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The time evolution of the baryon asymmetry (kns/s) due to the interactions of a superheavy gauge boson (mass

M~-10" GeV, coupling strength a-1/45) is obtained by numerically integrating the Boltzmann equations,

Particle interactions in the very early universe (t & 10 ' sec) are assumed to be described by the SU(5) grand

unification theory. To a good approximation the results depend upon one parameter, K=2.9)& 10"a GeV/M~, If C

and CP are not violated in the decays of the superheavy boson no asymmetry, develops, and any initial baryon

asymmetry is reduced by a factor of = exp{ —5.5I( ). If both C and CP are violated then an initially symmetrical

universe evolves a baryon asymmetry which today corresponds to kns/s = 7.8&& 10 'e/[I + (16K)"],where e/2 is

the baryon excess produced when an X-X pair decays. Decays and inverse decays of superheavy bosons are

primarily responsible for these results (as Weinberg and Wilczek suggested); however for E&1.baryon production

falls off much less rapidly than they had expected. A gauge boson of mass 3 X 10"GeV could have generated the

observed asymmetry kn~/s = 10 "+"if e = 10 " ".In a companion paper the role of Higgs bosons is

considered.

I. INTRODUCTION

A. Background

In the late 1940's, Gamow and others suggested
that all elements heavier than hydrogen could
have been produced by nuclear reactions involving
primordial protons and neutrons during the first
few minutes of the evolution of the universe. Al-
though this was always an attractive idea, it was
not until nearly 20 years later that the extensive
nucleosynthesis calculations of Wagoner, Fowler,
and Hoyle tested all the details of this scenario.
Their calculations showed that although few nuclei
heavier than mass 4 were formed because of the
lack of stable nuclei with A = 5 or A = 8, Gamow's
idea could quite nicely explain the observed 25%%d

mass fraction of He. This was an accomplish-
ment, for while the production of heavier elements
could be accounted for by reactions in stars and by
explosive nucleosynthesis events in supernovas,
there did not seem to be a natural way to produce
this large amount of helium. The big-bang helium-
synthesis calculation is now one of the strongest
pieces of evidence in support of the big-bang
hypothesis.

There is an analogous problem regarding the'

net amount of matter itself, specifically, say,
the baryon to photon ratio nn/n„which is between
3&&10 and 5&&10 for 0 between 0.005 and 2, h

between 0.5 and I.O (see Sec. II). Also in need of
explanation is the discrepancy in the amounts of
matter and antimatter. Although microphysics is
very nearly particle-antiparticle symmetric, the
universe appears to contain negligible amounts of
antimatter, the ratio of antimatter to matter being
less than 10 on scales up to clusters of galaxies. '
Since the number of photons changes with tem-

perature (because of reactions like e e annihila, —

tions at & —= 0.5 MeV), a more useful quantity to
consider is the baryon number to specific entropy
ratio kns/s The. specific entropy is related to
the numbers and temperatures of relativistic par-
ticles, presently, photons and neutrinos (see Sec.
II). The observations give kn&/s between 4 &&10

and 8&&IO, or kns/s =10 . If the expansion
of the universe is isentropic (a,diabatic), and if
baryon number is conserved, kns/s is a constant.

These observations deal a death blow to conven-
tional symmetrical big-bang cosmologies. With
no baryon-violating forces, a universe that is ini-
tially symmetrical remains so, and in the simplest
scenario incomplete annihilation leaves a.residual
baryon and antibaryon to photon ratio, n„/~ =n&/
n, -10 " (Ref. 3). To avoid this, one must put in
the asymmetry as an ad hoc initial condition, or
invoke some mechanism to separate matter and
antimatter before annihilation on scales that are
then much larger than the horizon.

When the age of the universe was f, ~ 10 sec,
the temperature was k7' ~1 GeV, and baryons and
antibaryons were both about as abundant as pho-
tons. The net baryon number we observe today
was present in a small baryon asymmetry of 1

part in 10". Many authors, including Sakharov,
Zeldovich, Hawking, Weinberg, and Parker' have
suggested that an initially symmetrical universe
could have dynamically evolved this asymmetry if
there were some mechanism to violate baryon
conservation. A recent resurgence of interest in
this idea was spurred by the suggestion of Yoshi-
mura and Ignatiev et al. that if particle interac-
tions in the early universe were described by
grand unified theories (GUT's) such an asymmetry
would evolve and could be calculated.

Grand unified theories unify the weak, electro-
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magnetic, and strong interactions by spontane-
ously broken gauge theories ' with full symmetry
restored at energies ~ &10" GeV, where the ex-
trapolated coupling constants become equal.
These theories are largely motivated by the suc-
cess of the SU(2) &&U(1) (Weinberg-Salam) theory
of weak and electromagnetic interactions and the
SU(3) color gauge theory (quantum chromodynam-
ics} of strong interactions. A useful consequence
of grand unification is that baryon number and
lepton number are not individually conserved, as
baryons and leptons are placed in the same multi-
plets and are thus mixed under gauge transforma-
tions. However, baryon- and lepton-nonconserv-
ing interactions are mediated by superheavy gauge
and Higgs particles with masses M ~ 10" GeV,
and at, ordinary energies these conservation laws
are nearly obeyed. A measure of this is the sta-
bility of the proton, whole lifetime is 7 «10"yr."
This limit also requires that unification take place
above 10' GeV.

Three ingredients are necessary to generate a
baryon asymmetry: (1}baryon-nonconserving
forces, (2) C and CP violations to provide an ar-
row for the direction of the violation, and (3}a
departure from thermal equilibrium. GUT's pro-
vide (1) and they can naturally contain (2) through
loop processes, while (3) arises in the early
universe, when particle reaction rates I" lag be-
hind the rate of cosmological expansion H. In-
gredient (3) is not obvious; in fact, Yoshimura
missed this point and it was subsequently pointed
out by Dimopoulos and Susskind, Toussaint
et al. ," and Weinberg. " Qualitatively, though,
the need for a departure from equilibrium is easy
to understand. If a symmetric universe is in
thermal equilibrium, particle-number densities
behave as exp(-m/kT). CPT invariance guaran-
tees that a particle and its antiparticle have the
same mass, and unitarity requires that the total
production rates of a particle and its antiparticle
be equal, so their densities remain equal during
expansion and no asymmetry arises, regardless
of I3-, &-, and &P-violating interactions.

B. Goals and assumptions

Of the many scenarios for producing a cosmo-
logical ba, ryon a,symmetry, the most promising
appears to be the out-of-equilibrium decay sce-
nario suggested by Weinberg and Wilczek. " The
goal of this paper is to, as much as possible, per-
form the same careful numerical calculation for
the time evolution of the baryon asymmetry as
Wagoner, Fowler, and Hoyle did for big-bang
nucleosynthesis. Thereby, we hope to provide
quantitative verification of what is at present an

appealing idea. However, we face a number of
problems that force us to be less precise than we
would like. First, which (if any) GUT is the cor-
rect description of nature? What are the details
of the CI' violation'? Are the contents of the uni-
verse in kinetic equilibrium? If not, what are
the particle distributions? Are there non-GUT
processes which also generate a baryon asym-
metry? We address these difficultibs by making
some working assumptions.

(1) Weinberg and Nanopoulos have shown that
in the most general GUT which contains only the
usual fermions (arbitrary number of generations,
each with "up"-, ' down"-, e- and v, -like parti-
cles) and which breaks down to SU(3), xSU(2)~
&&U(1) there are three generic types of superheavy
bosons whose interactions violate baryon number
and hence can generate a baryon excess. The
first two are gauge bosons: (i) XY—an isodoublet,
color triplet (charge +/, + ~) and (ii) X'Y' —an iso-
doublet, color triplet (charge + —„+—,). The third
type is a Higgs boson: (iii) H—isosinglet, color
triplet (charge +3). The superheavy gauge bosons
of SU(5) are of the Xl' type; in this paper we will
consider baryon generation by the &F gauge bosons
and will use the SU(5) theory to calculate the inter-
actions of these bosons. In a more general GUT

the couplings of the XY bosons are of the same
form with different coupling strength, so that by
adjusting the coupling strength our results can be
made more general than the SU(5) theory. Since
the couplings of the X'F' bosons are similar to
those of the XF bosons we take our results to be
valid for these bosons also. In a companion pa-
per ' we will consider the role of the II boson in

baryon generation. In both of these papers we
shall consider the effect of just one superheavy
species; of course, in an arbitrary GUT there
may be many species of superheavy bosons and in
order to understand the complete evolution of
kn~/s one must take into account the effects of all
the superheavy species. This issue is addressed
in a third paper. "

(2) The only processes which we include in our
computations which involve the superheavy bosons
are of order o.' (their decays and inverse decays)
and of order & (baryon-nonconserving fermion
collisions, Compton-type and annihilationlike re-
actions). We find that the second-order processes
are not important and expect higher-order pro-
cesses to be negligible.

(3) The largest uncertainty is the CP violation.
At present there is no detailed model of CI' viola-
tion in SU(5) or other GUT's. Therefore, we
parametrize the CP violation by e/2 =—(net baryon
number produced in the decay of an X-X pair).
Because the lowest-order diagram for decay (the
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tree graph} conserves CP, & must be of order &

or smaller.
(4) Whether the constituents are in partial equili-

brium with &- and ~-conserving interactions
occurring rapidly on the expansion time scale is
an important question. If they are not, the Bpltz-
mann equations for the evolution of particle dis-
tributions are coupled integrodifferential equa-
tions in both time and energy, and further, we do
not know what initial distributions to require. If
we have partial equilibrium then the system re-
duces to ordinary differential equations for the
numbers of each species per comoving volume.
At the energies pf interest, kT ~10'4 GeV, it is
not clear whether or not 8- and L -conserving
reactions are occurring rapidly enough (I' ~H) to
maintain partial equilibrium. However, thermal
distributions are "most probable, " and noninter-
acting massless particles in a thermal distribution
remain in such a distribution with a temperature
which is red-shifted, T~ R(t), as the universe
expands, as with photons and neutrinos today. To
allow for our ignorance, we use a variety of par--
ticle energy distributions which allow us to solve
ordinary differential equations. We find our re-
sults, except in one instance which we point out,
are relatively insensitive to the form of the dis-
tribution.

(5) Finally, there is the question whether or not
non-GUT processes, such as those operating at
the quantum gravity epoch or the evaporation of
primordial black holes, also contribute baryon
asymmetries. We address this by considering
cases in which the initial asymmetry may not be
zero. This question is discussed in more detail
by Carr and Turner. "

C. Out-ofwquilibrium decay scenario

Since we find the basic idea of Weinberg and
Wilczek to be qualitatively correct, we will brief-
ly outline it as a framework against which to dis-
cuss our results. In this scenario, at the Planck
time (5&&10 sec) the universe is a hot soup of
all the fundamental particles in thermal equili-
brium. These particles include quarks, leptons,
gauge and Higgs particles; in particular, the
numbers of baryons and antibaryons are equal.
The key particles are the superheavy bosons which
mediate baryon nonconservation (either gauge or
Higgs bosons} and are designated S. They have

coupling strength o.'; for a gauge boson o.'=—10
for a Higgs boson, & =—&0 -&0 . These bpspns
have decay channels of different total baryon num-

ber. We will take 8=c=A~ =1.
Nothing of impprtance happens until the tem-

perature of the universe drops to T ~M~. At this

point, S's and ~'s, which were as abundant as
photons and other relativistic particles, must
diminish rapidly in number to maintain a thermal
distribution, since for highly relativistic particles
the number density is n-T while for nonrelativ-
istic particles n -(MT) ' e "' . This can happen
only if the decay rate I'L) -0,'~s is faster than the
expansion rate H-(Gp) ' -g T /m~ [g is the ef-
fective number of particles g= 1(P; mp = Planck
mass =—10 GeV (see Sec. II)]. (Decays are the
dominant means of reducing the number of S, S's
since the annihilation rate is of order o.'. ) If
I'~ &H when T =—M~, then S, 8's can decay fast
enough to maintain thermal equilibrium. This is
the case if M~ ~10"&GeV. No departure from
equilibrium occurs and no baryon asymmetry is
generated.

