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Singularities from colliding plane gravitational waves

Frank J. Tipler
Center for Theoretical Physics,

'
University of Texas, Austin, Texas 78712

(Received 23 June 1980)

A simple geometrical argument is given which shows that a collision between two plane gravitational waves must

result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because
singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily
small energy density,

I. INTRODUCTION

Gravitational-wave astronomy is a burgeoning
field of research. However, because of the compl-

. exity of the Einstein field equations, the theory be-
hind the experiments is generally based on a linear
approximation, and such an approximation may not
always give reliable results. " It is therefore
important to study exact solutions corresponding to
gravitational waves in order to understand their
actual behavior. But the analysis of exact solutions
is also fraught with perils. Again, because of the
complexity of field equations, exact solutions ne-
cessarily have a very high degree of symmetry
which would not be present in the real world, and
the properties of the exact solutions might be art-
ifacts of the high symmetry and have no analog in
realistic solutions. "

In the case of gravitational waves, the exact sol-
utions most often studied are plane waves. In
linear field theories such as electromagnetism,
plane waves are known to illustrate all the features
of more realistic waves, and the plane symmetry
does not give rise to misleading ideas about the
structure of actual waves. The hope that a similar
situation would persist in a nonlinear theory, such
as general relativity in spite of the lack of a princ-
iple of superposition has been the strongest motiva-
tion in the study of plane gravitational waves. I
shall argue, however, in the concluding section of
this paper that the global properties of plane gravi-
tational waves are quite different from the proper-
ties one would expect to see in realistic gravita-
tional waves; in particular, colliding plane gravita-
tional waves must necessarily develop singularities
which are a consequence of the plane symmetry
acting through a nonlinear field. A more realistic
gravitational-wave collision should not, in general,
give rise to singularities.

The question of whether a collision between
plane gravitational waves would necessarily give
rise to singularities has itself been disputed.
Penrose and Khan' and, independently, Szekeres
found a solution interpreted as a collision between

collinearly polarized impulsive gravitational waves,
and Szekeres' later obtained the general solution
corresponding to a collision between collinearly
polarized gravitational waves. Nutku and Halil'
then considered a collision between impulsive
linearly polarized plane gravitational w3ves with
arbitrary relative polarization, and Sby'tov' derived
the solution for colliding plane waves with arbitr-
ary polarization. All of these authors concluded
that a collision between plane gravitational waves
would necessarily result in singularities. How-
ever, in a recent paper Stoyanov argued that the
singularities which occurred in the solutions given
by the above authors are consequences not of the
planar nature of the wave collision, but rather of
nonsmooth wave fronts. He justif ied this conten-
tion by giving a "solution" to the empty-space
field equations with different junction conditions,
a "solution" which had no singularity and which is
claimed to be smoother than the above-mentioned
solutions. (The word "solution" is in quotes be-
cause Nutku' has questioned whether the Stoyanov
metric satisfies the Einstein equations at the junc-
tion. }

