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Weak quark couplings induced by gluon corrections
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We compute the quark couplings in flavor-changing semileptonic transitions induced by lowest-order gluon
corrections. We investigate the consequences of these radiative corrections for the quark axial-vector coupling, the
deviations from Cabibbo universality for the axial-vector relative to the vector current, and the induced couplings
(first-class pseudoscalar and anomalous magnetic moment, and second-class scalar and pseudotensor). The
correction lowers the axial-vector coupling and increases the magnetic moment. We study the dependence of the
couplings on the quark mass difference. Some of these results, true to all orders in a„generalize the theorem of
Ademollo and Gatto. The effective current is pure V —A to a very good approximation for transitions of heavy
quarks (m + 5 GeV).

I. INTRODUCTION

It is interesting to study the effects of. the strong
interactions on the quark current of gauge theo-
ries,

q,y„(1-y,)q, .

In the case of semileptonic transitions the lowest-
order gluon corrections in quantum chromodynam-
ics (QCD) come from vertex, self-energy, and
bremsstrahlung graphs (Fig. 1). Up to trivial col-
or factors, everything will occur as in the radia-
tive corrections to muon decay. ' This has been
pointed out by Suzuki, ' and recently by other
authors, ' who have studied —within the quark-par-
ton model —the lowest-order gluon corrections to the
lepton spectrum and the total semileptonic width of
heavy quarks. We are interested here in the
static" properties (form factors at q'=0) induced

by these radiative corrections. On general
grounds we know that, starting from the current
(1), strong interactions will produce an effective
vertex of the form

q (g y„—ggypy + ggq„—gi qpy

vertex. Then, at least for light quarks, we can-
not expect this lowest-order free-quark calcula-
tion to be very reliable. On the other hand, we
have infrared (la) singularities for which the run-
ning coupling constant z, (k'-0) is very large or
becomes meaningless. However, at least f&&-
wally —as we will proceed —these infrared diver-
gences cancel out if we sum up incoherently the
graphs of Fig 1 l(a)+(b)l'+l(c)l' as in @ED.

In view of all these problems, we see at least
three types of corrections to this calculation:

(i) The effect of confinement on these lowest-
order graphs. At the end of the paper we will
outline some remarks on this effect, which es-
sentially amounts to cutting off the low-frequency
gluons, k;„-1/R, R being the hadron size. We
argue that this could be an alternative way of cur-

—igiig~pq + agro'~yq ys)qi i (2)

where g„, g„, g~, g„, g„, and g~ are, respective-
ly, the vector, axial-vector, scalar, pseudoscal. -
ar, anomalous magnetic moment, and pseudo-
tensor couplings.

Concerning the applicability of QCD to these
low-momentum phenomena, we must make sever-
al remarks. On the one hand, being at low mo-
mentum transfer, the infrared-finite Feynman
integrals will be dominated by regions of k' of the
order of the (mass)' of the quarks involved in the

C

FIG. 1. (a) Vertex, (b) self-energy, (c) bremsstrah-
lung @CD corrections to the p'-A quark current.
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ing the IR problem.
(ii) Higher-order effects contributing to the

vacuum Polarization on the gluon lines giving an
effective u, (m'). To take into account this effect
we will adopt an effective u, (m'), where m is the
mass of the decaying quark.

(iii) Higher-order vertex corrections which,
added to the lowest order, could be represented
phenomenologically by a vector-meson-dominance
model, which will also include, presumably,
nonperturhative effects (confinement of the qq
vector system). It is for the moment very diffi-
cult to have a simple and unambiguous answer for
these corrections which could be the essential
part of the whole strong interaction effect.

In spite of all these problems we hope that the
lowest-order graphs will give us some useful
qualitative indication on these effects, as, for in-
stance, the sign of the renormalization for g~,
the order of magnitude of the deviation from Cabi-
bbo universality, etc.

II. SELF-ENERGY AND VERTEX CORRECTIONS

We outline the calculations and give only the
results. We adopt dimensional regularization and
the prescription of Chanowitz et al.' for y, since
it preserves the Ward identities. The integral, s
appearing for gs, g~, g„, and g~ are finite for
both ends of the spectrum. As for g~ and g„we
have ultraviolet divergences which are absorbed
by field and mass renormalization (Fig. 1) or
which cancel out in the sum of the vertex and self-
energy parts (Z, =Z, relation of QED).