On the other hand, if I'o & H when T =Ms (that
is, Ms &10"o.GeV), the lifetime of the S is great-
er than the age of the universe, and decays are
not yet happening on the cosmological time scale.
S and E bosons remain as abundant as photons un-

til the universe becomes as old as the S lifetime.
'

At this point S, S's decay freely (inverse decays
are blocked since typical particles have energies
-T«Ms). The mean net baryon number of their
products need not be equal and opposite, and &-
(size of CP violation) will parametrize the net
baryon number generated when an S-S pair de-
cays.

After these decays baryon number is effectively
conserved until today, as rates of baryon noncon-
serving processes are very small, so this baryon
excess remains constant. Its value is

ns =n, —n;-en„(before decay) -&n, .

In an isentropic expansion, the total entropy also
remains constant; the specific entropy density is
the number of relativistic species times the den-
sity of a relativistic species s/k -gn„. The bary-
on-to- specific- entropy ratio remains constant,
kna/s -e/g -10 &. After antibaryons and most of
the baryons have annihilated, this asymmetry is
the total number of residual baryons, and this
should be the baryon to entropy ratio measured
today kns/s(obs) = 10

D. Summary of results

Both as a preamble and for those who wish to
skip the detailed discussion in later sections, we
offer here a summary of our results and an out-
line of the rest of the paper. In our numerical
calculations we have considered cases both with-
out and with C and CP violations in the decays and
inverse decays of the superheavy gauge bosons. In
this first case (C or CP conserved) no asymmetry
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can evolve and we follow the evolution of a uni-
verse which has an initial baryon asymmetry at
the Planck time. In the second case (C and CP
violated), an asymmetry. can evolve and we ex-
amine situations with both zero and nonzero ini-
tial asymmetries.

As mentioned earlier, we have included decays
(D) and inverse decays (ID) of the superheavy
gauge bosons as well as baryon-nonconserving
(BNC) collisions mediated by the superheavy
gauge bosons. In general our results depend on
the two parameters & and ~&, the coupling and
mass of the gauge particles. Since we find that
the "effectiveness" (interaction rate/expansion
rate) is proportional to K=2.9x10 n GeV/Mx
for D and ID and to && for IBNC processes, we use
the equivalent and more useful parameters & and
Q.

1. C or CP conserved

If ~ or CP is not violated, no baryon asymmetry
can be generated, but any initial asymmetry can
be damped. In SU(5), B—I- =(baryon number
—lepton number) is conserved. Therefore, unless
the universe starts with 8 —I- = 0 it can never
evolve to a state with &=I-=0 by GUT processes.
In this way, other processes such as quantum

gravity can leave a residual asymmetry which can-
not be erased.

If'the universe begins with & —~ = 0, an initial
baryon asymmetry (hence also a lepton asymmetry)
can be dampedby D and ID, and also BNC. The
damping for fixed E is insensitive to &: BNC
processes are not important. The amount of
damping is approximately exp(- 5.5K) when we
assume partial equilibrium. If this assumption
is relaxed, the damping becomes approximately
exp(- 8.3K) because the presence of more quarks
and leptons (due to X decays) increases
the rate of inverse decays. This is the only re-
sult which depends at all significantly on the as-
sumption of partial equilibrium. D and ID neutral-
ize baryon asymmetries by a two-step process:
q+ q-X;X-q+ l (nB=-I, nL=-I; q =quark, I
= lepton). If the universe begins with B—I & 0,
then there is always an asymmetry which cannot
be damped out. In this case, all that can happen
is a redistribution of the asymmetry among all
species. When we start the universe with @= 0
but B—I-&0 (only an initial lepton asymmetry)
for Mx «2 X10" n GeV the initial asymmetry is
redistributed to make ~B~ = ~1-~. For M„»2
~10" u GeV, little redistribution takes place.

2. C and CP violated

In this case an initially symmetrical universe
can dynamically evolve a baryon asymmetry, as

outlined in (C) above. Here we observe a very
gradual transition between the two limiting cases
described there. For M&»M ——4.6~10 & GeV,
an initially symmetric universe develops a maxi-
mum baryon-to-entropy ratio of kn~/s =7.8
& 10 E. W e note that the size of the asymmetry
and the critical mass are nearly but not exactly
those estimated above. For Mx «M~ the baryon-
to-entropy ratio is smaller by a factor (Mx/M&) ',
with the whole regime described reasonably well

by

kn~/s =7.8x10 ~e/[I+(Mc/Mx) .~]

—= 7.8 x 10 '~/[I + (16K)"] .

This is insensitive to & for fixed &, and is also
insensitive (varies by s50%) to whether or not the
light particles (quarks and leptons) are in partial
equilibrium.

If the universe starts with a large asymmetry,
much larger than that which would be generated,
for ~x» M& it is slightly damped as in the case
of no CP violation, while for ~x «M~ the final
asymmetry approaches that which would have
developed for zero initial asymmetry, ' here, un-

less 8 —I-~0 initially, we are unable to tell what

happened before,
Popular values for the superheavy masses are

around 3 & 10 GeV is If a gauge boson of this
mass is to produce the observed kns/s = 10
then we must have & =—10 ' ' ' . If the CP viola-
tion in the X-& system is due to single-loop ex-
changes of superheavy Higgs bosons, then we
would expect &=—&H;, ——10 -10, which agrees
with the above requirement.

In the rest of this paper we will develop in full

glory the calculations which lead to those results.
In Sec. II we will discuss kinetic theory and the
analog of the Boltzmann equation in the expanding
universe. In Sec. III we will review our assump-
tions and derive the equations governing the de-
velopment of each species. In Sec. IV we pre-
sent in detail our results when C or CP is con-
served and in Sec. V when they are violated. In
Sec. VI we assess our results and indicate further
work that remains to be done. A discussion of
SU(5), the various matrix elements needed for
this calculation, and the full set of Boltzmann
equations are contained in the Appendices.

II. KINETIC THEORY IN THE EXPANDING
UNIVERSE

A. , The Friedmann-Robertson-N'alker universe

We perform our calculatioris against the back-
ground of the simplest big-bang model, the
Friedmann-Robertson-Walker (FRW) universe.
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where t is proper time measured by a comoving
observer, r, 8, and P are comoving spatial co-
ordinates, k = 0 or +& is a measure of curvature,
and R(t) is the Robertson-Walker scale factor.
We use units such that h = k& ——c = &.

The dynamical equations for this metric are"

(R/R) = 8mGp/3 - k/R + A/3, (2.2)

d(pR')/dt +pd(R )Idt =0, (2.3)

where A is the cosmological constant, p the total
energy density, and P the (isotropic) pressure.

The fundamental constituents of the universe,
quarks, leptons, and gauge and Higgs bosons, are
pointlike and at very high energies should behave
like ideal r'elativistic gases. In thermal equili-
brium at temperature T the energy densities of
relativistic species are

p~ ——(g&'/30) T', pg =rp» (2.4)

where g is the degeneracy factor,' b refers to
bosons and f to fermions. Thus, the total energy
density p in relativistic particles is given by
(g~& /30) T, where g„ is the effective total de-
generacy,

~.=Z~. +r Z g„ (2.5)
f

where the sum Q, is over all the relativistic bo-
sons and Pz is over a,ll relativistic fermions.
Note that g~ is temperature dependent, since as
T falls below M„species i drops out of the sum.
For the minimal SU(5) model, at very high ener-
gies (E»10 GeV) when all species are relati-
vistic g~

=—&60.
At very early times the terms k/R and A/3 in

(2.2) are negligible, so that the age and tempera-
ture of the universe are related by

t —(45/16&3)~~~g m~/T = 0.154(160/g~) T~/T

(2.6)

The quantity m& is the Planck mass (=G =1.22
&&10" GeV). TJ =1.88&10" GeV is the tempera-
ture of the universe at the Planck time (0.538
X 10 sec) for g~ =160.

The specific entropy s/ks =s is also dominated

by relativistic species, for which s = (p+p}IT
=~p/T. Thus we find that at early times the en-

tropy density is

s =g~(2n /45)T (2.7)

The metric for an isotropic and homogeneous
universe can be written in the Robertson-Walker
form

ds = dt —R (t) [dy /(1 —kP) + y (d8' + sin 8 dg )],
(2.1)

When baryon-violating interactions cease, the net
density of baryons nI3 =n, —n~ will also behave as
n~ o- R ~ T' simply because of expansion, so that
the ratio ns/s remains constant.

Today the known relativistic particle species
present in the universe are y', v„v„, and (pre-
sumably) v, . The temperature of the photons is
T„—= 2.9 K. The neutrino species are at a lower
temperature, T„=(~) "T„, since photons were
heated by e e annihilations (T —

—,
' MeV) after neu-

trinos decouped (T-1 MeV). Therefore, the en-
tropy density today is

s = (2 '/45)[2+ 6(—')(I'~)]T,', (2.8)

p~ =Ok 1.88X10 g/cm,

or the baryon number density as

n~ =p~/m = Qk 1.13 && 10 cm

(2.8)

(2.io)

(m =proton mass). This is also the net baryon
number density n&. Our knowledge of h and 0
is poor, we take as extreme limits —,

' &h& & and
0.005 & 0 & 2. (The upper limit fl = 2 corresponds
to a deceleration parameter qo ——&, while galactic
masses determined from rotation curves indicate
0 )0.005.} With these ranges, we find that the
baryon-to- entropy ratio today is

kns/s = 3.25x10 fib'(2. 8/T„)' =10

(2.11)

This ratio has remained constant since baryon-
nonconserving interactions became ineff ective
(T -10 GeV).

Today it is almost equivalent to speak of the
baryon-per-photon ratio. Essentially all the pho-
tons in the universe are in the 3-K background;
the number density of photons is

~ = 2g(3)/~'T„' (2.12)

[f(3)=1.202 06]. Comparing (2.8) and (2.12), we
find s=—7 02n„so today

n In, = 7.02 kn /s = 10 8' (2.i3)

If -one uses big-bang nucleosynthesis to place an
upper limit on Q~ (the contribution of baryons
alone) more restrictive limits are obtained: kns/
s =10 ' ' and nein„=10 (Ref. 20).

where the first term in brackets comes from pho-
tons (g„=2) and the second from neutrinos [g„
= 6, ~= (T„/T„), and the factor ~ for fer mions] .

The present baryon mass density p„ is conven-
iently expressed in terms of the parameters h

[Ho —=100k (km/sec)/Mpc] and & =p, /p, (p. = 3HO'/

SmG = density necessary to close the universe for
& =0) (provided this mass is in baryons),
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B. Kinetic theory

The fundamental equations needed for the evolu-
tion of phase-space densities of the various spe-
cies in the universe are the general-relativistic
Boltzmann equations. Ehlers has written an ex-
cellent review on this subject, and Wagoner has
also discussed these equations. We shall follow
Wagoner's notation.

In order for the results of relativistic kinetic
theory to be valid, two conditions must be met:
first, the contituents must behave similar to ideal
gases, and second, the spacetime must be locally
flat. The first condition is satisfied if the aver-
age potential energy between particles is much
less than their average kinetic energy -T. In
GUT's, the fundamental particles are pointlike,
and at high energies their interactions are weak
enough so that they can be treated as perturbations
to free-particle states. At times much later than
the Planck time (-10 sec), the second condition
will also be satisfied, since local curvature fluc-
tuations will be negligible.

