ 3 41(T/M„)'],

(2.7a)

(2.7b)

(2.7c)

(2.7d)

where (2.7d) is obtained from (2.7c) by smoothly
interpolating between the high- and low-tempera-
ture limits of (2.7c). The W, in (2.7c) refer to the
seven annihilation reactions discussed earlier.

From Eq. (2.6f) we see that the equilibrium
abundance of H, is 2a (obtained by setting H', = 0).
For T»M„, 2a = 2 and for T «M„, 2a = (7[/2)'~'
x (M„/T) ~'exp( —M„/T). When H, assumes its
equilibrium value the asymmetry producing terms
in (2.6a)-(2.6c) vanish as required by unitarity
and Q~ invariance.

In the minimal SU(5) model o.„ is uniquely deter-
mined because the H bosons reside in a 5-piet with
the VYeinberg-Salam Higgs boson which generates
fermion masses [as well as breaking down the
SU(2) x U(1) symmetry]. In this ease there are two
couplings to each generation, X„=g(M~/2M~) and

)„=g(MU„/2M~), where g'=4mo), M~ is the W

mass, M~ and MD are the current-algebra
masses of the uplike and downlike fermions, and +
= 1, 2, 3 specifies the generation. Since first- and
second-generation masses are small (m„- 5 MeV,
md-8 MeV, m, -150 MeV, m, - 1 GeV) compared
to third-generation masses (m(, - 5 GeV, m, 2 15
GeV), the H bosons primarily couple to the third
generation. Since we treat generation as another
degenerate degree of freedom the two generation-
averaged coupling constants are o)„= (o./12)(m], /
M~)' and o, &= (o./12)(m, /M~)'. In terms of these
what we call the coupling constants are

e

n„= n )+ ng = ( o(/1)2(m, '+ m, ')/M~' z 7 x 10 '

o)a = (a/12) (m~ /M~ ) = 7x 10

In an arbitrary GUT, /]. and $ are not necessarily
constrained in this way, and so there is greater
lattitude in the possible values of ~H, ~H. The
range often quoted is &H, zH- 10 '-10 '.

D. Numerical integration

%e used a third-order Hunge-Kutta scheme to
integrate Eqs. (2.6a)-(2.6f). The integration began
at the Planck time, z = M„/TJ„with H, =2a(TJ, )= 2

(equilibrium value) and H = 0. U„D„ I „and
v, are always 2. The initial fermion asymmetries

which were used are discussed in the text. More
details on the numerical intergration are given in
POT Sec. III.

III. COR CP CONSERVED (e=0)

If the interactions of the H bosons conserve C
or QP, then e = 0 and the Higgs bosons can only
damp preexisting asymmetries. Since annihilations
conserve both B and L, the master equations for
the —quantities (2.6a)-(2.6e) do not directly depend
upon n'/o„(the relative effectiveness of annihila-
tions). They indirectly depend upon o, '/o„since
the asymmetry-producing terms are proportional
to e(H, —2a) and the evolution of H„depends upon
annihilations and a'/o. „, but when e =0 this cou-
pling does not exist, and the —equations do not de-
pend upon annihilations at all. Thus any damping
is independent of o'/d„.

Since we have not considered any baryon-non-
conserving processes of order ~O(o.„'), e.g. ,
fermion collisions, fermion-Higgs collisions
(Compton-type) or Higgs-Higgs to fermion-fermion
collisions (annihilationlike), the damping which oc-
curs is due solely to the two-step process ID and
D: for example, UD-H, H- UI (~ = -1, bL
= -1).

A. Initial8-LAO

Because the —equations are linear and homo-
geneous, all results simply scale with the initial
asymmetry. If the initial asymmetry has B -L
+0, then both B and L can never be reduced to zero
since the interactions of the H exactly conserve B

I. . As we di-scussed in FOT (See. IV) when the
initial asymmetry has B -L+ 0, the actions of the
H bosons can at most redistribute the initial B and
I asymmetries (if K2 1), with the final asymme-
tries being of the same order of magnitude as the
initial B -L asymmetry.