Considering for the moment the graphs (a) and

(b), g» and g„contain also IR singularities which
can be expressed in terms of a small mass X for
the gluon:

4 ~ +m -m +2m
g~ 3 2~ (m, '-m, ')'

m, m, (3m, '+3m, '+ m, 'm, -m, m, ')
2(m, ' —m, ')'

m, and m, are the masses of the two fermions
involved in the vertex. The couplings (4) and (5)
were calculated by Halprin, Lee, and Sorba, '
who were interested in the second-class currents
gs and g~ in nuclear p decay. We agree with their
results. The factor -', comes from color:

3 4

and the upper (lower) sign corresponds to vector
(axial-vector) couplings. Note that we can obtain
the axial-vector couplings [with their overall sign
defined in (1)]by making m, —-m, in the vector
ones. This comes simply from the fact that the
numerator of the Feynman integral can be written
in the form

y„[(P,—tt) + m, ]y„y,[(P, —It) + m, ]y"

The second-class eouplings gs and g~ are odd un-
der the exchange m, —m„a sufficient condition
for their vanishing when ml = m, . On the other
hand, the correction to the first-class form fac-
tors is even under m, m, . In the ease of the
vector coupling g~ we know moreover that the re-
normalization is at least of order (m, —m, )'
(Ademollo-Gatto theorem'). A finite expansion of
g» in (3) in (m, —m, )' shows indeed this behavior.

When m, = m, = m, g and g„are free from in-
frared singularities and we get

4 o. 2(m, '+m, ')+(m, am, )'
I m, '

+- ~ 2 — ' ' ln

(3)

gv

4e
g 32m '

4u 1
327t 2m '

go=0,
(6)

The couplings which are IR finite are given by

4~G1 1 m m ml2-
gr 3 2w 2 (am, +m, ) . (m, '-m, ') m, '

(4)

gs =0

4e 7
g 32m- 6m

so that the second-class form factors disappear,
and g~ is not renormalized as expected.
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III. DISCUSSION OF THE INFRARED
CANCELLATION

For unequal masses, g~ and g~ present IR
singularities. At present, and due to confinement,
there is not in QCD an unambiguous way of curing
this problem. Formally, it is clear at this order
that everything will occur as in QED: The IR
singularities will cancel out if, to the preceding
contributions, we sum up incoherently the brem-
sstrahlung rate

1
(a)+ (b)l'+

I (c) I' At q'= 0 the
rate ~(a)+(b)~' is given by

I =Q(1+a.)Z(.",

pi ~ b p(0)
0 0 (8)

where (in the rest frame of the decaying quark)

where o =VV, AA, VA, AV, P," is the probability
without radiative corrections, and a, = 2(g„—1),
2(g„—1), and (g» —1)+(g„—1) for o= VV, AA,
and VA or AV, respectively, and g~, g~ are given
by (3). The bremsstrahlung rate is given by

b = — 8+4 ', ', I" ', ' ——ln,

2 —
(

', ', )(n( ',
) (n4+(n( '

) I,

(s(4) f' '=" '„'" ~) .

(9)

We can see that the ~' singularity in b, cancels
out with the ones in a, . Moreover, each term in
(9) vanishes separately in the equal'-mass limit.
Note that the formula (9) is approximate, it is
only valid for an upper limit of the real gluon en-
ergy, 0, «m, . One may wonder, however, if
this is the right way —on physical grounds —of
treating the IR singularity in QCD. On the one
hand, as in QED, when one measures for instance
the &u«eon axial-vector coupling —the absolute
magnitude by a rate and its sign by a polariza-
tion —one is certainly taking into account both the
virtual gluon corrections to the fundamental ver-
tex and the bremsstrahlung. This is so because
gluons will take part in the true nucleon wave
function, which will have a component in the three
quarks plus one gluon sector. Then, the sum of
both contributions to'these measurable quantities
is free from IR singularities, and everything
seems consistent. But here k, cannot play the
same role as in QED. It cannot be the experi-
mental uncertainty on the energy of the particles
in some process since the quark momentum is not
observed, and gluons are confined. Then, in
principle, k, '" could take, not a small value, but
the maximum value consistent with the kinematics
at q~= 0 for the current, k, '" = (m, —m, )/2. In this
situation, the approximate result (9) is not valid
since one should integrate over the whole phase
space. Moreover, and due to the spatial distribu-
tion of quarks within the hadron, not all gluon mo-
menta will be equally probable, and one should
take into account the wave function of three quarks
in a color-octet state plus one gluon. We are
presently studying this possibility in detail.