The fundamental dynamical quantities are the
phase-space densities N, (p", x'), where i runs

dN( up—, N, (p(, x" )dV dll, , (2.14)

where u is the four-velocity of the observer, dV
his element of proper volume, and dII& is the
frame-invariant momentum element

dII( (2(()—'g(d'p(/pf(. (2.i5}

Here, g& is the degeneracy factor for species i,
and the P", are components of physical momentum.
The number density of species i per proper vol-
ume as seen by an observer with four-velocity
u = (1, 0, 0, 0) (comoving) is

u P, N]dII] —g( 2w N)d P, . 2.16
4

If it were not for interactions, the phase-space
density N& of each species would remain constant
along the phase-space trajectory of the system
(Liouville's theorem). The change in N, along the
phase-space path is due solely to interactions,
and is given by

over particle species. The number of particles in
phase-space element dVdII& is

LgNg( Sx)): g f SIII SII SII (N N (I Ngs)(1 + NI) "N(S P -SISI ' ' )
) fo ~ ~

~ fft f ~ ~ ~

—N(N) (1+N()(1+N ) W(P(P( ' '-P P ' ' )], (2.17)

where L, is the Liouville operator for species i
(L(=m(D/Dv for a massive particle). The fac-
tors (1+N) are stimulated emission factors for
bosons and (1 —N) exclusion factors for fermions.
Tht; invariant transition rate W is

N=(s/I")(ssl'(s~)'I"' Ps", -gs", ), (s.)s)
ia out

where s is a statistical term which contains a
factor (m. ) for each set of m identical incoming
or outgoing particles, and n is the total number
of incoming and outgoing particles. The invariant
amplitude 3g is calculated according to the rules
of Bjorken and Drell, "averaged over initial and

I

final spins, colors, and generations, all of which
are treated as degrees of freedom contributing to
the total degeneracy g of each species.

The Liouville operator can be written as L;
=p", B/Bx' r"„p,pf(B/Bp'„so Eq. (2.17) becomes

BN, /Bf = (p'() -'[r „p,pf(BN(/Bp( p((BN(/Bx~

+ right-hand side of (2.17)],

(2.ie}
where the index j is summed from & to 3.

In the case of an isotropic, homogeneous uni-
verse, B/Bx(=-0 and N(p") =N(~ p~), so that [recall
(p ) —[p =m; we write p= [p/]

BN /B, =(R/R)pBN /Bp+(1/p() Q J( dll(' ' ' Jt dII, dII ' '[N N (iyN )(iyN ) ~ ~ ~ W(p p ~ ~ ~ -p, p ~ ~ ~ )
) ~ ~ 0 ~

f fftf ~ ~ ~

—N(N~ (I +N()(1+N ) ~ ~ ~ W(py ~ ~ -p p ~ ~ ~ )]
(2.20)

The first term on the right-hand side of (2.20}
represents the effects of the expanding universe,
which will appear as red-shifts and dilutions (n
(x: R ) of noninteracting particles, while the sec-

I

ond term includes the effect of interactions. Equa-
tion (2.20) is the generalization of the Boltzmann
equation for the expanding FRW universe.

In the absence of interactions, the distribution
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&=[exp(P/T) +1], with T~ R is a solution to
(2.20) which corresponds to a gas of massless fer-
mions (+) or bosons (-), which remains a thermal
distribution with a red- shifted temperature. This
is the condition of photons and neutrinos today.

Again in the absence of interactions, the distri-
bution N = exp(- p /2mT), with T~ R, is a solu-
tion. It corresponds to a gas of massive, non-
relativistic particles whose kinetic energies have
a Maxwell-Boltzmann distribution and whose tem-
perature is red-shifted 7"~ R

Integrating these distributions over momenta,
one finds in both cases that the spatial number
densities behave as n~ R, as expected since the
total volume occupied by particles grows as V
~A.

C. Equilibrium

In complete thermal equilibrium, a system ap-
pears stationary'. all macroscopic properties,
such as particle distributions, assume their most
probable values. Since the universe is expanding,
thermal equilibrium in the usual sense cannot
exist. However, if particle-interaction rates
are rapid compared to the expansion [i.e. , the
cosmological term in (2.20) is small compared to
the other terms on the right-hand side], then equi-
librium-particle distributions will be established
on the expansion time scale.

Therefore, on time scales short compared to the
expansion, but long compared to reaction rates,
the universe will take on the appearance of a sys-
tem in thermal equilibrium with particle distri-
butions being given by their usual thermal forms-
fexp[(&+ tJ)/T]+ I] ', etc.—with the cosmological
temperature T decreasing T'~R . As long as the
reaction rates which govern the distribution of a
given species are rapid, that species will pass
through a succession of equilibriumlike states.
We shall take this as our definition of thermal
equilibrium in the expanding universe.

. III. EQUATIONS FOR THE EVOLUTION OF BARYON
NUMBER

A. Assumptions

In principle, to follow the .evolution of the bary-
on asymmetry we need to solve the coupled set of
Boltzmann integrodifferential equations (2.20) for
the distributions of all species of quarks, leptons,
and all gauge and Higgs bosons, including all their
interactions. This is clearly a formidable project.
Therefore, we have made two key assumptions
and a number of approximations along the way.
The major assumptions involve which particle
species are in fact important and the nature of the

energy distributions; they allow us to restrict
our attention to a manageable set of ordinary dif-
ferential equations.

1. Species of interest

As a starting point we will assume that the
world is described by the minimal SU(5) model:
three generations of quarks and leptons, 24 gauge
particles, and 34 Higgs particles (a complex 5

and a 24). Although in this minimal model it ap-
pears that the size of the CP violation is far too
small due to cancellations at lower orders of per-
turbation theory, the effect of enlarging the Higgs

11

sector to avoid these cancellations is only to in-
crease the total number of particle species, which
in turn affects the expansion rate H~ g~ ', and the
entropy' s fx g~. In the minimal model, g~ = 160,
and we display the dependence of our results on

(g„/160) where appropriate.
In SU(5) there are two types of bosons that

mediate &- and ~-violating interactions —an iso-
spin doublet, color triplet of gauge particles
(&, I") and a isospin singlet, color triplet of super-
heavy Higgs scalars (H). The X has charge +3,
the Y has charge +3, and the H also has charge

In the most general GUT which breaks down

to SU(3)c &&SU(2)~ x U(1) there is only one additional
type of boson that mediates 8 and ~ violations —an
isospin doublet, color triplet with charge + —

3, +3
(&'Y'). These bosons are also vector particles.

In this paper we will only consider the effect of
the X and F gauge bosons on the evolution of the
baryon asymmetry. Because the X' and ~' bosons
couple similarly we will assume that these results
also describe the evolution of kn~/s due to a single
set of X'F' bosons. In a companion paper" we
treat the effect of a single species of Higgs bosons
(H), and in a third paper"' in this series we con-
sider the effect of many superheavy species.
Therefore, of all the species present, we will
follow only quarks, leptons, and the superheavy
gauge particles X and Y. The other species will
be assumed to be present in thermal numbers, bo-
son species contributing p, = (g,v /30) T to the
total density of the universe and fermion species
8 of this amount. All particles except X and F
will be treated as massless, which is a very good
approximation at the temperatures of interest T
~10 GeV.

We include the three generations of quarks and

leptons that have been at least partially observed.
Since SU(5) is symmetrical with respect to gene-
ration and colors, we treat generation and color
as additional, spinlike degeneracies. Specifically,
all up-like quarks (u, c, and t) are referred to as
U, with an effective degeneracy factor g& = (2 spin .
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states) &&(3 generations) & (3 colors) =16; all down-
like quarks (d, s, and b) are designated D, and D

also has an effective degeneracy g& ——&8. All
electronlike leptons (e, p, and ~) are labeled by
L, where L has an effective degeneracy gz,

—(2

spin states) && (3 generations) =6, and finally, all
neutrinos (v„v„and v,) are labeled by v, where
v has an effective degeneracy g„=(1 helicity state)
&& (3 generations) =3.

The X and Y superheavy gauge bosons, labeled
X and Y, each have an effective degeneracy g&

=g„= (3 spins) && (3 colors) =9. The & and I' mas-
ses are assumed to be equal and each is denoted
Mz. Any difference is due to the SU(2) x U(1) weak
symmetry breaking, and is of order &00 GeV,
negligible at temperatures near &0 GeV. Strict-
ly speaking, the'& and Y bosons have masses and
three polarizations only when the SU(5) symmetry
is broken. When the full symmetry is realized,
T ~ &00M~ we should have instead massless gauge
bosons, with two spin states, and additional Higgs
particles. However, for T ~ &00Mx all particles
are effectively massless anyway and the processes
of interest for baryon generation are occurrin'g at
T ~MX. For these reasons, we treat X and Y al-
ways as massive particles.

2. Particle energy distributions

In order to reduce the Boltzmann equations from
integrodifferential equations in phase space to or-

dinary differential equations in time only, we take
the following model for the distributions:

N (p, t) =F(t)/[ exp(p/T) + 1],

N (P, t) =B(t)f(P/T),
(3.1)

[a/at —(ft/ft)pa/SP]N (P, t) = F(t)/[ exp(p/T) +1] .

(3.2)

When each of Eqs. (2.20) for species i is inte-
grated over fdli, p', , the result is a set of 12 coup-
led ordinary differential equations for the func-
tions U(t), D(t), . . . , U(t), D(t), . . . ; for example,

where F=U, D, L and v, and B=X and Y. T is
the universal temperature and P =

~ p ~; f(P, T)
is the momentum distribution of the X's and Y's,
and will be discussed later. From (S.l) we can
find the number density of one of the fermions, say
U, nv= fdIIvp'Nv= g+U(t), where 4=[3)(3)/
4m ]T'.

Besides reducing our problem to a system of
ordinary differential equations, this model also
automatically cancels the BN/BP terms which rep-
resent the effect of cosmological expansion, '

U(l)=(), A) g f drr dtl& dtI, dII [N, N„W(p, p "-p
p& )

J 1 ~ ~ ~

1 ~ 5f ~ ~ ~

—NvN, "W(PvP~ . -p, p ' )], (3.3)

where in addition, we have neglected the degen-
eracy factors (stimulated emission and exclusion)
in (2.20). None of the species should be highly
degenerate, and the errors caused by this approxi-
mation are probably about 30%, certainly con-
sistent with the degree of approximation through-
out. The integrals on the right-hand side can be
performed so that U can be expressed in terms of
U(t), &(t), . . . , and corresponding barred quan-
tities, with coefficients having known temperature
dependences. Equations (2.6) relate time and tem-
perature.

If all processes were happening rapidly on the
expansion time scale, & and L violating included,
thermal equilibrium in the sense descri. bed in
Sec. II would be established, and we would have
U =D = I.= v = U =D = L, = v —=1. Because of the
&-violating processes, all species would have
zero chemical potential (if we assume total B —L
=0 for the universe). If all processes except those

violating I3 and ~ were occurring rapidly, "par-
tial" thermal equilibrium would be established,
and quark and lepton distributions should be given
by (exp[(p. +p)/T]+ I]. . Particle and antiparticle
chemical potentials would be related by p, + p = 0,
since by assumption reactions such as u+ u =2~
would be occurring rapidly. If the asymmetries
are small,

~
ju/T

~
«1, then (exp [(+ p +p)/T] + Ij=—(1 + 5)[exp(p/T) + 1); in our parametrization,

U=—&+&; U=—&- ~; U+U=2, etc. For small
asymmetries our parametrization is equivalent to
using a small chemical potential, and greatly
simplifies the Boltzmann equations.

3. Partial equilibrium

It is not clear whether the &- and L-conserving
reactions occur rapidly enough to ensure U+ U
=2, etc. To determine this explicitly all &- and
I--conserving processes should be included, how-
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ever, this would greatly complicate the problem.
We can estimate the rates of these reactions:
at very high T (for us T ~10" GeV), a,ny two-body
process ij-lm, which transfers momentum &q
-T, should have a cross section u- u /T . Since
number densities are n& -(g, /m )T, the total rate
of such scatterings ought to be I'=no@ -(g„/m ) o' T.
These reactions will be effective at maintaining
equilibrium if &&H-6T /TI, or T s3&&10" GeV.
More careful consideration of this question by El-
lis and Steigman leads to the same result. This
temperature, above which even partial equilibrium
cannot be maintained, is very close to the tem-
peratures of interest for baryon generation, T
—= m =10" GV

If these &- and L-conserving interactions are
not effective, there is no restriction JL(. + p =0,
or equivalently U+ U=2, and in fact the quantities
U+ U, D+D, L+L, v+v become greater than 2

from the decays of X and Y bosons into quarks and
leptons which are not subsequently redistributed
by &-conserving. reactions such as u+u-2Y, etc.