B. Initia18-L =0

If the initial -asymmetry has B -L =0, then no
such restrictions apply (i.e., both 8 and L can be
reduced to zero); this is the class of initial asym-
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A
q

= —(zKay) XPq,
E

A,. (z) =A& (0) exp —X,Ez'ay .dz)'

0 ~z(

(3.1)

where the A& are linear combinations of U, D,
L, and v, and j= 1-4. Twoof the eigenvalues,
A,, and A, are zero corresponding to the con-
served quantitites B Land Q -(=-total charge).

metrics we will now discuss in detail. In Fig. 1 the
time evolution of the baryon asymmetry is shown
for K= 0.2 and 10 and for c(„'/o(„=0.1 and 1.0.
Most of the damping occurs near T - M„. This is
because for T &+ M~, both decays and inverse de-
cays are suppressed by the time dilation (I' n- I',n)- o(„M„'/T); for T «M„, inverse decays are
blocked since typical fermion pairs (E-T «M„)
are not energetic enough to produce an H boson.
As &(=2.9x 10~7as/M„= I'D/H for T =Ms) in-
creases, the damping increases markedly.

Figure 2 shows the damping factor (kns/s)~/
(kns/s)&, as a function of Jt for a„'=O. lo,s and n'„
= n~. Near K= 1 the slope changes; this is easily
understood. If one assumes that the rates are rapid
enough so that H' = 0 (reasonable for X &1), then
the equations for U, D, I, and v form a set
of four coupled, linear ordinary differential equa-
tions. They are most easily analyzed in terms of
their eigenvalues and eigenmodes,

MH (GeV, aH = 7xlOe)

IQI4 lp
l 3 g„lpl2 Sxlp"

I
P-I

10

10

IP-40123456789IQ
-K = 2.9xlp aH GeV/MH

. FIG. 2. The ratio of final to initial asymmetry (damp-
ing) with initial B-I.=0 and & =0 is shown as a function
of K for &+=0.1&~ and &z= qH. The change in slope
near K=1 is due to the multiple modes of damping (see
Sec. II/. For large K, the damping (slowest mode) is- exp(-0. 26K) for ++=0.1&+ and - exp(-1.4E) for &~
= ~a.

10
M„= I.sxlol' „
K=0.2

The evolution of the most general initial asym-
metry with B —L = @= 0 can be written as

10
MH= 2.9x IO aH GeV

K=IQ

10

lp

IP-5

IP-6

1

1

1

1

1

1

1

1

1

1

IP7 q=P

n-8-IQ, „„„,I, , „,n,I, „„„,I

IQ IQ 10
'

z ™MH/T

( ( ( ) ()(I

lp 10

I I I I I

Ip

FIG. 1. The time evolution (z-t ) of an initial asym-
metry with B-L, = 0 is shown for & =0 (C or CP con-
served). Results are presented for K=—2.9&&10 az/Ms
=0.2 and X=10; the solid curves are for o.'~=0.10.+ and
the broken curves are for &H = ~z (see Sec. II/. The
damping occurs mostly near z=l and is due solely to
inverse decays. The results are independent of 0.' /o.'~.

g

(yes/s)= (yzs/s), .{C,ezp —Z+ z'z(z')y(z')ds'
)ze 0

g

+ C, exp —A. K z'a(z')y(z')dz',

(3.2)

(kns/s)z/(kns/s); = C, exp(- IRK)+ C, exp(- IX,E),

where C, and C4 are the projections of the initial
asymmetry in the 3 and% eigenmodes(C 3+C4 ——1),
and I=f0 ayz dz =0.59 has been evaluated numerical-
ly. The eigenvalues X, and Z4 depend upon n„'/n„.
These coupling constants are given by n~= ~„+u~
and n~= n~. The two Higgs couplings a, and n,
are discussed in Sec. II (C), in the minimal SU(5)
model with m, = 15 GeV, n~ = 7 && 10 ' and &~
= 7 x 10 ' so that o(„'/nz= 0.1. In a more general
theory o(z/o(z can vary between 0 and 1.