I shall prove in this paper that in fact any solu-.
tion to the field equations with metric differenti-
ability at least C' and corresponding to a collision
between plane gravitational waves will necessarily
have a singularity somewhere. Furthermore, a
similar result holds for a collision between self-
gravitating plane waves of every physically realis-
tic field. In Sec. II this result will be stated and
proved in the form of a singularity theorem. The
proof will be a simple geometrical argument based
on the proof of Penrose's singularity theorem. ' "
A discussion of the physical significance of the
assumptions in the theorem will be found in Sec.
III, together with an analysis of the Stoy3nov result.
It will be emphasized in Sec. III that the singularity
result depends crucially on the assumption of plane
symmetry: There is absolutely no reason to believe,
as suggested by Penrose and Khan', that a collision
between weak nonplanar gravitational waves would
result in singularities.
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In this paper it will be assumed that colliding
plane waves correspond to a spacetime in which
there exists everywhere a pair of commuting
apacelike Killing vectors, sy and s,'. It should be
emphasized that this is an assumption; if such Kill-
ing vectors are assumed to exist on an initial part-
ial Cauchy surface, then it can be shown" that such
Killing vectors will also exist in the domain of
dependence of this partial Cauchy surface, but this
will not establish global existence, since space-
times with plane waves will not, in general, pos-
sess Cauchy surfaces. "'" At each point of such a
spacetime there will exist two null directions
orthogonal to the two spacelike Killing vectors. We
let l' and n' be null vectors in these two directions,
with t'n, =1, and rn' the complex vector which
spans the two-surface generated by the Killing vec-
tor fields s', and s,'. The vectors l' and n' will be
tangent to null geodesics since s', and s,' are Killing
vectors; u and u will be affine parameters along the
geodesics defined by l' and n', respectively. The
tetrad (P, n', m', m') defines the usual Newman-
Penrose scalars, for which I will use the notation
of Hawking, ' and of Hawking and Ellis. " We will
say that a necessary condition for a plane-wave
collision to have occurred is that at least one of the
quantities (,= C ~

~I'm'I'm~, g4 —= C „~n'm'n'm~, $00

i.s nonzero somewhere in the spacetime.

II. THE SINGULARITY THEOREM AND ITS PROOF

Theorem

Let (M, g) be a spacetime with g at least C', and

suppose (M, g) has two globally defined commuting
spacelike Killing vector fields s, and s„which to-
gether generate plane symmetry. If (1) the null
convergence condition holds; (2) at least one of the
six Newman-Penrose quantities g„P~,P», p«
is nonzero at some point p in (M, g); and (3) through
the point p there is a spacelike partial Cauchy
surface S, which is everywhere tangent to s, and
s„and S is noncompact in the spacelike direction
normal to s, and s, ; then (M, g) is null incomplete.

—=p2+ VV+ g, ,
dp

4T = 2po'+ to ~

d5
(2)

Proof of the theorem

The proof is a straightforward generalization of
Penrose's theorem (Ref. 15; Ref. 10, p. 263).
Suppose, on the contrary, that (M, g) is null comp-
lete, and suppose it is one of (P„P«,o) which is
nonzero at p. Then along the null geodesic tangent
to l' we have

These equations and the null convergence condition
(i.e. , that Q»~ 0) imply that there is a, conjugate
point to p an affine distance go to the future or the
past of p. We may suppose that it is to the future
of p. Let Q be the two-surface generated by
sweeping P under the action of s,' and s'„and con-
sider J'(Q) T.his achronal boundary will be gener-
ated by the null geodesic s tangent to l' orn', and hav-
ing end points at Q. [This structure ofJ' (Q) is guar-
anteed by the plane symmetry and the fact that S is
a partial Cauchy surface through Q. ] Using the
plane symmetry and Proposition4. 5.14 of Ref. 10,
we see that each null geodesic generator of J' (Q)
tangent to I' leaves J (Q) at the same affine para-
meter distance v, from Q, and v, ~ v, .
Thus J'(Q) must be compact in the I' direction.
Let J', (Q) be that portion of J'(Q) which is gener-
ated by null geodesics tangent to I'. Since J;(Q)
c:J'(S) by construction, and since the plane sym-
metry is global, we can define a past-directed
C' timelike vector field which is normal to s', and

s,', and which intersects J;(Q) and S. Since J', (Q)
and S are achronal, each integral curve of this
field will intersect J'(Q) and S exactly once. Thus
they will define a continuous one-to-one map n:
J', (Q)-S. If J;(Q) were compact in the I' direct-
ion, its image n(J;(Q)) would also be compact in
the direction normal to s', and s,'. Since by assump-
tion S is noncompact in this direction, o.(I;(Q))
would have to have a boundary in S () IJ (d;(Q)) —Q].
But this is impossible since by the plane symmetry
and Proposition 6.3.1 of Ref. 10, J;(Q) and hence
o.(Z;(Q)) has no boundary. Thus the assumption of
null completeness [which was made to prove J;(Q)
compact in the I' direction] is incorrect. If the
conjugate point to p were to the past of p rather
than to the future as we assumed, we obtain a con-
tradiction by repeating the above argument with
past null cones rather than future ones. If it were
one of (g„Q«, X) which were nonzero at p, we can
use equations analogous to (1) and (2) to obtain con-
jugate points to the future or the past of p along the
null geodesics tangent to n', and then repeat the
above argument. In any case, the spacetime (M, g)
must be null incomplete. Q.E.D.