Rather than including all these interactions we
consider two limiting cases. As we shall discuss
later, our results vary little between these two
cases, with one exceytion. In one extreme, we
suppose that partial equilibrium is maintained
exactly and we set U+ U=D+ D =L+ L = v + v =2.
In the other, we suppose that &- and L-conserving
interactions are completely ineffective, and we
allow U+U, etc. , to evolve as X and Ybosons
'decay according to the &-violating processes me
include, with no 8-conserving redistribution. In
this case, after all decays, the quantities U+ U,
etc. , have increased from 2 to about 4. Here, ~

we implicitly assume that the X and Y decays do
not affect the shape of the U, D, L, v distributions
but just roughly double the total number of quarks
and leptons.

4. The X und Y distributions

For a baryon asymmetry to develop, the super-
heavy gauge bosons must at some point be out of
equilibrium, i. e. , when T falls below Mx, X and
Y bosons are present in larger numbers than they
would have if they were in thermal equilibrium.
Thus, we do not mant to extend partial equilibrium
to include X's and Y's. However, in this case
they are taken to be in kinetic equilibrium, with
energies, but not numbers, distributed thermally.
This can be modeled as

& (P, t) =&(t)~(T)/(exp[(p'+n ')'"/T] —1},
(3.4)

where a(T) is chosen so that n» =X(t)[g»r(3)/w ]T';
that is, X(t) and Y(t) reflect the abundances of

these particles relative to the number that would
be present if they were highly relativistic (mass-
less).

In the other case, if Compton scattering and
other thermalizing reactions are not occurring
rapidly, kinetic equilibrium with the rest of the
universe will not be maintained. Recall from Sec.
II that the temperature of a nonrelativistic nonin-
teracting gas falls more rapidly, T~ R instead
of T~ R . To model this, we choose

~.(t, t) =&(t)/[exp(lpI/T) —1]. (3.5)

This distribution, [exp(p/T) —1], is also a solu-
tion of the Boltzmann equation without interac-
tions. A t very high temperatur es, T»M, it cor-
responds to a relativistic gas with Tcf-R, while
at low temperatures T-KE =p /2M~ R

These two distributions (3.4) and (3.5) serve to
represent the two limiting cases of kinetic equili-
brium and free expansion of the X and Y bosons.
It will turn out that our results are insensitive to
the choice of the & and Y distributions.

B. The interactions

With the simplifying assumptions discussed
above we are ready to discuss the interactions we
include. These are decays (D) and inverse decays
(ID) of X and 1" bosons, baryon-nonconserving
(BNC) collisions which involve two incoming and

two outgoing fermions, and annihilationlike and
Compton-type BNC processes involving two bo-
sons and two fermions. The decay channels for
the& are X-UU, X-DL; the decay channels for
the Y are Y-UD, Y-UL, and Y-Dv. All these
processes are of order &. All the BNC fermion
collisions are contained in the processes UU

-DL, UD- UL, UD-Dv, and Uv-DD, along with

their CP-conjugated and time-reversed counter-
parts. These processes, mediated by exchange
of X and Y bosons, are 0(o. ).

The annihilationlike and Compton-type BNC pro-
cesses of order n for XY-UL, YY-DL or Uv,

and UX —YL, UY-XL or Yv, DY-YL together
with their &P-conjugated and time-reversed coun-
terparts. These are less important because of
the smaller abundances of X's and Y's at times of
interest; mhen included, their effects are less than
10% of the effect of BNC fermion collisions, which
are themselves not very important. Since they
are not important, are in principle no different'
from the BNC processes we do include, and lead
to a proliferation of terms in the equations, they
are omitted for clarity in this discussion (although
they have been included in our computations).
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1. Decays and inverse decays

The details of calculating the various matrix
elements we need are contained in Appendix A.
The total decay rate for an X or F gauge boson at
rest is just I'D =& = Q.~4x. The rate when not at
rest has a time dilation factor, I' = o'M» /&, sup-
pressing decays and inverse decays at high tem-
peratures, 7'»~~. The rates which enter the
Boltzmann equation are integrals over the distri-
butions of & and F and their decay products.

sional grounds.
In order to obtain the rates for BNC processes

at all temperatures, we interpolate smoothly be-
tween high- and low-temperature limiting forms.
The results are not sensitive to our assumptions
about the high-temperature regime, since baryon
generation does not occur until T &M~, when
horizon effects and Debye screening are not im-
portant.

3. The CP violation

2. Baryon- (lepton-) nonconserving fermion collisions

Again the matrix elements are calculated in
Appendix A. At low temperatures, T ~Mx, a
typical thermal averaged cross section would be
expected to be o-a' T /M», since at these ener-
gies the interactions mediated by X and F bosons
are effectively point interactions with a Fermi
constant -u/M» . This is the behavior we find.

At high temperatures, T»MX, one expects on
dimensional grounds that a typical cross section
should be o - u /T . Instead, we find at high tem-
peratures o - o. /M»; rather than decreasing with
temperature the cross section remains constant.
The reason for this is simple. ' the total cross
section becomes dominated by very soft t-channel
exchanges.

There are at least two effects that should pre-
vent this. The first and probably more important
effect is Debye screening. In a hot plasma, the
electromagnetic interaction has a finite range R~
=(nn/T) ' /4r due to shielding effects, ' where
n is the density of screening electrons. Equiva-
lently, the photon acquires an effective mass,
m~RD . A similar screening effect should occur
for interactions mediated by X and F bosons, gen-
erating an effective mass M,«-RD =—36 ' T for
these particles.

The second effect involves causality. In the
early universe the horizon distance, or the dis-
tance over which a signal could have propagated
since the big bang (f =0), is B„=2t. An interac-
tion with o & m(2t) would appear to be noncausal.
Stated differently, the range of any interaction
should be R ~2t, or the effective mass should be
M„, o(2f) '=3.3T'/T, .

To allow for these effects, we use at high tem-
peratures an effective mass for the X and Y, M,«
= max(M», MD,~„,M „, ,„)= max/M», 36.1 o.'' T,
3.3T /T~j, so that at high temperatures cross
sections o-& /M« . Thus, at the highest tem-
peratures, T ~ (11u ' ) T~ (and only for small coup-
ling constants) the range is limited by the horizon;
for the intermediate range M» & T s(11& '

) T~,
Debye screening limits the range of the interac-
tion and gives the form g- T' expected on dimen-

Even in the absence of ~ and CP invariance,
CPT invariance and unitarity put strong con-
straints on the matrix elements. Unitarity of the
S matrix, or conservation of probability, implies
that SS =S S=l. S is defined by writing the tran-
sition probability from incoming state i to out-
going state f as ~8&,. ~; &PT invariance requires

Sff where the bar indicates &P- conjugate
states. From unitarity and CPT invariance we
have

(3.6)

where n runs over all physical states of the sys-
tem. This will be discussed more later.

The T matrix is defined by T =i(1 —S), and the
matrix elements and transition rates W(j-i) are
proportional to T~& ~

. The relations in (3.6) also
hold for

~
T,~ ~

and thus for W(j-i); specifically,

8'i-n = 8'i -n

Wn-i = Wn-i (3.7)

w(x- UU) = w(UU-x)
= w(x -UU) = w(UU-x) = w,

W(X —DL) = W(DL -X)
= W(X-DL) = W(DL -X) = 3 W .

(3.6)

Without loss of generality when CP is violated we
can choose W(X-UU) = W, W(X-DL) =3W, W(X
—UU) = (1 + &) W, and W(X -DL) = 3(1 + e ') W. The
unitarity constraint (3.7) then gives

For simplicity we assume that CP is violated
only for processes involving the X bosons. In the
absence of definite models of CP violation invol-
ving these particles, we parametrize the P viola-
tion as follows. When & or ~P is conserved,
=—W(X —UU) -O(o.) describes all decay and inverse
decay rates:
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W(X —UU) = W(UU-X) = W(1+ «),

W(X —DL) = W(DL-X) =3W,

W(X-DL) = W(DL-X) =SW(1 «) .

(3.10)

From these relations it follows that the mean net
baryon number produced in X and X decays is

B» = [W(- —,') + W(3)]/(2 W) =-p,
Br = [W(l + «)(-,') + W(1- «)(- —,')]/(2W)

=+Ir+ «/2

(3.11)

so that the net baryon excess produced by an X-X
pair is «/2. CPT invariance and unitarity re-
quire (Ref. 11) « ~0((»). For the following dis-
cussion we assume « -0(o'), although the reason-
ing can be generalized for «&0((»).

In addition to CP violations in the decays and in-
verse decays of X bosons, the CP7.' invariance and
unitarity constraints require CP violations of the
same order in BNC processes. For example,
consider transitions from initial states UU or UU.
Equation (3.7) requires

8' UU-n = O' UU n (3.12)

If we include all processes up to 0(o.'), then the
equality is valid in the sense that any discrepancy
is 0((» ). The states UU and DL are certainly in-
cluded in the sum over n on the left-hand side,
but there is ambiguity concerning the state X. In
some sense, on time scales less than its lifetime,
the X is a stable particle and represents a reaI
physical state, but in other circumstances, on
time scales greater than its lifetime, the X is
merely a resonance and not a real physical state.
Thus, there is an ambiguity in the treatment of
the destruction of the state UU by inverse decay
into an X. This is resolved by self-consistency.
If the X is considered to be a resonance, then UU

destructjon by inverse decay is included in the
matrix elements for UU-UU and UU-DL when
these s-channel processes are nearly on reso-
nance, the virtual x nearly on mass shell. In this
case the initial UU state "resonates" (forms an X)

gU W+ Sg~g~ W=g~ (1+«) W+Sg~g~(I + «') W.

(3.9)

Recall that matrix elements are averaged over all
initial- and final-state degeneracies, so that fac-
tors for final-state degeneracies must be included
in (3.9) when doing the sum over n. Since g~
=Sg,g„Eq. (3.9) requires «=-«'.

Combining this with OPT invariance, W(i j)—
= W(j-(.), we find

w(x-trU) = w(UU-x) = w,

+ 0((»') . (3.13)

The terms UU-UU and UU-UU cancel by CPT
invariance, and [ dll are implicit in the sum over
states g„. The Wr represent "true" scatterings,
where processes with nearly on-shell virtual &'s
or X's are removed. Since W(7-UU) and W(X- UU) differ by a term of order (» for « -0((»),
the true scattering rates also differ by 0(& ),
which implies a CP violation of 0((» ) in scatter-
ing. In general, the violation is 0((»«), with (3.13)
valid up to terms 0((»'«).

In the interaction terms of the Boltzmann equa-
tions we need both the CP-conserving and CP-vio-
lating parts of BNC processes such as UU-DL.
The CP-conserving part can be calculated without
regard to CP violations as detailed in Appendix A,
being careful to exclude the contribution from s-
channel processes with a nearly on-shell X. The
CP-violating rates that are necessary can all be
found from equations similar to (3.13). In terms
of the transition rate 5', the CP-violating part of
UU-DL is

j dIIDdIIg[Wg (UU DL) —Wr(UU DL)]

dli„[W(Uu-X) —W(UU-X)]=« t dli W.

(3.14)

C. The master equations —discussion

Bather than the 12 quantities U, D, . . ., U, D, . . .,
it is more convenient to introduce ~, =I+J where
I=U, D, L, v, X, and Y. A set of 12 coupled
ordinary differential equations for these quanti-
ties in time (or equivalently, temperature) is ob-

as either a UU or DL final state.
On the other hand, if the X is treated as a stable

particle then UU destruction by inverse decay is
included explicitly in the sum on the left-hand side
of (3.12) in the rate W(UU-X). In this case, to
avoid double counting, nearly on-, shell processes
UU-UU and UU-DL must not be included in the
sum, as they also represent inverse decay which
has already been taken into account. Similar rea-
soning holds for the right-hand side of (3.12).

For our purposes it is more convenient to think
of & bosons as nearly stable physical particles; in
writing the Boltzmann equations we treat them as
a distinct particle species. Therefore, the uni-
tarity relationship (3.12) becomes

drr drr wrr(UdU rrr. )+ Jd-rrdw(rrrr-x)

( drr, drr, w, (rr7-rrr. )+ j drr w(rrrr x)-
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tained from (3.3) when. the integrals over the ap-
propriate rates W (calculated in Appendix A) have
been performed. The equations are collected in
Appendix 8. We discuss here some of their prop-
erties.