For nz/o. „=0.1, X, =2.66, and X, =0.45, so that
for small K the damping should be - exp( —4.6
x 10"c/„/M„) and for large Z -exp( —7.7x10'so„/
Mz). This agrees well with the slopes of the
curve in Fig. 2. The big difference between the
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two eigenvalues X, and X, (a factor of 6) occurs
because U, D, and L asymmetries are damped
by interactions of O(n„), while the interactions
which damp v asymmetries are of O(n'„)-0.1

O(us). The A =2.68 eigenmode has only U, D,
and L asymmetries, while the X4

—-0.45 eigenmode
also has a v asymmetry.

In the other extreme, n„'/as=1. 0, the eigen-
values are A.,= 3.68 and A4 ——2.45, so that for small
K the damping should be - exp( —6.3 x 10"n,„/M„)
and for large K- exp( —4.2 x 10"o.„/M„). This
agrees well with the slopes of the curve for n„'/
nH = 1 in Fig. 2.

With n'„/us between 0.1 and 1.0, the most gen-
eral initial asymmetry (i.e., one which is not an
eigenmode of the set of coupled equations) is re-
duced by -exp(,- (5 to 6) &&10"n~/M„J for Ksl,
and by -exp[- (0.8 to 4) &&10"ns/MzJ for E&1.
In the minimal SU(5) model where o.»

—7 x 10-'
and o.'s/o. += 0.1,when Ms &10" GeV the damping
is given by —exp(- 3 x 10" GeV/M„), which is
small (less than a, factor of -10). That is, Higgs
bosons, unless they are very light, do not tend to
damp preexisting asymmetries because of their
weak coupling strength.

C. Possible complication

Above 100 GeV when the SU(2)~ x U(1) symmetry
is restored and fermions are massless, the
right- and left-helicity states of a particle are
distinct and separate species. No interaction
can transform one helicity state into the other.
In this paper rather than consider seven species

Uz Ds Dz I s Lz and ~s we have aver-
aged over helicity states and considered only four
species U, D, L, and y.

There is one situation where we might run into
difficulties with this procedure —finding the ei-
genmodes for damping asymmetries. This has
been recently discussed by Treiman and Wilczek. '
They point out that for gauge bosons there are
seven damping modes, four of which have zero
eigenvalues. These zero eigenvalues correspond
to conservation laws; charge, weak isospin, B-L,
and 5-ness. The first three are expected; the
last, 5-ness, results because the interactions of
the gauge bosons do not change the net number of
particles in the 5 representation of SU(5)—v~,
L~, and D~. Because of this, gauge bosons can-
not damp initial symmetries with net 5-ness, just
as they cannot damp asymmetries with B—L 40.
(Note that one does not expect asymmetries with
net charge or weak isospin since both these quan-
tities are gauged. )

For the Higgs system we have derived the set
of master equations for the seven quantities, U ~,
U „, etc., and thensolved for the seven eigenvalues.

We find that there are three zero eigenvalues cor-
responding to charge, weak isospin, and B —L.
The interactions of the Higgs bosons do &got have
an additional hidden symmetry like 5-ness. By,
averaging over helicity states we lose two non-
zero eigenvalues. However, the two we find are
very representative of the four; for example, with
~„'=0.1 n~ the four eigenvalues are 0.33, 0.40,
1.33, 3.6V, and the two we obtain are 0.45, 2.68.
The only asymmetries which Higgs bosons cannot
erase have nonzero values of charge, weak iso-
spin, or 8 —L.

