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Second-order contribution to the gravitational deflection of light
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We calculate the gravitational deflection of light to second order in the Newtonian constant G. For a light ray
passing the Sun with impact parameter b, the deflection in general relativity is (4GM+bc'}
x [I + (15sr/16}(GMOIbc')] radians.
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can be recast in the form

t7 ~ (eE) =p, Vx (B/p, ) = J+B(eE)/Bt,

V B=Q, VxE+BB/Bt=0,

(2a)

(2b)

where e =e(x) and )t=}t(x) are determined by the
metric tensor g„,(x). It follows that a gravitation-
al field can be viewed as endowing a Minkowskian
region of space-time with an index of refraction
n = Qe]Li. . For a static spherically symmetric ge-
ometry g„„(x)is specified in isotropic coordinates

The gravitational deflection of light has played
an important historic role in the verification of
general relativity (GR). In terms of the para-
metrized-post Newtonian (PPN) parameter y
[see Eqs. (3)-(5) below] the most recent results
of Fomalont and Sramek' give (y+ 1)/2 =1.015
+ 0.011, in agreement with the GR prediction y = 1.
Although the value of y obtained from radar delay
is more precise (Ref. 2) (y + 1)/2 = 1.000+ 0.002, the
gravitational deflection of light is nonetheless im-
portant because it may lead to a test of GR to
O(G') where G is the Newtonian constant of gravi-
tation. A method for carrying out such a test has
been proposed recently by Reasenberg and Sha-
piro. The purpose of this paper is to calculate
the second-order contribution to the deflection
angle P and in the process develop a simple itera-
tive method that allows P to be calculated to ar-
bitrary order in G. The O(G') contributions to the
radar time delay involve additional problems and
will be presented elsewhere.

The calculation of second-order effects can be
simplified to some extent by adopting a picture in
which a gravitational field influences the propaga-
tion of electromagnetic radiation by imparting to
space an effective index of refraction n(s). Such a
picture arises from the observation that Maxwell's
equations in the presence of gravity'

f (~) =1+2ye+ —,'de'+ o(c'),
-g«(t ) = 1 —24 + 2 P4' + O(C s),

(5a)

n(~) =1+ (y+1)e+ (-,'+y — y' —P+ —,'5)C'+ O(C ')

A B=I+ + 2 ~
'Y 'V

(5b)

Given n(t) in Eq. (5b), the calculation of the gra-
vitational deflection of light reduces to a classical
optics problem in which the contributions from
successively higher powers of C (or G) canbe
evaluated by a straightforward iterative proce-
dure.

Consider the refraction of a ray passing through
a thin spherical shell located at x, as shown in Fig.
1(a). From Snell's law, with 8=8„+8„,

n(s') sin8 = n(r+ ds ) sin(8+dry)

n(s') + dr (sin8+ cos8 dP) . (~)
dn s

dr

Neglecting second-order differentials we find the
following differential equation for the angle d&P:

dP=— 1 dn(s ) tan6} dy .
n(r) ds

by writing

ds' =f(r) (dx '+ dy'+ dz') +g„(s.)(dx')',

r = (x'+y'+z')ti

in which case n(s) =e = p, = [ f(t)/g-»(r)]'I'. This re-
sult can be verified by noticing that since ds' = 0
for photons we can divide Eq. (3) through by f(r) to
give

0 =ds' = dx'+ dy'+ dz' —[-g«(r)/f(r)](dx')'. (4)

In the form of Eq (4) th. e photon is viewed as prop-
agating in a Minkowskian space-time but with a
local index of refraction given by the previous re-
sult. To lowest order in C = GM!r. c', f(s) and
g„(s) can be expanded in terms of the PPN pa-
rameters P, y, and 6 defined by
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tor makes with respect to the x axis. We can then
use Eq. (Sb) to express the trajectory y'"'(x) com-
puted to a given order N in terms of the corre-
sponding bending angle (t) '"'(x):

x y (g) px
y'"'(x)=, dx'=

I
tang&"&(x')dx'. (10).dx'

To evaluate P "&, the O(G) contribution to P, we
neglect the term proportional to B' in Eq. (5b)
which then gives

y=O

x=O
A

X
A

X

d "' A

dx r', (b+ xy'-y) .