The + equations

The six equations for + quantities, U„D„.. . ,
decouple from the other equations when terms
second order in —quantities are ignored. The
evolution of + quantities depends on (1) D and ID,
and (2) whether or not we impose partial equili-
brium for quarks and leptons and kinetic equili-
brium for X and Y bosons. Although BNC proces-
ses can also redistribute the + quantities, their
effectis minor compared to what all the &- and
L- conserving processes can do, so we have not
included BNC processes in the + equations. With
regard to (2) when we do impose partial equilibri-
um we fix U, =D, =L, =v, =2. The X and Y mo-
mentum distributions are f»(p, T) =a(T)[exp[(p
+m ) /T]-1]. ', and only X. and I", evolve with

time due to D and ID. When we assume &- and
L-conserving thermalizing reactions to be com-
pletely ineffective, all six + quantities evolve by
D and ID. In this case, f» =[exp(P/T) —1]

In both cases, the + equations are formally
accurate through 0(o'), since higher-order pro-
cesses have not been included. Given the uncer-
tainties about partial and kinetic equilibrium, it
seems reasonable not to worry about higher-order
processes, but since the crucial feature for bary-
on generation is that X and Y bosons cannot dimi-
nish rapidly enough to remain in equilibrium, we
did estimate the effect of annihilations in the
establishment (or not) of equilibrium numbers of
X and Y bosons.

There are numerous annihilationlike processes
which can consume X bosons: XX-UU, DD, LL,
vv, yy, ZZ, gg, W'W, yZ, yg, Zg, XY-Lv, UD;

XY-UL; Xy-DL, UU; Xf.-DL, UU; XZ DL, UU;
XW-Dv, UL, UD; XU-DW U'y Ug UZ XD-UW ~

XU WL~ XD v W, yL gL ZL~ Xv DW (g —giuon)
These processes are all O(u ), but their sheer
number is alarming, in light of our inclusion of
only D and ID.

We have carefully estimated the total effect of
annihilations, and we find that the ratio of the an-
nihilation rate I'& to the decay rate I"& is .

r„/r, -(T/M )'&o + (T/M, )'& c (3.»)
for 7.' &Mx, where r =—30. When & ~ 10, neglect-
ing these processes should be a reasonable ap-
proximation. However, in SU(5), &=—~5, and this
omission is not as secure. There is also the tem-
perature dependence, though. The equilibrium
number density of a massive particle compared to
that of a massless particle does not fall by a fac-
tor of 2 until (T/M) —= 0.5. The'refore, by the time
the X bosons must really begin to decrease rapid-
ly in number, T ~ 0.5M», r Jrv is already smaller
than 5n, and continues to decrease as 7' falls. At
most, annihilations might allow X's to remain in
equilibrium a little longer than D and ID alone,
but if a departure from equilibrium will occur
when only D and ID are considered, it will also
occur when annihilations are included, and the
important effects occur later, when annihilations
are negligible (see Sec. V).

Z. The - equations

Explicitly, these equations will contain only &-
and L-nonconserving processes, but since their
rates depend on + quantities they implicitly depend
on &- and L-conserving interactions as well. We
assume that all —quantities are small and only
terms linear in —quantities are retained. Since
the observed asymmetry is kn~/s —= 10, this
is probably a good assumption.

As a typical —equation we display the equation
for the evolution of U,

U'/(zK) =-y~[2X + I' /2] —y,~[(UL) /4+ (UD) /2+2U, U ]

—[2sgU, U +(s2+s~/4)(UD) +s4D,D /2+s2(UL) +sg(DL) +s4(Uv) /4+s, (Dv) /4]

+ e[y X, —y, D,L,/2] . (3.16)

We use as the independent variable z =M„/7', the
prime denotes d/dz. The notation (AB) stands for
(A.+ + B+ ) . Here K = (160/g„) ~ x (2.9 x 10" a
GeV/M»); &= (decay rate)/(expansion rate) when
T=MX.

The first group of terms in brackets on the
right-hand side of (3.16) represents the baryon
generation by decays when there is an asymmetry

between X-X or Y- Y. The second group repre-
sents baryon production or damping. by inverse de-
cays. The L,U, D, U, and U, U terms cause the
U asymmetry to be damped, while the U,L and
U,D terms can result in generation or damping,
depending on the signs of L and D .

The third group of terms in brackets represents
the effect of BNC collisions involving two incom-
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ing and outgoing fermions. The s, are all 0(&).
The terms containing U all result in 0 damping,
while the terms proportional to U, can damp or
generate asymmetry depending on the signs of
other asymmetries.

Finally, the fourth set of terms represents net
U production due to &P violations in processes
involving X bosons. The first term comes direct-
ly from X-X decays, which produce a baryon
asymmetry of e/2 for each pair which decays.
The second term comes from the &P-violating
part of BNC processes which is required by uni-
tarity. Because of the relation (3.14) dictated by
unitarity, the coefficient of D,~, is r» rather than
one of s&.

%hen equilibrium is maintained, all reaction
rates large compared to the expansion rate, we
have U, =D. =L, =v, =2 and X.= I', =2Y,D/yn (ob-
tained from the X„F,equations by setting deriva-
tives equal to zero}. Then all the CP-violating
terms exactly cancel. In equilibrium if the asym-
metries are zero they remain so,' this cancellation
occurs in all —equations. This is a manifestation
of the theorem mentioned earlier, ' even in the
presence of 8, C, and CP violations, a baryon
symmetrical universe will remain so as long as
thermal equilibrium is maintained. The impor-
tance of unitarity is clear, since it. is unitarity
which dictates the form of the C&-violating terms.

D. Notes on the numerical integration

1. The integration scheme

These equations require small time steps for a
few ranges of z =Mx/T where rates are large,
while for efficiency the steps should be larger
where rates are small. For choosing time steps
essentially independently, Runge-Kutta schemes
are appropriate [Ref. 28, Eqs. (25.5.7) and

(25.5.8)]. The third-order scheme was used, with

a fixed maximum time step which was reduced if
necessary to ensure that either

~ ny/y ~
=(y„,q

—y„)/y„&10 ' or ~ny —&y ~/&y =(kq —2k'
+kg)/6k' & 10

2. Initial conditions

All numerical integrations begin at the Planck
time t = 0.538 & 10 sec, when the temperature of
the universe was T& —1.88 & 10"GeV. The quanti-
ties U„D„L„and v, are given the values that
they would have in thermal equilibrium, 2. The
quantities X, and Y, are also set to their equili-
brium values X, =I', =2y, D/yD =2; for T»M», X
and Y bosons are as abundant as any other ultra-
relativistic species. Although no interactions are
occurring rapidly enough to establish equilibrium

=0.55(U +D )T,

n~(T) = P dlI(Ng+N„Ng —N;)-
(3.17)

= [8t(8)/4~'](r. L +Z.~ )-T'-
=0.55(L +v /2) .

The specific entropy is s/k=(2& g„/45)T [Eq.
(2.7)], so the baryon- and lepton-to-entropy ratios
are

kn& /s = (7 8 x 10 )(160/gg (U + D ),
knz/s = (7.8, x 10 }(160/g„)(L + v /2) .

(8.18)

IV. COR CPNOT VIOLATED (e =0)

If the decays of the superheavy bosons do not

violate both C and CP, in our model & = 0 and no

asymmetries develop in an initially particle-anti-
particle symmetrical universe. This is easy to
see.' all the —equations are homogeneous except
for sources which are proportional to E. How-

ever, if the universe is initially asymmetrical, the

size of the asymmetry may be damped by the B-
and L-violating interactions. Decays and inverse
decays can reduce an asymmetry by a two step
process: An excess of U quarks, say, can pro-
duce X's by inverse decay, UU-X, and the sub-

sequent decays will be by both channels, X-UU

and X-DL. The BNC reactions can accomplish
this directly, UU-DL by virtual exchanges.

The case & =0 has interest even though no bary-
on asymmetry develops for two reasons. First,

and the number of particles within the horizon is
a few, we assume that somehow these conditions
are created. It may be that quantum-gravitational
processes occurring before the Planck time es-
tablished thermal distributions. Hartle and Hu

have shown that the damping of anisotropies during
the pre-Planck epoch through particle creation by
the gravitational field leads to nearly thermal
distributions of particles. Even in the absence of
anisotropies they find that when the so-called
trace anomalies are taken into account, the re-
sulting metric is "horizonless, " so that there is
no problem of causality, and of all distributions
thermal distributions are in some sense most
probable.

The quantities X and F are always taken to be
initially zero. In some instances we begin our
calculations with initial baryon and/or lepton
asymmetries. The baryon and lepton asymmet-
ries are given by

n (T)= Jp dt1(N +N —N —N)-
= [g,g(8}/4~'](U + D )T'
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it allows us to develop some intuition for the sys-
tem without the complication introduced by &
violation, and second, if & is very small, «&0
then the observed asymmetry must be the result
of non-GUT processes; the most likely at this
time appear to be either an arbitrary initial con-
dition or quantum gravitational effects. The damp-
ing of processes which occur prior to the GUT
epoch must be calculated in order to determine
the initial value of the asymmetry necessary to
explain the observed knz/s =10

Since SU(5) and some other theories conserve
B—L, we distinguish two classes of initial asym-
metry, with and without initial 8 —L =0. In the
former case it is possible for the initial asym-
metry to be reduced to z'ero by the B- and ~-vio-
lating interactions. In the latter this is not pos-
sible, ' since &- ~ is exactly conserved, the most
that can happen is a redistribution of & and J-
asymmetries among all species.

Since for E =0 the —equations are homogeneous,
the solutions scale with the value of the initial
asymmetry. The relevant quantity is the ratio of
final to initial asymmetry. %hen &- L =0, we
use the size of the initial baryon (or lepton) excess
as the scale.

i i iiinil I I 11IuII I I I
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FIG. 1. The time evolution (t z ) of an initial asym-
metry with B-L = 0 is shown in the case where C or CP
is conserved (E = 0). Results are presented for K= 0.2,
1.0, 2.0 and n=l0 ~, $, 0.1 (K=2.9x 10 ~n Gev/M»- pz/8 at z=1). Most of the damping occurs for z- 1
and is due to D and ID since the results are insensitive
to & (for fixed K, 0'. =0 corresponds to neglecting all
processes except D and ID). Partial equilibrium was
assumed (U, = D, =L, = p, = 2).

A. Initial 8 - L = 0

In this case the initial baryon and lepton asym-
metries are equal (knz/s), = (kn~/s), . The time
development of knz/s is shown in Fig. 1. As can
be seen from this figure, any damping that does
occur happens for T=—Mx. This is easy to under-
stand. The expansion rate of theuniverse is
H=(8mGp/3) ~ =3.3T /T~. At high temperatures,
rates of D and ID are I'n = I'm = nM» /T because2

of time dilation, while BNC scattering processes
occur at a rate I" =nov - T (n/T ) - nT using the
Debye-screened cross sections. For T» Mx,
both of these rates are small compared to B.

For T«Mx, BNC processes have rates I'»c- T (n T /M» ) - & T'/M» and again I'e„c «H. At
low temperatures inverse decays are suppressed
by exp(- M»/T), 'as typical fermion pairs are not
energetic enough to produce superheavy bosons.
The decay rate ~D - &Mx will now surpass the ex-
pansion rate, however, it is the two-step process
described above which is required to damp initial
asymmetries, and the inverse decays are not hap-
pening.

The amount of damping that occurs depends on
the effectiveness of the &- and L-violating reac-
tions for 7'=—M~. This effectiveness is propor-
tional to K= nT~/(6. 6M») =2.9&&10"n GeV/M»,
for T =M„, I' /H= I', /H=K and I'»c/H=nK.
In Fig. & curves are plotted for K=0.2, K= 1..0,

and E = 2.0; as & increases, the amount by which
the initial asymmetry is damped increases mark-
edly.

Another feature which is apparent in Fig. I is
that the final asymmetry is insensitive to 0. for
fixed &. Since for fixed K setting o. =0 is equiva-
lent to including only decays and inverse decays
of the X and F bosons, most of the damping must
be due to these processes.