IV. C AND CP VIOLATED (e 4 0)

A. No initial asymmetry

The case where Higgs-boson decays violate
both C and CP allows a baryon asymmetry to
arise in an initially symmetrical universe. In
most respects the baryon-violating Higgs par-
ticles are very similar to X- and Z-gauge bosons,
with one potentially important quantitative dif-
ference. In the gauge system, the only important
reactions are decays and inverse decays. Baryon-
nonconserving fermion scatter ings mediated by
virtual X and F bosons amount to only small.
corrections, and other second-order processes
such as annihilations and brompton-type scatterings
of gauge particles and fermions are even less
important. " In the Higgs-boson system, how-
ever, annihilations cannot be neglected. This
is because decays and inverse decays of Higgs
particles proceed at a rate determined by z H

= 10 —10 ', while their annihilations are gover-
ned by z' = (,—', )' = 5 x 10 4, since the Higgs par-
ticles we consider possess charge and color. The
differences between the Higgs-boson and gauge
systems caused by this are discussed below.

From (2.6a)-(2.6d), we see the source for
generation of a baryon excess is proportional to
the size of the Cp violation q and also A —=0, —2a,
the amount by which the total number of II and P
bosons differs from thermal equilibrium; 2a is the
equilibrium value of jV„' for z «1, 2a= 2, and
for z»1, 2a = (m/2)'~' z'~' e '. The source term
6/H, is plotted in Fig. 3 as a. function of @ =M„/T,
while Fig. 4 shows the generated baryon excess
kns/s also as a function of z, for three values of
K. For small z, when annihilations are negligible,
2a=2(1 —s'/4) while H, =2-0(z'). Thus, 6/H,
= s'/4. This is the source of the rise in 6 seen
in Fig. 3 for z & ].

For g p1, there are two cases depending on the
ratio of reaction rates to expansion rate at T
=M~. If the mass is large or the coupling strength
is small, more precisely, K«1, then all rates
are small and H, = 2 until Kg'= 1. Meanwhile,
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FIG. 3. The time evolution (z-t ) of the source term
for baryon generation, & =H+ —2a, is shown normalized
by H+. The solid curves are for K=10, the broken
curves for K=1, and the dotted curves for K=10; all
values of K show the cases n~/&~ =0, 7, and 100 (the
solid curves are indistinguishable). For K«1, H+ =2
until Kz~ =1, while 2a falls exponentially to zero for z
@1, so&/H+ 1. For K~1, decay rates are large
enough to keep H+ =2a (&/H+ is always small). Here,
for z ~ 1, &/H+ = 1—a = z /4; for z ~ 1 &/H+ = 1/QKz
(p =4). Near z =1 annihilations can reduce &, but they
soon become ineffective relative to decays and the three
curves merge. For K large enough, this happens before
inverse decays freeze out (z~ for K=10 is iridicated). For
further discussion see Sec. IV.

FIG. 4. The time evolution (z-t ) of the baryon
asymmetry ~~/z generated when C and CP both are
violated is show in units of & for zero initial asym-
metry. The solid curves are for K=10 3, the broken
curves for K=1, and the dotted curves for K=10; for
all values of Kwe show the eases & /+~=0, 7, and 100.
For K «1 the asymmetry is produced by late (z ~ K ~~~)

free decays. For K~ 1, there is an initia1. period of non-
equilibrium growth (z & 1,~~/z - z ), followed by a
quasiequilibrium state fz & 1,kng/s -(Kz) ] which
freezes out at zy (Kzyv e f =1). For K«1, annihila-
tions are always ineffective (corrections of order KQ. /G.'~
-10% for K=10, & /0.'+=100), and for K»l annihila-
tions become ineffective before quasiequilibrium freezes
out. Only for &~/& ~ K& 1 is the final ~~/8 affected
by annihilations.

the equilibrium value of H. drops as 2a= (v/2)'~'
z' ' e ', and becomes effectively zero. Thus,
for z ~1, 6—=H,. This is the behavior of the solid
curve(s) in Fig. 3, for K= 10 '.