On the other hand, and due also to confinement,
the expression (3) will be modified. Confinement

G„,'(d-u)+ G„P(s-u) = G', (10)

i.e., deviations of g»(d-u)/g»(s-u) from one due
to the strong interactions. We can, however, con-
sider quantities which at least formally at this
lowest order are free from IR singularities, as
the ratio of axial-vector to vector couplings for
the quarks

There is an interesting quantity which is also free
from IR divergences: the ratio of axial-vector to
vector Cabibbo angles. Defining

tane' "= t~e g» s(s u)

g» „(d-u)
we get

(12)

A m m'tangc 4 ~o( ms m„m,
( )tang 3 2 (m, ' —m„' m„'

(13)

I

of gluons will mean that gluons of wavelengths
&R do not contribute appreciably, R being the
hadron radius. The low frequencies in the Feyn-
man integrals will be cut off by a k '"- I/R (this
is found indeed in the QED Lamb-shift calculation).
The binding may thus make the IR problem less
severe, although the framework is theoretically
less well defined than in the preceding formal
point of view.

All this means is that unless we have a way of
handling this IR problem, we cannot say anything
about the gluon corrections to Cabibbo universal-
ity, i.e., deviations of the relation
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This ratio is second order in the SU(3) breaking
.h.m =m~ -m,

an~c" 4 n 1 Zm
tan8v 3 2x 6 m (14)

IV. DEPENDENCE OF THE COUPLINGS
ON THE QUARK MASS DIFFERENCE

Let us make an expansion in (m, —m, ) of the re-
sults (3), (4), (5), and (9) up to second order.
Calling 6m =m, -m, and m=-,'(m, +m, ) we get

As we will see in the'next section this result [the
expansion beginning in (Am)'] is true to all orders
in perturbati. ve theory.

To all orders in u, the Feynman graphs give real
results since there are no physical cuts. It then
follows from (18) and (19) that

G, (m„m, ) =G, (m„m, ) . (2o)

G, (m, b, m) = G, (m, —hm) ~ (21)

As a particular case, we get the Ademollo-Gatto
theorem

g»=1+0((am)') . (22)

But we also get an analogous result for g~:

This implies that G, as a function G; of -', (m, + m, )
=- m and m, - m, =- 5m satisfies

4 0.
g 2~

4~0, 7 Lm ' 2 Lml m'&"

(15)

g„= (g„),+ O((b,m)'),

where

4 (y
(g ) =1--

32~

(23)

and for the dimensionless quantities

40. 1 zm'g(m+m)=-~ 1-— +
3 2g, 12 m

4a 1 4m'
g (m -m )=--~ — + ~ ~ ~,

m

is the equal mass result. This means that although
the nonconservation of Ne axial-vector current
implies (g„),4: 1, it does not imply a stronger
SU(3) breaking for g„ than for g„. This means,
in particular, a breaking of the ratio of axial-
vector to vector Cabibbo angles of second order
in b.m'.

4 at 1 4m
g (m -m)= —~— + ~ ~ ~

32g12 m

4e 7 23 t'am '
32 3'24O ~~ m

For the bremsstrahlung rate we get

4~ ' 32 gm'

+- f» '-I + ~

2 Zm&' 2&,'"'t'
3 m) (17)

(24)"„=1+O ((gm)'),
tan~ c

a generalization to all orders of relation (14).
Strictly speaking, these results are valid only

as long as we keep ~' finite. Let us now discuss
how lR singularities can modify this result. For
the bremsstrahlung contribution we cannot say
anything beyond first order in o., and (b,m)' be-
cause of the factor ln(k, '")2. Up to this order, if
we take k, '" 0- (m, —m, ) for kinematical reasons,
we get

Let us call b. =O((am) ln(am)) . (25)

G; =gq (i= V, A),

G, =g,. (m, +m, ) (i=M, ~),
G, =g,. (m, -m, ) (i=T, S) .

(18)

where

~,=+1 for i=V, A, M, P, e, =-1 forcy=1", S.