Since t'.he BNC processes die out as a power of
the temperature while inverse decays ar e cut off
exponentially, it might be expected that they
could be significant for later times, after inverse
decays are cut off. For late times, including only
the scattering terms gives approximately

Q' =-Kzsg, (4.1)

where Q stands for either V or D and s
=1000nz~, z=M»/T»1. This is easily solved:
Q (~)=Q (zz) exp( 1000nK/zz ). The value zz for
which inverse decays stop is found from setting
I',~/H=1; z& is a solution of Kz&

' exp(-z&) =1.
For K=3.2 we obtain z& ——8.8; for &=&0, z~ ——&0.5.
For both cases, the extra damping is about .
exp(- 8n). For n =~, this is insignificant, and
even for & as large as 0.1, this is less than a fac-
tor of 2.

In Fig. 2 we show the asymmetry damping factor
as a function of & for the values a =0.1, 1
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2X!0

M„(GeV, a =&/45)

IO IO
1

I

equilibrium values (found by solving X' = Y'=0;
this should be a good approximation for K ~ 1),
and ignores BNC processes (o.'=—0), then the equa-
tions for U, D, ~, and v are a set of coupled,
linear diff erential equations.

This set can be written most conveniently in
terms of its eigenvectors and eigenvalues,

A,'. =- (zK) y~D A, A, , (4.2)

10
cn

CG CD

-6

IQ

IO
1 2

K =2.9xlQ a GeV/Mx

FIG. 2. The ratio of final to initial asymmetry (damp-
ing) is shown as a function of K and G.' when B—L = 0 and
C or CP is conserved (e= 0). A mass scale is given at
the top for n =~. The solid lines correspond to the
limiting case of partial equilibrium; the broken line
corresponds to the limiting case where B- and L-con-
serving interactions are ineffective (and 0,'=~). The
change in slope of these curves near K- 1 is discussed
in Sec. IV. For large K the solid lines -exp{—5.5K)
and the broken line -exp(-8.3K).

and & =10 '. The results are relatively insensi-
tive to &, and the damping for large E, &=&0' is
approximately given by exp(- 5.5K) when we as-
sume partial equilibrium, U, =D, =I-, =v, =2 and
kinetic equilibrium among & and Y bosons. In
our other case, where I3- and I -conserving inter-
actions are completely ineffective, the damping
is more efficient, as shown by the dotted line in
Fig. 2; for large K, &=&0, it is approximated
by exp(- 8.3K). This is simple to understand.
Here, U„D„L„and v, all become greater than
2 and the rate of inverse decays is correspondingly
greater. This is the only result which depends
significantly on the assumption regarding equili-
brium.

The shape of the damping curve in Fig. 2 is a bit
perplexing. For &=10 and K ~1 the damping is
given by exp(-10K), and for K» 1 the damping is
given by 0.13 exp(- 5.5K). This is straightforward
to explain. If one assumes partial equilibrium
(U. =D, =L.=v. =2), that X and I' take on their

where the eigenvectors A; are linear combinations
of U, D, L, and v and j runs from & to 4. The
solution to (4.2) is given by

A, (z)=A,. (0)exp —&le I z'r, (z')da' . (4.3)
0

Our system has two zero eigenvalues (Aq =&2 =0)
corresponding to the two conserved quantities: (i)
B —L, and (ii) charge Q. These zero eigenvalues
guarantee that any initial asymmetry [specified by
U (0), D (0), L (0), and v (0)] with Q and/or B —L
& 0 always has Q and/or B—L & 0. The other two
eigenvalues are +=3.29 and &4=6.83. The time
evolution of any initial asymmetry can be given as
a linear combination of the solutions in (4.3). If
& —L = Q = 0, then the solution is given in terms
of Az(z) and A4(z) alone. In particular, if we
choose U (0) =D (0) = L (0) = —,'v (0) (as we did to
produce Figs. 1 and 2), then knz/s is given by

(an, /s) = (an, /s),

, t

x 0.13 exp —3.29K z'r» ~' d~'
ae 0

+ 0.87 exp —6.83K
~

z'r, D(z')dz'
lm 0 ~4

(4.4)

(kn, /s), /(kn, /s),
= [0.13 exp(- 5.5K) + 0.87 exp( —10K)], (4.5)

where f 0 z t,Ddz has 'been evaluated numerically.
For K»1 (Mx «2.9X10" o.'GeV), the damping
should be given by exp(- 5.5K)—which agrees well
with the numerical results shown in Fig. 2. For
K~1 (Mx ~2.9&&10" u GeV), the damping should
be given by exp(- 10K)—which also agrees with
the numerical results in Fig. 2. Unless the initial
asymmetry is "pure" A4, then for large K it will
be damped by exp(- 5.5K) .

B. Initial8-L 4 0

Because SU(5) exactly conserves B—L, if B —L
& 0 initially no interactions can reduce both B and
I- to zero. At late times, z» &, asymmetries of
order the size of B —L must exist in B and/or L.
When I3 and L violations are effective, &» &,
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regardless of which species had the initial asym-
metries, all species U, D, ~, and v have final
asymmetries of about the same order. On the
other hand, when K«1 only species with initial
asymmetries have significant final asymmetries.

The situation in which the universe initially has
only a neutrino asymmetry is illustrated in Fig. 3,
where (kne/s)~/(kn~/s), is shown as a function of

We conclude that if some process in the early
universe produced only a neutrino asymmetry knl, /
s =—10, then even in the absence of CI' violation
X's and Y's could have translated this into a bary-
on asymmetry of the right size if M~ s10" GeV.

C. 5-ness

Because we averaged all quantities over spin we
missed an additional zero eigenmode corresponding
to another conserved quantity, 5-ness. 5-ness is

the property of being in the 5 representation of
SU(5); all the particles in the 5 have 5-ness+ 1,
those in the 5 have 5-ness —1, and all others 5-
ness zero. The interactions of the & and Y' con-
serve 5-ness, so like an initial asymmetry with
8 —L & 0, one with net 5-ness will not be damped. '

However, Higgs bosons do not conserve 5-ness.
Therefore, the interactions of a Higgs boson
(whose interactions may or may not conserve &
and L) together with & and F gauge bosons could
erase asymmetries with net 5-ness. Whether the
interactions of such Higgs bosons are rapid enough
(I'&H) at the appropriate tinie (T-Mx) depends

upon the Higgs structure and is thus very model
dependent. This is an issue we will not address
further in this paper.

V. C AND CI' VIOLATED (e 4 0)

cn

I

Mx (GeV, a =1/45}

3x IQ' 10' 5x IQ 3x 10
I 1 I

e=Q
-L/0
5/sj;=0

Certainly the more interesting situation is when

& & 0 and interactions in the early universe when
T=—M~ can allow a baryon asymmetry to arise
dynamically. Once again we consider two classes
of initial conditions: first, the case in which the
universe is initially completely symmetrical, 8
=~ = 0, and second, the case in which an initial
asymmetry is already present with &&0, L &0,
but ~ —L =0. The asymmetry with which we start
our computations might be due to pre-GUT pro-
cesses or might truly represent an initial condi-
tion.

In the first situation (& =I- =0 initially) since
the asymmetry equations are linear in all the-
quantities with sources proportional to &, the re-
sults scale simply as &. In the second situation,
&= I- & 0 initially, there is an additional scale in
the problem which can be taken to be the ratio of
the initial asymmetry to &. For a given value of
this ratio the results again scale as &. All our
results are for an initial asymmetry which is 100
times the maximum that could be produced by the
GUT interactions alone for the given value of & .

I

I.Q

K=2.9xlQ a GeV/M„

2.0

FIG. 3. The ratio of final baryon asymmetry to initial
lepton asymmetry is shown as a function of K when B
-L & 0 and C or CP is conserved (E= 0). A mass scale
is given at the top for & =~. The initial baryon asym-
metry is zero; because SU(5) conserves B—L and B
-L & 0, B- and L-violating interactions cannot damp the
initial asymmetry significantly, they can only redis-
tribute it. Here an initial lepton asymmetry results in
both final lepton and baryon asymmetries. The curve
shown is for n =~5,- since our results are insensitive to
+ for fixed K, -it is approximately correct for all & ~ 0.1.
Partial equilibrium was assumed.

A. Initia18 =L = 0

The time development of the baryon asymmetry
is shown in Fig. 4 as a function of z=MX/T. Once
again we observe that most of the interesting pro-
cesses occur near &=—Mx. As discussed in Sec.
Hl, this is because of the reactions —D, ID, and
BNC —are effective, I'/H~I, only for T—=Mx.
Also, for the most part the results for fixed K
are insensitive to &. The exception to this is the
curve for Mr =2.9XIO n GeV (%=10) and o.'=0.1,
where one can see additional damping due to BNC
processes by a factor of roughly 2. As in Sec. IV
we expect damping by a factor of exp(- 1000~/
zz') by these processes after inverse decays stop.
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FIG. 4. The time evolution (t z2) of the baryon asym-

metry (kns/s) in units of e is shown in the ease when C
and CP are violated (e& 0) and the initial asymmetry is
zero. Results are presented for K= 0.1, 1.0, 10 and
o. =10 ~, $, 0 1 (K=29x10 to GeV/M»). For IC«1,
the qualitative picture of Weinberg and Wilczek is borne
out —the asymmetry is produced by delayed (z» 1) free
decays. For KR1 the scenario is more complex: ini-
tially there is a period of nonequilibrium and growth
(z «1), k'n&/s- z, followed by quasiequilibrium, knrjls

z K, and finally when ID freeze out fz Rz&,
zf exp (-zt)K = 1Jkns/s freezes out and remains eon-7/2

stant. D and ID are primarily responsible for these re-
sults; BNC processes are only important for large K
and O'. Partial equilibrium was assumed, although these
results are not sensitive to this assumption.
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X,= Sy,Kz(X, —2y»/yn), (5.1a)

This is about a factor of 2 for &=10 and &=0.1,
and G. =0.1 is larger than what is usually 'expected
for the grand unification coupling strength (u = 0.1
was chosen to maximize the effects of BNC pro-
cesses). For the rest of our discussion we will
assume that the effects of BNC processes are not
important.

When Mx is very large, Mx»3X10" n GeV, K
« ~, decays are ineffective when T =—Mx, or,
equivalently, the lifetime of the X is long com-
pared to the age of the universe at that point.
Here, eventually the & bosons decay freely, pro-
ducing an asymmetry of kns/s = 7.8x 10 t—6/g„. '

We find the qualitative picture of Weinberg and
Wilczek to be basically correct for Mx «3&&0
GeV, Ks0.1 (see Fig. 4).

This behavior can be understood simply from the
Boltzmann equations. The relevant equations from
from Appendix B are (B5), (B7), and (B8), for X„
U, and D . Ignoring BNC terms and couplings,
we have

U' =»,Kz[(-~)(y„/y, ) U

+ (~/8)(X, —2y»/yn)],

D'=8y. K.[( '. -)(-y,./y. )D

+ (./6)(X, 2y—„/y, )],

(5.1b)

(5.1c)

where we assume U, =D, =I-, =v, =2, partial
equilibrium established by I3- and L-conserving
interactions. From (5.1a) we see that the equi-
librium value of X, is 2y»/yn, and when X, as-
sumes this value the source terms in (5.1b) and
(5.1c) vanish. For small z, y»/yn=1 —z'/4; at
high temperatures the equilibrium value X, =2
means X bosons are as abundant as other relati-
vistic particles. For large z, y„/y, = (v/
8) ' z" e *; the equilibrium abundance of X's is
smaller than that of relativistic particles by- exp(- I/T).

The rates for decays and inverse decays are
r, - ~MxyD and r~- aM~yz, with effectiveness
ID/H =Kynz' and I'~D/H =Ky, oz'. Since yo &I (for
small z, yo-z, because of time dilation, while
for large z, yD=—3, all rates are small for %=~1,
until Kz' ~1 (z ~ K '~). At this point, yi D/yD -e
«-1, so the equations can be integrated neglecting
the terms proportional to y~D/yo. The solutions
are

X.(z) —=X,(0) exp(- Kz ) —= 2 exp(- Kz ),
U (z) -=(2a/8) [1 exp(- Kz')],

D (z) =—(~/8)[I —exp( Kz')].
(5.2)

The final asymmetry is kns/s = 7.8x10~(U + D )
=7.8&&10 's Reca.ll K= aJVi»/(6. 6T~), z=jtf»/T,
and t=0.154 T~/T' so that Kz'= t/7» (7» ' = aM )
and this corresponds exactly to late free decay.