Numerically, in this case the behavior of B,
is obtained from (2.6f), setting 2a = 0 and ignoring
annihilations,

H, = 2 exp(- 9yKz'/2) = 2 exp(- t/Tz), (4 1)

where y = 4 (z z 1) and the decay rate 1 ~ yn~»-
We obtain (knz/s) =8 x 10-'(U +D ) from (2.6a,) and
(2.6b); again setting 2a= 0, we find

(knz/s) = 2 x 10 'e [1 —exp(- 9yKz'/2)] . (4.2)

The final, saturation value (knz/s) = 2 x 10-'z is
the largest than can be produced by this system.
The effect of H-H annihilations here is to reduce
H, slightly when z=1; this is the only time when
annihilations can be effective since for large z
y„-z ' (annihilation rate I'„-y„n„M„HJ. The
amount by which annihilations can reduce H,
is of order Kn'/uz, which is 10% for K= 10 ',

n'/n„= lpp. This behavior is seen in the solid
curves in Fig. 4, which show knz/s vs. z for
K= 1.p-' and n'/n =0, 7, and 100 (the first two
are indistinguishable).

For Ea 1 decays happen rapidly enough to keep
H, always near its equilibrium value 2a. The
broken (K=1) and dotted (K=10) curves in Fig.
3 show that even for K= 1, 6/H, is never more
than about 25%. Thus we expect the baryon ex-
cess produced here to be smaller. Again for
z s 1, 6 = z'/4. Ignoring annihilations (2.6f) can
be written as 4'= —9yKz&-2a' for z & 1 where
y= 4. Recall. , for large z, a falls off as e ', so
the asymptotic solution to this is 6= 2a/9yKz
+ O(a/z'), but when they are effective, annihila-
tions can reduce the value of 4 significantly. The
curves in Fig. 3 show this for n'/nz=p, 7, and
100.

Again, given b from (2.6a) and (2.6b) we can
find knz/s. Near z=1, both production and de-
struction rates in (2.6a) and (2.6b) are large, and
U and D will adjust so that the positive and neg-
ative terms nearly cancel (U' and D' = 0). We
obtain
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(kns/s) = 3 x 10 ' z n/a (4.3)

until inverse decays are no longer effective. This
occurs at zz such that K z&'~' exp(-zz) = 1, and

kns/s freezes out
' at its value at z =zz (z&= 10.5

for K=10).
When annihilations are effective, knz/s can be

much smaller for z ~ z& because 6, the source
term, is smaller; B, is nearer to equilibrium.
However, if K is large enough, a curious thing
happens. The effectiveness of annihilation
relative to decay (I„/I'D) behaves as o. /o„
z '~' exp( —z), and when this becomes less than
1 they are not important. [Annihilation requires
two Higgs bosons while decay requires only one-
as Higgs bosons become scarce annihilations
become rare compared to decays by a factor of
their number density -exp(-z)]. In Fig. 3, we
see'that for K large enough (such that z&') o' /n z)

this occurs before inverse decays freeze out, and

kns/s attains the quasiequilibrium value it would
have had if annihilations were not considered at
all.

Thus we have seen that the differences caused
by large annihilation rates compared to decay
rates are only manifested for intermediate values
of K; for small K there are corrections of order
Koi'/ciz and for large K no difference is seen at
all.

The final value of kns/s generated is shown as
a function of K in Fig. 5 for u'/uz ——0, 7, 100,
and 500. For K& n„/n' and 1 the saturation value
2 x 10 & is produced, while for K»1 the produc-
tion, about 8 x 10 '&/3Kz&, is reasonably well fit
by (kns/s)= 2 x 10 'z (Mz/M, )", with M, =1 x 10"
n~ GeV for 10sK~100. Interpolating, we ap-
proximate

(kgb /s)= 2 x 10 z(M /M ) ' /[1+ (M /M ) ' ] .
(4.4)

Annihilations reduce the final baryon excess for
K= 1, but for the best value in SU(5) o. '/o'z —-7,
these corrections are minimal, and even for
o. '/o. z= 500 the reduction is never as much as a
factor 10.

For a Higgs-boson mass in the range 10"-10"
GeV, o'z =7 x 10 ' and u'/az-— 7, the values of
K (0.02-0.2) are in the saturation regime, and
the observed (kns/s)= 10 s' could be produced by
Higgs bosons for & =10-'.