III. DISCUSSION

One of the most interesting things about the theo-
rem from the point of view of singularity studies
is that it indicates the Cauchy surface condition of
Penrose's theorem is not a necessary condition in
certain situations of high symmetry. In Penrose's
theorem the Cauchy surface condition was used for
two purposes: first, to ensure that the generators
of J'(Q) have end points at Q, and second, to en-
sure that the map n was continuous and carried
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every point of J'(Q) into the Cauchy surface S. (In
Penrose's theorem, Q would be a trapped surface. )
In cases like plane-wave geometries, in which the
essential features of the causal structure have been
reduced to two dimensions —one space and one time
—the above-mentioned conditions are ensured by
the existence of just a partial Cauchy surface
through Q. Similarly, null incompleteness would
be guaranteed in a spherically symmetric space-
time with the global structure of the Reissner-
Nordstrom solution, i. .e. , with the global topology
S ~ B2. This is not to say that one cannot con-
struct a nons ingular Re issner -Nords trom- type
spacetime with matter which obeys the null con-
vergence condition. Indeed Bardeen (Ref. 10,
p. 265) has shown that such a matter field can be
used to smooth out the y =0 Beissner-Nordstrom
singularities into origins of polar coordinates.
However, such a smoothing operation changes the
topology; in the corresponding Penrose diagram
the r =0 "points" no longer represent two-spheres
but just points —coordinates built on the spherical
symmetry are degenerate there and thus the C'
map n fails to exist. Such a situation cannot arise
with the plane symmetry assumed in the theorem
of this paper. (See Ref. 16 for other examples of
null incompleteness in spacetime with spherical
symmetry but not necessarily Cauchy surfaces. )

It is fortunate that a Cauchy surface condition is
not required to prove that singularities result from
plane-wave collisions, for in general plane-wive
spacetimes do not possess Cauchy surfaces. ""
This makes it impossible to obtain the global struc-
ture of the spacetime by solving evolution equations,
unless some tacit global continuity assumptions are
made. (It will be shown below that this is the ori-
gin of the dispute mentioned in Sec. I about the
inevitability of singularities. ) The partial Cauchy
surface existence assumption is rather innocuous,
serving mainly to eliminate identifications which
would make the generators of g'(Q) never intersect
Q. The requirement that the partial Cauchy sur-
face be noncompact in directions normal to the
plane-symmetry Killing vectors ensures that the
plane waves can be regarded as coming "from in-
finity, " but it is probably not a necessary require-
ment since the Penrose theorem holds for any non-
spherical topology Cauchy surface, "and spherical
topology is inconsistent with the planar symmetry.

In view of the singularity theorem of Sec. II, what
are we to make of Stoyanov's claim that singular-
ities are not inevitable? Stoyanov's "solution" def-
initely satisfies conditions 2 and 3 of the theorem
(both (0 and g4 are nonzero in the interaction
region), and Stoyanov "claims" it satisfies (1) also.
I say "claims" because Nutku' has asserted that
Stoyanov's "solution" has a Ricci tensor with an

infinite discontinuity across the hypersurface u=0,
and such a discontinuity may violate null conver-
gence. However this may be, there is no question
but that Stoyanov's "solution" has discontinuities
in the first derivatives of the metric across this
hypersurface, and thus the metric is riot C' every-
where, as required in the singularity theorem of
Sec. II. It is the breakdown of this assumption
which is the basic reason why Stoyanov's "solution"
has no singularities. It is also why I have placed
the word "solution" in quotes. I tend to regard a
true solutiop of the Einstein equations as one which
is at least C' so that differential geometry techni-
ques can be used to study it, though there are others,
notably A. H. Taub, ' who feel such a differenti-
ability requirement too restrictive. In the Stoyanov
"solution" one has the following curvature invari-
ant in the g & 0, v & 0 region:

ft~a~u (a2 1)'(4a'+7)(1. +u+ v) '~ ' ". (3)
1 2e

abcfJ I 6
If the constant a were W 1, and the metric analytic-
ally continued into the m&0, g &0 region, it is clear
that on@ would obtain a singularity; the affine para-
meters u and v could not be continued to minus in-
finity. The singularity theorem of Sec. II asserts
that in the plane-wave collision a singularity must
occur somewhere either to the future or the past
of the collision if the metric is C . %hat Stoyanov
has done is to impose conditions so as to obtain a
nonsingular future, and then relax the differentiabi-
lity requirements sufficiently to allow him to re-
place the singular past which would otherwise re-
sult with flat space. Such a procedure could be
used to remove not only the singularities of plane-
wave collisions but also the singularities of cosm-
»ogy" and gravitational collapse. 20 Thus rather
than being removed by increased smoothness across
the wave fronts as Stoyanov claims, the singularity
is actually being removed by decreased smoothness
across certain null hypersurfaces. Singularity-
free C' plane gravitational waves do exist, ' but
they violate condition (2) of the theorem, and hence
do not correspond to a plane-wave collision.

To consider now the case of a collision between
two self-gravitating plane waves of nongravitational
fields, we first note that all physically observed
matter tensors are classified by Hawking and Ellis
(Ref. 10, p. 89) at each point either as type I—the
case in which the matter tensor has a timelike ei-
genvector p and hence may be expressed in diagonal
form with respect to an orthonormal basis —or
type II, which represents radiation travelling in a
single null direction. Clearly at the point of coll-
ision of two waves the tensor will not be of type II.
Adopting the orthonormal basis (s'„s'„y', f'), we
have goo= P« ——4m(g+p~) at the point of collision.
For the null convergence condition to hold we must
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have p, & 0 and p, +p3& 0. Since for physically
reasonable matter fields (in particular, for those
which satisfy the dominant energy condition) we
must have p, & 0 at points where T,~

W 0, and since
fields with g = -P, would be unphysical at least at
the point of collision, it follows that at the point of
collision where it is assumed that T„WO, we must
have either $00 or Q«strictly positive. Thus by
the theorem of Sec. II, such a plane-wave collision
must result in singularities.

The fact that self-gravitating collidingplane waves
of any physically realistic field must give rise to
singularities strongly suggests that the singular-
ities are a consequence of the plane symmetry and
not a consequence of the nonlinear nature of the
gravitational field. For instance, a collision be-
tween an expanding core of spherically symmetric
star with a collapsing envelope of the star would be
an example of a collision of spherically symmetric
self-gravitating matter waves, and an equation of
state of the matter can be found which would allow
a bounce (if the relative wave velocities were suf-
ficiently small) and thus no singularities would

appear. Yet the matter tensor would still satisfy
the conditions placed on the matter tensor in the
plane-wave singularity theorem. (At least this

would be possible if the star were sufficiently
small. As the mass of the star increases, the rad-
ius it must have to avoid collapse to a singularity
increases also, until there is so much mass that
no reasonable equation of state can prevent col-
lapse to a black hole. ) In addition, the remarks
at the beginning of this section and a close study
of the proof of the singularity theorem make it
clear how essential the plane symmetry assump-
tion is in proving the inevitable existence of sing-
ularities. The Bardeen example suggests that
even a slight deviation from plane symmetry
would make it impossible to prove singularities
inevitable in a wave collision. But there is no
doubt that singularities are inevitable when the
co11iding waves are plane, 'and when the evolution
preserves the plane symmetry.
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