The behavior in the other limit, K» &, can also
be understood easily. Here there are three re-
gions: First, aperiod of growth for z&1, followed
by a region of slow decline kns/s -z ', and a
final, asymptotically constant region.

1. 2 ((1

. D ' - U' - eKzyn(1 —y» /yn) . (5.8)

We expect 1 —y»/yn = z /4, and since yo = z/8 the
growth of U, D, and knsls should be as z; in
particular, the behavior kns/s -(7.8x 10 ~&)Kz is
seen in Fig. 4 for z «1.

Initially, at t =t~, X, is set equal to 2y»/yn = 2.
As z increases, the equilibrium value of X., 2y»/
XD, begins to decrease because the X is massive,
but at early times decays are suppressed by time
dilation and X, remains equal to 2. Thus the
source terms in (5.1b) and (5.1c) are nonzero and



2g70 J ~ N. FRY, KEITH A. OLIVE, AND MICHAEL S. TURNER 22

2. E-'/3&g &~f
The source term for U and D is ~b =&, —-2y, D/

y, which measures the degree to which &, is out
of equilibrium. Early (z «1) n-z, but decays
will begin to damp out 4 when z&,' = 6, which
occurs when z'&=—1. At about this same time,
the damping terms in the U and D equations be-
come comparable to the source terms, since

(y,~/yn) U Kazs

~(X.—2y„/y, )
(5.4)

so that growth of U and D halts here. This be-
havior can be seen in Fig. 4; for Mx =2.9&&10 n
GeV (K=10), knz/s stops growing at z = 0.6, while
10'"=-0 5

For z &1, yo=-', and y,~/yD=(n/8) ~z' e '. The
effectiveness of decays and inverse decays are
I'D/H -Kz and I'»/H -Kz~' e *. Decays will al-
ways be effective for z &1; however, inverse de-
cays effectively cease when Kz~~' e 'f=1. For
1 & z & zfD and ID are occurring rapidly on the ex-
pansion time scale and a quasiequilibrium is es-
tablished; in particular, with large positive and
negative contributions to the rates, during this
period U and D should assume values such that
U'=D'=0 or

expect U, D, and knz/s to be given by their
values at zf,

U (z & z~) = D (z & z~) =, s ezf K

knz/s = 3.0x10 zz& K
(5.9)

B. InitialB =LAO

In this case we start with an initial asymmetry
(knz/s)„«„, —0.78', which is 100 times larger
than 7.8X10 &, the maximum that could be pro-
duced by GUT processes alone. In light of the
discussion above, the results here are easy to
describe. The evolution of the baryon asymmetry
with time in this case is shown in Fig. 5.

For K ~1, the initial asymmetry is damped by
D and ID when T—=Mx. However, the damping is
not enough to establish the quasiequilibrium situa-
tion where U = (p)&4/(y»/yD). The final value of

Asymptotically zz-in(K) but for the values of K
of interest here this is a poor approximation. For
E =10, we find zf ——11, which is very close to
where the curve flattens in Fig. 4. From (5.9)
we then exPect knz/s =2.7 x 10 c, which agr ees
rather well with the final value for E =10 and &

=10 '; recall in the discussion above we neglected
all BNC processes.

U =D =~~&/(y„/y, ) (5.5)

For &»1, the term -2&z~ will be large enough
to establish 6'—= 0, so that

~ =K '(v/8)'"z'"e-' (5.7)

Combining (5.5) and (5.7) we obtain that, for 1

zf U and D are given by

U =D =~Ez K (5.8)

Therefore, when K &1, knz/s=7. 8x10'(U +D )
should decline as z for 1 &z ~zf. This is the
behavior seen in Fig. 4.

3. z &sf

The two competing rates (y»/yD)U and &(K,
—2y,o/yo) in (5.1b) both remain large as long as
both D and ID are effective. %hen this is no
longer true, we expect that U will no longer
change significantly and will be frozen at the
value it has then. Since the slowest processes in
(5.1) are inverse decays, we expect this freeze
out to occur at zz (when &,D =H). For z &zz we

The deviation from equilibrium b, and hence the
asymmetries U and D, are determined from
(5 la) (for z && 2) '

~ =(X, 2y„/y, )'-=(v/2)'~z'"e *-2Kz~.

(5.8)
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10 c=: =10
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10 e== ==10
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10 ~= =10
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-6 —il
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10 10 10 1 10" 10 10
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FIG. 5. The time evolution (t- z ) of the Baryon asym-
metry in units of & is shown when B-L = 0, e & 0, and
there is an initial asymmetry kn&/s = 0.78&. Results are
presented for K=0.1, 1.0, 10 and 0.'=10 5, ~, 0.1. For
K= 0.1 the initial asymmetry is damped slightly by D
and ID. For K= 10 D and ID rapidly damp the initial
asymmetry and a period of quasiequilibrium is estab-
lished, @nels- K z, and the final asymmetry is es-
sentially independent of the initial asymmetry (cf.Fig. 4).
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the. asymmetry is the same as it would have been
if & = 0; the residue left from the initial asymmetry
overwhelms that generated by the P-violating
effects.

For K «3, the rates of D and ID for T =—Mx are
great enough to bring U and D to their quasiequi-
librium values (5.8). Quasiexluilibrium is main-
tained until » -»„and finally (s &»~) kns/s takes
on the value it would have had there been no initial
asymmetry. The division between these two cases
will depend on the ratio of the initial asymmetry
to that which could be generated (7.8&&10 '&).

C. Summary
L

hen M» o4.6&&10' n GeV (K~1), an asymme
try kns/s —= 7.8&&10 e evolves, just as in the xluali-
tative picture of steinberg and%'ilczek. When
M» ~ 4.6&&10 n GeV (K- 1) there is an initial
period of nonquilibrium growth (T ~ M»), followed
by a period of quasiequilibrium where the sym-
metry falls as T (M» ~ T ~M»/»z). Then, when
T = M»/»z, ID freeze out and the asymmetry re-
mains constant at kns/s —= 8.0X 10 sag~ K '.

Figure 6 shows the results of the numerical in-
tegration, the final asymmetry kms/s as a function
of & and Mx. For &K not too large, the results

kns/s = (kits/s)x ~t~~ exp( 5 5K)

+ 7.8 X 10 'e/LI + (16K)"] . (5.11)

All of the results in this section were obtained

are relatively insensitive to o:, indicating D and
ID are primarily responsible for these results,
with the exception of the CP-violating parts of the
BNC processes required by unitarity, which are
expressible in terms of ID rates.

Although we expect for large K to find kns/s
with logarithmic corrections, these correc-

tions are large for K~10, and the results for &

=~ are well represented by

kns/s =7.8 && 10 e/[I + (16K) ] . (5.10)

The value & =10 was chosen for the right-hand
ordinate scale since Weinberg and Nanopoulos
have shown that in SU(5) c s o.'= 10 - 10 . For
Mx=3&&10 GeV, we need &=&0 to obtain
kn, /s =10".

The final asymmetry as a function of K is shown

in Fig. 7 when there is an initial asymmetry,
kns/s =0.78&. For an arbitrary initial asymme-
try (with B—2 =0) the results are well represent-
ed by

I
pl8

p l

I

M„(GeV, a =1/45)

I
pl 7

I p
I 6 IOI5

-?

IO
I

M„(GeV, a =1/45)

I Pl 7 10

-7

-4e—
I

10
I

IQ

IQ 10 ~— 10

10 ~-

0.01 Q. l

K=2.9x 10 a GeV/M„

FIG. 6. The final baryon asymmetry (he/s) in units
of e is shown as a function of K and 0.' when the initial
asymmetries are zero (B& ——L& = 0), and C and CP are
violated (&& 0). A mass scale is given for a=~. These
results are relatively insensitive to 0.'for fixed K and
do not depend significantly on the assumptions about the
effectiveness of B- and L-conserving interactions. For
X«1, the X bosons decay late and freely, producing an
asymmetry (he/s) -7.8x10 . For K~& the final asym-
metry has a rather weak dependence upon K, decreasing
as K '3 (see discussion in Sec. V).

6E
0.01 0.1 1.0 10

K =2.9x 10 u GeV/M„

FIG. 7. The final baryon asymmetry (knz/s) in units
of e is shown as a function of K and G.'=~ when B-L = 0,.
E & 0, and (kn&/s)& ——0.78&. A mass scale is given for
u =$. For reference the curve for (kns/s)x ——0 end xx

=~ is also shown. For K«1, the initial asymmetry is
damped only slightly, and the final asymmetry is equal
to the initial asymmetry times a damping factor. For
X»1, the initial asymmetry is damped sufficiently so
that the final asymmetry is independent of the initial
asymmetry {the two curves merge).
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assuming partial equilibrium for the fermions,
U, =2 etc. , and kinetic equilibrium for the & and
F bosons. In the other limiting case, B- and L-
conserving interacting ineffective, the final re-
sults only differ by S50%.

VI. CONCLUDING REMARKS

A. Summary

If C or CP is a symmetry of the GUT (& =0),
then &- and L-violating interactions can only re-
duce initial asymmetries. The damping is pri-
marily due to the D and ID which occur when T
-M&. If the initial asymmetry has &-L =0, then
that asymmetry is reduced by a factor of
exp(- 5.5&- -8.3&) depending upon whether or not
B- and L -conserving interactions are effective
(5.5& if they are, 8.3& if they are not). On the
other hand, if 8- ~ is initially nonzero, then ini-
tial asymmetries can only be redistributed.

There is one interesting consequence of this
damping. Suppose the proton is seen to decay with
a lifetime of &10 yr, the level of sensitivity ex-
yected to be achieved this decade. Then this im-
plies the existence of a superheavy boson which

mediates & and L violations with a mass F10 '
GeV (for n =~). Then if one wants to explain the
observed asymmetry today, kn&/s =10 ', as the

result of an initial condition rather than being
cosmologically generated, that initial asymmetry
must be larger than &0 since it will be reduced

by the D and ID of the superheavy boson. If &
—L =0 initia, lly, then 10 %exp(-1.6&&10'~ n

GeV/10" GeV) (kne/s), = 10 (kne/s), —making it
impossible to explain the observed asymmetry in

terms of an initial condition. Cosmological bary-
on generation may be a necessity rather than a
luxury.

If C and CP are violated in the GUT (& & 0), then
a baryon asymmetry can evolve from an initially
symmetrical universe. If the mass of the super-

~8
heavy boson is greater than M~ =—4.6 & 10 & GeV,
then just as in the Weinberg-Wilczek picture an
asymmetry kne/s =7.8X10 e evolves due to de-
layed decays. If ~x is less than M~, then the
situation is a bit more complex —there is a period
of quasiequilibrium and a finally asymmetry,
kn&/s = 7.8X10 E(Mr/Mc) ' emerges. These
results are primarily due to decays and inverse
decays occurring when T -Mx. If the superheavy
masses are -3X 10 GeV, then & -10 is needed
for gauge bosons to account for kn~/s =10

Our results for E & 0 are in qualitative agree-
ment with those obtained by Kolb and Wolfram
for their "simple model. " We do differ in that
they found BNC processes have a significant effect
for n &10 . (Their simple model was designed

to simulate a typical GUT and has two particle
species —b, baryon number —,', andX, a super-
heavy boson. )

In light of the number of simplifying assumptions
and approximations made, it is appropriate to dis-
cuss which of them in retrospect seem reasonable
and which of them require further study —in short,
what are the strengths and weaknesses of this
paper?