B. With an initial asymmetry

When a baryon asymmetry exists before T =M~,
perhaps one generated by gauge bosons, the Higgs
bosons can both add to it by CP. violations in their
own system and damp the initial asymmetry by
their decays and inverse decays.

M„(GeV, aH= 7 x IO ~)
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FIG. 5. The final baryon asymmetry kns/p in units of
& is shown as a function of K when the initial asymmetry
is zero for & /n&=0, 7, 100, and 500. For K«1, de-
layed free decays produce Ized/s =2 &&10 &. For K~ 1,
a period of quasiequilibrium freezes out with (~~/s) = 3
x10 ~/Kz~ (Kz~ e 'f=1). For &z/«K~1, H-H an-
nihilations can keep the Higgs bosons closer to equil-
ibrium and reduce the baryon asymmetry generated, but
even for & /o. +=500 this reduction is never as much as
by a factor of 10, and for Ka /&zS 1 and K»1 the final
results are essentially independent of annihilations.

(kns Is)z = (kns Is); exp(-0. 3K to —2.0K)

+ 2 x 10 'e /[I+ (3K)"], (4.5)

where the exponent of the damping factor was dis-
cussed in Sec. III. This is verified in Fig. 7 which
shows (kns/s)& as a function of K for (kns/s);
= 2 x 10 'e and (kns Is ); = 0.

Figure 6(a) shows the time dependence of kns /s for K
= 0.2 and initial asymmetries of 2 x 10 '&, 2 x 10 '&,
2x 10 'e, and zero [recall, 2x 10 'e is the max-
imum (saturation) asymmetry that can be pro-
duced by decays of H bosons]; Fig. 6(b) shows the
same initial conditions with A = 10. For K= 0.2 the
damping is small and the final asymmetry is just
given by the initial asymmetry plus 2 x 10 '&, the
asymmetry produced by the decays of the H bo-
sons. However, for E= 10 there is substantial
damping of the initial asymmetry and the final
asymmetry is nearly independent of the size of
the initial asymmetry. In general, since the set
of equations is linear in the —quantities we ex-
pect the final asymmetry to be given by
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FIG. 6.(a) The time evolution (z-t ) of the baryon
asymmetry for K=0.3 {for ++=7&&10, ~+=7&&10 GeV)
is shown in units of & for initial asymmetries of 2&&10

2&10 &, 2&10 &, .and zero. Little damping occurs,
and the final asymmetry is essentially the initial value
plus 2 &&10 & generated by delayed free decays. (b) The
time evolution of kns/s is shown in units of s for K=30
(for &&=7X10, M~=7X10 GeV) for the same initial
conditions as above. The final asymmetry is essentially
independent of the initial value, and equal to the value
generated for zero initial asymmetry.

V. CONCLUSIONS

As one would expect, the evolution of baryon
asymmetries due to the actions of Higgs bosons
and gauge bosons are qualitatively very similar.
In the Higgs-boson system, when C and CP are
not both violated, no baryon excess is produced
and any initial asymmetry is reduced. For ari
arbitrary initial asymmetry, the ratio of final to
initial baryon excess is exp(-0. 3K to -2.0K).

his is less than the amount of damping we would
expect by just using the results for gauge bosons
(in FOT) and substituting Ix —Ixs and M-M„, which
predicts damping by -exp(-5. 5K). This is easily
understood; there are two species of gauge bosons
(X and Y), and each species has three helicity
states. These effects increase the rate of inverse
decays which are responsible for the damping by
a factor of about 6.

When E+ 0, the saturation asymmetry for the
Higgs boson (achieved for K«1) is (kns/s)
=2x10'~, while for gauge bosons it was
8x 10~&. The difference again i's accounted for

FIG. 7. The final baryon asymmetry ~~/8 in units of
& is shown as a function of K for & /&+=7, with initial
asymmetries of 2X10 & (ten times the maximum asym-
metry that can be generated by decays) and zero. For
K«1, the initial asymmetry is damped only slightly,
and the excess produced by H decay adds to the initial
asymmetry but is insignificant. For K»1, the initial
asymmetry is damped sufficiently so that the final value
is independent of the initial conditions.

by the statistical factor of three spin states for
the vector gauge particles, combined with the
difference that here we have used Maxwell-Boltz-
mann statistics (when quantum statistics are used
there are relatively —,

' as many bosons as there
are fermions).