To this order y
&o& (x) =—0 and hence

y&'&(x) =(A/b)[1+x(x' b') "], -

P "&(~)= 2A/b = 2(y +1)GMo/bc',

(12a)

(12b)

which is the standard result for P "'.
To evaluate Q "&(x) we begin by finding y"'(x).

FIG. 1. Description of light bending in a gravitational
field. .(a) Refraction of light from a thin spherical shell
at z. 8„(8„)denotes the angle between the velocity (rad-
ial) vector and the x axis, 8= 8„+ 8„, and dQ is the
change in 8„due to the thin shell. (b) Parametrization
of the light path. The light ray is characterized by an

impact parameter 5, a displacement y(g) from the un-
deflected path, and a local bending angle Q(x) = 8„. The
total angular deflection corresponds to fthm(~).

r=(x'+ [b-y(x)]')'~', r'= (x- by'+yy')/r,

tang„= (b-y)/x, tan6„= =y'=tang(x),dy /dt

(8a)

(Sb)

To evaluate the scattering angle p =

fdic,

we must
parametrize the trajectory in such a way as to in-
clude the effects of the curved path. The following
exact relations are useful (primes denote differen-
tiation with respect to x):

x

y "'(x) = dx'tang &'& (x')

x .

dx'P "'(x')

= (A/b) [x+ (x'+ b')'i'].

From Eq. (Sa) r is now given by

r = (x'+ b')'~'[1 —by &'&(x)(x'+ b') '],
Hence, to O(G') the deflection angle g &"(~) is

('*'( )=Sf ~x(~(x' ~ b') X'+3A'x(x' ~ b')

+ (A'+2a')(x'+ b')-']

= 2A/b+ (A'+ 2B')»/2b'

(14)

tan 6) = (b -y + xy ') /(x - by '+yy ') .
Hence,

(8c) = 2 (y + 1)GMo /bc

+ (&&/4) (8 —4P+ Sy + 3b)(GMe /bc')'.

d(t) (x) 1 dn(r)
dx rn(r) dr (9)

Since the leading contribution to dn/dr is of order
G it follows that the right-hand side of Eq. (9) is
always of one higher order than the left-hand side.
This means that Eq. (9) can be solved iteratively
for (j& to arbitrary order in G. To O(G") (Ã=1,
2, ...) we first solve for the bending angle to
O(G" ') and then use this result to find the dis-
placement y(x) to O(G" '). We then insert this re-
sult into Eq. (9) to compute p to order G". From
Fig. 1 and Eq. (8b) we see that the scattering angle
(I&& is just equal to the angle 8„ that the velocity vec-

Numerically, for light grazing the Sun, '

0"'( ) =( '(r +1)(1.'l-507)

+~(8 —4P+ Sy+3b)(11 x 10 ')

—4(y+ 1)'(1.4 &(: 10 ')]arcsec. (16)

We see that for GR, corresponding to y = P = 5 = 1,
the second-order effect contributes a deflection
of -3.5&10 ' arcsec. Since the current pre-
cision j.s' roughly 10 arcsec, it would ap-
pear that it may not be unrealistic to attempt
to measure this contribution. From a theo-
retical point of view such a measurement would
lead to a determination of the PPN parame-
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ter 6, when coupled with results for P andy ob-
tained from radar time delay and the precession
of the perihelion of Mercury.

After completing this work we learned that the
results of Eqs. (15) and (16) had been obtained pre-
viously some years ago by Shapiro and somewhat

later by Epstein. We wish to thank Dr. Heasen-
berg for bringing the unpublished work of Profes-
sor Shapiro and Dr. Epstein to our attention. This
work was supported in part by the U. S. Depart-
ment of Energy.
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Care must be taken to operationally define the light
path when computing higher-order effects. On physical
grounds grazing incidence corresponds to the minimum
value of r in Eq. (8a), with r;„=R„. Minimizing r
using Eq. (13) gives (to first order in G) r,.„=b—A.
Hence for grazing incidence b =R~+A where A gives
the first-order correction to the lowest-order value
5=Ro. Inserting 5=R +A. into (15) gives (16).