B. Strengths

Recall that the observed asymmetry km~/s
=&0 ' ' is known to within an order of magnitude
or so. To that level of accuracy the following
assumptions seem justifiable: (i) The neglect of
degeneracy factors, and in the future possibly the
use of Maxwell-Boltzmann distributions for parti-
cle number densities to further simplify the cal-
culations. (ii) The neglect of annihilations (at
least for gauge bosons), and other higher-order
processes. For a ~~ the effects of BNC proces-
ses of O(n ) were small, justifying the neglect of
O(n ) and higher processes. (iii) Except with re-
gard to the damping of initial asymmetries, the
question of whether or not &- and L-conserving
interactions can maintain a partial equilibrium
seems to be unimportant. Taking the two extreme
views (completely effective, completely ineffec-
tive) changes the final results only by ~50%. (iv)
Finally, the question of which GUT should be used
in these calculations. As was discussed earlier,
as far as baryon generation goes, the important
features of a GUT are the number of different
species of superheavy boson which mediate & and
L violations. Since there are only three basic
types of superheavy bosons which mediate & and
L violations, our results in this paper and the
companion paper should accurately reflect what
any species might do by itself. The issue of what
happens when they all operate at the same time
(species of similar mass) or in sequence (species
of different mass) 'is a more complex one and is
addressed in a third payer.

C. W'weakness —work to be done

By far, the weakest link in this calculation is
the &P violation. We have parametrized it by &,

and the only definite theory-independent constraint
one has on & is that it is less than n„„„-&0
Progress here is sorely needed. There ape also
two more difficult issues to address. (i) Were
equilibrium distributions established at t =10
sec, and, if so, by what method? (ii) What are
the effects of non-GUT processes (quantum gravity,
primordial black holes, particle creation by cur-
vature, etc. ) on the baryon asymmetry?
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Note added in Proof S. egre and Turner have
recently shown that if a fourth generation of heavy
guarks (M-30-200 GeV) exists then superheavy
Higgs bosons can produce kneels of the right mag-
nitude in the minimal SU(5) model [University of
Chicago report (unpublished)].
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The theory includes 24 gauge bosons: the photon,
W', Z, 8 gluons, a color triplet with charge +—,(X),
and a,color triplet with charge+3(Y). The super-
heavy X and Y gauge bosons [mass M„—X and Y
masses are split only by the breaking of the SU(2)
x U(1) symmetry] mediate baryon nonconserva-
tion. The minimal Higgs structure necessary to
break SU(5) to SU(3) xSU(2) &&U(1) and then finally
to SU(3) && U(1) is an adjoint 24 and a complex 5.
At low energies (F & 100 GeV) there are 19 physi-
cal degrees of freedom in the Higgs sector.
&mong the Higgs bosons is a superheavy color
triplet with charge +3(H) that also mediates & and
I- violations (it couples to the same fermion chan-
nels as the Y). However, in this paper we will
not specifically be interested in this triplet.

The parts of the SU(5) Lagrangian which specify
the 8- and L-violating interactions mediated by
the superheavy gauge bosons X and Y are g1

APPENDIX A

Spurred by the success of both the SU(2) & U(1)
and SU(3) color-gauge theories, there have been
a number of attempts to obtain a unified theory of
the strong, weak, and electromagnetic interac-
tions. The simplest grand unified theory is the
SU(5) model of Georgi and Glashow. Baryon non-
conservation is a direct consequence of this theory
and others, for the simple reason that quarks and
leptons are grouped together in the same multi-
plets. SU(5) and other GUT's can incorporate CP
violation, however, the details remain to be work-
ed out. For the rates computed in this appendix,
CP (and hence T) are assumed to be symmetries of
the theory. The CP violation necessary for bary-
on generation is added in an ad hoc but self-consis-
tent manner in Sec. ID. All the matrix elements
needed for our computations are contained in this
appendix or can be obtained from rates in this
appendix as described in Sec. III.

In SU{5) the fermions (quarks and leptons) are
placed in 5 and 10 representations,

0 Qg Qy QR dR

(g/~2Y, „(&(,( ~'l, l&'D;I.+& )R&"v' —U
&

&'I' )

where o = (1, 2, 3), U„= (u, c, t), D = (d, s, b), L
=(e, V, , 7), and v. =(v„v„,v,.t). The subscripts
i, j, 0 are color indices, p. is the Lorentz index,
and the superscript c denotes charge conjugation.
All other notation is that of Bjorken and Drell.
Note that g' =4m&.

This Lagrangian leads to the following fermion
.couplings for the & and Y bosons: X -U U, D I.
and 1' -U, ,g, D v, U I- . The X and Y' mediated
BNC fermion scatterings which we require are
UU-DJ, UD- UI-, UD-Dv, Uv-DD, and their
CP-conjugated and T-reversed reactions. They
can all be obtained from the amplitudes for the
following Feynman diagrams: I- +D —Uq~+ Up~

(virtual X), I„+Uq~ D~+ U-ie (virtual Y)i Di„
+v -U, +D2~ (virtual Y), by appropriate trans-
formations.

Following %agoner's notation, the elementary
transition rate W is given by

e

8v

-Qg

10= ~ ur

Qg —zip —d y

0 —Mg

0

QR Qy Qp

dy dg e

where ~3F.
~

(the invariant matrix element) is
averaged over initial and final spins, colors, and
generations.

(Al)

where R, Y, and 8 denote the three colors, and
this pattern is followed for each generation. Here
we shall assume that there are three generations.

1. Decays and inverse decays

For the following processes the matrix elements
and transition rates are given by
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(1) X = V1 + l72, .
I& I'=(2. /81)M. ',
W= (»/324)M»2(2v)'d"(Q );

(jj) X =L +D:
Isg I' =(2v+/27)M„2,

W=(»a/108)M» (2v) 5' '(Q));

(As)

(jv) Y D +v

Isp I' =(2.u/27)M„',

W=(»/108)M» (2&) & (ZP)g

(v) F = U +L~:

1st' I' =(»/27)M„',
W=(vn/216)M» (2v) 5 ~) .

(AS)

(jjj) Y U +D:
Islfl'=(2v~/81)M ',
W=( v!/o324)M»(2v) 5' ~); (A5)

2. Baryon-nonconserving fermion collisions

The matrix elements for these four processes
are given by

(1) U1U2 =DL, U1U2 =DL:

I~ I'=(«~/»X2[(P1 PD}'+(P2'PD)'](2P1 'P2-Mx') '+(P2 PD}'(2P1 PD+Mx') '

+(P1 PD)'(2P2 PD+Mx) ~(P2 PD} ( P1 PD x } (M» 2P1 P2)

+ 3(P1 PD)'(2P2PD ™») '(M»' —2p1 p2) '); (AS)

(ii) U1D=U2L, U1D=U, L.

The matrix element is obtained from (AS) by the substitutions p 2 =p2 and pD =pD

(jjj} UD1 D2v, UD1 D2v:

ling I'= (18"~2/81}[[(P2 p.)(» p.}]/[2(P1 PD) —Mx']'+ [(».P.)(P2 'P.}]/[2(P2 'PD) +M 2]2] .

(1v) UD =D1D2, UD =D1D2.

This matrix element is obtained from (A9) by the substitutions p1=p1 and p„--p„.
The elementary transition rates W for (i), (ii), (iii), and (iv) are obtained from (AS) and (A9) by

W = (s/18)
I
sjf I'(2v)'&"'(Q ),

where s=-,' for (i) and (iv), and s=1 for (ii) and (iii).

(A9)

(A 10)

APPENDIX B

After all the assumptions that are discussed in Sec. III have been made, the Boltzmann equations reduce
to 12 coupled, ordinary differential equations. As the independent variable we use z —= M /T. The comov-
ing time coordinate and temperature of the universe are related by (2.6), so that d/dz = (5.8x 10"Gep/M )
&& (180/g, )'"Mx 'z(d/«)

Although Compton-type and annihilationlike BNC processes were included in our calculations, we have
omitted the terms corresponding to these interactions here. The effects of these interactions were small
(~10% of the effects due to aNC processes involving two incoming and two outgoing fermions, which them-
selves were small} and the number of additional terms was large. The following set of 12 equations are
the master equations:

U! /(zK) = y, (2X, + 3 Y,/2) —y»(U,2+ U,D, /2+ U, L,/4),

D,'/(zK) = yD (X, + 31",/2) y,D (U.D./2 + D,L./2 +D,v./4),

L,'/(zK) = yD(3X. + 3Y,/2) —y»(3U. L,/4+ 3D,L,/2),

v,'/(zK) =3yD Y, —y,D(3D.v, /2),

X,'/(zK) =-syDX, + y,n(3U, /4+ 3D,L,/4),

F+/(zK) =-syn F, + y,D(3U.D,/4+ 3U, L,/8 + 3D,v, /8),

(»)
(»)
(Bs)

(a4)

(»)
(a8)
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(B7)

(B8)

(B9)

(B10)

(Bll)

(B12)

where

(QiQ2)-= Qi.Q2-+ Q2.Qi-

U'/(zK} =—yD[2X-+ Y-/2] —y»[2V. V-+ (VD)-/2+ (VL)-/4] —s [2U, U + (DL) ] —s [(UD) + (UL) ]
—s,[(UD) /4+ (Dv} /4] —s4[D.D /2+ (Uv}-/41+ e[y~ —ymD, L,/2],

D'/(zK) =y,[X Y—/2] —y„[(VD) /2+(DL) /2+(Dv) /4] s,[V, V +(DL) /2] —s2[(UD) /2+(UL} /2]

- s, [(UD) /2+(Dv) /2] —s4[D,D + (Uv) /2]+ «[yDX, /2 —y,DU, /4],
L'/(zK) = yD[3X + SY /2] —y, D[3(UL) /4+ 3(DL) /2] - sg[SU, U + 3(DL) /2] —s2[3(UD) /2+ 3(UL) /2]

+ ~[sy~./2 —sy„v, '/4],

v'/(zK} = Sy' Y —y, [3(Dv) /2] —s [3(UD) /2 + 3(Dv) /2] —s [SD,D + 3(Uv) /2],
X'/(zK) =-SyDX —y~D[sv, v /2 —3(DL) /4] + «[Sy» U, /8 —Sy»D, L,/8],
Y'/(zK) =-SyD Y —y»[3(UD) /4- 3(UL) /8- 3(Dv) /8]

K—= (2.9xl0" o. Gey/M )(160/g,)'".
The dimensionless quantities YD, ~» and the s& are given in terms of the elementary transition rates W

(see Appendix A) by

f f f w(x-'V, U, }fdII,dll ,,dlI-
y, =(oM } '-

gx f(3)T'/~'

fffQU, U, -Z)[ exp(Pq/T) +1] [ exp(P2/T) +1] dlixdliv~dIIv2
~ 4

yyD = ( x) 3 g(3)TS/ z

ffff W, (I, 2-3, 4)[ exp(p&/T) +I] '[ exp/2/T) +I] 'dII drl2dil~dlI4

' =' -'s, .g(s)T/~

(Bls)

(B14)

x
exp(uz) —1

—= —,'(m/8)'~z'" e ' (z &) 1) . (BIV)

For z»1 the decay rate is temperature indepen-
dent since all X bosons are very nonrelativistic,
and inverse decays are suppressed since typical
fermions are not energetic enough to create an
X boson.

The s, are calculated in the low- (z» 1) and
high-temperature (z « I) limits; the intermediate
behavior is obtained by smooth interpolation.

where the phase-space density of X bosons is
Nx(P, t) =X(t)f(p, T) and the reaction i is UU-DL(i
= 1), UD- UL(i = 2), UD -Dpi = 3), Vv -DD(i =4).
The rates for decays, inverse decays, and BNC

fermion collisions are I'D =rDM» l » =y»~M»
and r,„,= s, ~Mx.

The quantities ~D and r, D can be evaluated,

2
Mx ffdIIx

z' " (cosh([u+ (u' —I)'"]z/4] )
3 f(3) g $cosh[[u —(u' —1}'"]z/4))

Specifically, we found that

» =- I 'I2 «(32.3z")/[I + 32.3(M „/T)', "]
(B18)

s2 =8.6&z (26z )/[1 + 26(M „/T)~z~] (BI9)

s, = 3.43uz '(36.6z )/[I + 36.6(M,«/T)'z~],

(B20)

s4 —= 3.44nz '(8.84z )/[1+ 8.84(M,«/T)'z ~] .

(B21)

The quantity M,« is the effective X (or Y) mass
when Debye screening and horizon effects are
taken into a, ccount (see Sec. III). We have smooth-
ly connected the different regimes by using

M~, =Mx [I+1300nz +llz (Mx/Tp) ].
(B22)

For z» 1, M, =M; for 36.1n / g )P.&~

screening and horizon effects are only important
at high temperatures (z s 1).
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