For large K, the situation is more complicated
as the quasiequilibrium state depends on both de-
cay and inverse decay reaction rates, and both
systems give the result (kns /s) = 3 x 10 'a/Ksi.
For intermediate values of K (K-1) in the Higgs-
boson case annihilations slightly reduce the final
baryon excess by allowing the number of H bo-
sons to remain closer to the equilibrium value.
For plausible values of o"/Ix„, the relative ef-
fectiveness of annihilations compared to decays,
this reduction is less than a factor of 10. For all
values of K and a'/n„s 10, the production is well
represented by kns /s = 2 & 10 'a /[1+ (3K)"].
With nH = 7 x 10 ' and MH & 3 x 10 "GeV the observ-
ed kns/s = 10"can be produced by Higgs bosons
alone if &= 10~.

Because the Higgs bosons are expected to be
lighter than the g'auge bosons of the theory, it
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has often been said that the Higgs bosons alone
will determine the final kns/s of the universe
since their effect on kns/s will occur when
T =MH, after the actions of all the other super-
heavy gauge bosons have occurred. However, for
n„& 10 ' and MH & 5 x 10"GeV we have E & o.6
(for u„= 7 x 10 ' and M„= 10'4 GeV K = 0.02), which
is in the saturation production range and leads to
very Bttle damping of preexisting asymmetries,
less than a factor of 4. Thus we expect the baryon
excess produced by Higgs bosons to simply add on
to that produced by gauge bosons. Only if the Higgs
boson is very light (M„&10"GeV) or if u„ is big
(&10 ') will E be large enough so that preexisting
asymmetries will be erased by the Higgs bosons.
In this situation its actions alone will determine
the final value of kns/s.

APPENDIX

The superheavy boson II which mediates B- and
L-nonconserving interactions in the most general
theory which breaks down to SU(3), x SU(2)~ x U(l)
is an isosinglet, color triplet with charge a3. In
the minimal SU(5) theory its couplings to 8 and-
L-violating currents are given by the interaction
La,grangian

Zi= Q [(X /M2)H))(C;g), d; ug I + e u) g+ Pdg I)

+ ($~/~2 )H~( &; )t,u)~d(~-~+u)„e,'~)]+ H.c. ,

(A1)

where u is the generation index (u = 1,2, 3); i,j,
k, are color indices, and superscript c denotes
charge conjugation. The coupling strengths X

and $ are given by

X~ =MD~g/2M~, (A2)

where M~ and M~ are the current-algebra
masses of the up and down quarks of the specified
generation, M~ is the mass of the 8' boson =80
GeV, and g'= 4vu (u = gauge coupling constant).
The u and d masses are -5 MeV and -8 MeV;
the c and s masses are -1 GeV and -150 MeV;
the b mass is -5 GeV, while the t mass is &15
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GeV. In any other theory which breaks down to
SU(3) x SU(2) x U(1) the interaction Lagrangian will
have the same structure, however, the coupling
strengths & and ( might be very different.

1. Decays and inverse decays

From (Al) it follows that the decay channels of
theHareU +D, U +L, andD +v . Thema-
trix elements for these processes averaged over
initial and final spins, colors, and generations
are needed. Since the coupling constants & and g

are very mass dependent, and the first- and sec-
ond-generation masses are so light, only third-
generation processes will be included (although
averaging is done over all three generations).

(i) H- U +D . The matrix element for this
process is given by

~3it
~

'= (~u„/27)M„2,

w= (wn„/216)M„*(2~)'I!'(Q p),

where

u„= (u/12)(m, '+ m ')/M '.
(ii) H- U„+L . The matrix element for this

process is given by

~3g~ =( u /13)M ',
W= (mu„/144)M„'(2v)'5'~ Qp~ ., (

j

(A4)

(iii) H-D + v . The matrix element for this
process is given by

~SR~'= (7)'u„'/9)M„',

N'= (wa)1/')2)M„'(Rw)'5'(i Q)I,, , I'

where

u„' =- (u /12)m, '/M)(/' .

(A5)

2. Annihilations

Because II bosons are charged and colored they
can annihilate via photons and gluons (above
-100 GeV, the U(1) gauge particle is not the same
as the U(1) gauge particle below 100 GeV —the
photon). More exotic annihilation channels in-
volving the 8- and L-violating couplings of the H
are much less important since they are second or-
der in &H rather than u. 'The annihilation channels
of the H are H+H-U+U, D+D, L+L, v+ v,
G+ G, y+ y, y+ G, where G is a, gluon. Note that
since the H boson is an isosinglet it does not
couple to the W bosons. In any theory which
breaks down to SU(3) x SU(2) x U(l) the necessary
couplings are contained in the strong SU(3) and
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weak U(1) parts of the Lagrangian, "
8 =gG„Q q y "2Aq

+ (5)"'s&„Qfy" (Qg i~-)f,
f

where q is a quark, f is a fermion, Q& is its
charge, and I,f its third component of weak iso-
spln.

(i) and (ii) H+H-U+ U or D+D. For each of
these processes there are two Feynman dia-
grams —one with a virtual photon and one with a
virtual gluon. Also note that the effective charge
(=—Qz -I,z) is different for the right- and left-hel-
icity states. When the appropriate averaging has
been done the matrix elements for the U+ U and
D+D channels are, respectively.

~5g~' = 0.137''n'[-2(p, ~ q)' -p, p,q']/s',

i
IK('= 0133m' n'[-2( p, q)' -p, p,q']/s

where p,p', p„p, are the four-momenta of the H,
H, U or D, U or D; q=p -p' and s= (p+p')'.

(iii) and (iv) H+H- L+ L or v+ v. For each of
these processes there is one Feynman diagram
which has a virtual photon. Once again, the ef-
fective charge depends upon the helicity state.
When the appropriate averaging has been done the
matrix elements for the L+ L and v+ v channels
are, respectively,

~SRi'=0.0447r'n'[-2(p, q)'-p, p,q']/s, A8)
igRi'= 0 0356w'n. '[-2(p, ~ q)' -p, p~']/s

where P,p', P„P, are the four-momenta of the B,
II, L or v, t. or v; q=p -p' and s =(p+p')'.

(v) H+H- G+ G. For this process there are
four Feyriman diagrams including a seagull dia-

gram and a diagram with a three-gluon vertex.
When the appropriate averaging has been done,
the matrix element is

~m~ =("n /27)

&(11.5+ 4M„'[(p ~ k, ) '+ (p ~ k, ) ]

+P P'[(P .k, ) '+ (P. k.) ']+ 18(P k, )'/(k, k.)'

—18(p ~ k, )/(k, ~ k, )

—9M„'(k, ~ k, ) '(P k, /P k, + P k, /P k, )

-(p p')'(p k, ) '(p. k,)-'),
where P,p', k„k, are the four-momenta of the H,
H, and the two gluons, respectively.

(vi) and (vii) H+H-y+y or y+G. For each of
these processes there are three Feynman dia-
grams, including a seagull diagram. When the
appropriate averaging has been done, the matrix
elements for the y+y and y+G channels are, re-
spectivelyy,

~mt~ =o 0948~'n'&1+(Ms'/4)[(P k, ) '+(P k, ) ']
-kMH'p p'(p k, ) '(p k. ) '],

(A10)
=0 237m2n. (1+ (M /4)[(p k, ) '+ (p k, ) ']

--'M. 'p p'(p ~ k, ) '(p ~ k.) 'j,
where p,p', k»k, are the four-momenta of the H,
B, yorG, y.

The elementary transition rates W for these
processes are given by

(A11)

For processes (v) and (vi) the factor of 1/2! must
be included because of the identical particles-
y+y and G+G.
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