We see that all G; are even up to second order in
perturbation in n, due to T invariance. We get
(see for example Ref. 7) from T invariance

g, (m„m, ) = e, g,*(m„m,),

This behavior confirms that IR singularities dis-
appear when b,m-O. However, the behavior (25)
is disturbing because it seems to violate the Adem-
ollo-Gatto theorem for gv by logarithmic factors.
This leads us to assume' that to all orders the IR
singularities do ezPonentiate. Then

g» =(exp[0((bm)'in(bm)) ]][1+O((bm)')+ ~ ~ ~ ]

and if the exponential factor is the same for g~

+ O((b,m)'),
gv gv 0
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and the universality of Cabibbo angles is broken
only by second o-rder SU(3) breaking [ relation
(24)].

V. QUANTITATIVE RESULTS

I.et us now discuss quantitatively relations (4),
(5), (6), (11), and (13). In order to do that we
need an estimation of the quark masses. The re-
sults are very sensitive to the choice of these
parameters, mainly for light quarks. Notice the
interesting point that the true development par-
ameter in these expressions is not -', (o,, /w) but

4 o. mm, m~'
3 (m, ' —m, ') m, ' (26)

m2 1
[(33 —2E)/12m] In(m, '/4 ')

with A =0.5 GeV. This gives the following varia-
tion of n, (for E=6):

o., (m, ') =0.7 for m, =1.5 GeV,

n, (m„') =0.4 for m~=5 GeV,

o., (m, ') =0.2 for m, =30 GeV

We think that our calculations are not reliable if
this number is not small. Expression (26) is a
decreasing function of the ratio (m, /m, ), so that
the development parameter remains small even
for m, »m, if n, /w is small enough. For u, we
will take the running coupling constant at the hea-
viest quark mass in the process

strange (m =0.3 GeV), relation (26) cannot be ex-
trapolated. To illustrate our results we will
however adopt two values of n, , n, =1, and n,
= 2.2. This last figure is the value needed in the
bag model to adjust the hyperfine structure of
low-lying hadrons.

We plot in Table I g„/g~, g„, gr, g~, and gs
for the transitions d -u, s -u, c- s, c —d, b -c,
b-u, I;-b, t s, and t -d. We take m, =36
GeV just as an example, without theoretical
motivation. For light quarks we take an effective
mass m = 0.3 GeV instead of the current masses
m„=7 MeV, m„-=4 MeV.

It makes sense to adopt a constituent quark
mass since we are not at small distances: Due
to confinement, the low-frequency end is sup-
pressed at 1/8 -300 MeV. This is equivalent
to adopting constituent masses instead of current
masses. This point has been studied by Halprin
et al. ' We will, moreover, neglect in our calcu-
lation the isospin-violating effects and we will take
m„=m, . From Table I we see that the effective
coupling (2) is very close to pure V -A for heavy
quarks for quark masses m & m, . This is due to
the combined effect of the decreasing of o., and of
the function (26). For charm we have effects of
the order of 10%%uo in the anomalous magnetic mo-
ment and axial-vector coupling. However, the
signs of the correction to g„/gv and of the ano-
malous magnetic moment are interesting.

As is well known, the static value of the nucleon
axial-vector coupling and the proton total magnetic
moment are lowered by relativistic corrections
due to the quark Fermi motion' "

for light quarks, strange (m, = 0.54 GeV) and non-

TABLE I. Value of the induced quark couplings for different transitions. We adopt as an
illustration the masses: m~=m„=0.3 GeV, m, =0.54 GeV, m, =1.5 GeV, m~=5 GeV, and m,
=30 GeV. For transitions involving heavy quarks (» &m, ) we adopt the value of Q.', given by
the running coupling constant. For light quarks we adopt, as examples, e~ =1 and e~ =2.2,
this last value being the one adopted in the bag model.

Transition gg/gy g~(my+ mg) gz, (mj + m2) g~(my+ m2) gs(mf + m2)

S~Q

C~d
C~S
b C

u
t b

t s
t d

1
2.2
1
2.2
0.7
0.7
p 4
p .4.

0.2
0.2
0.2

0.79
0.53
0.80
0.56
0.90
0.88
0.93
0.97
0.97
0.99
0.99

0.21
0.46
0.20
0.45
0.12
0.13
0.08
0.06
0.03
0.02
0.02

0
0
0.02
0.04
0.03
0.02
0.01
0.03
0.01
0.02
0.02

0.49
1.09
0.48
1.p 5
0.28
0.32
0.18
0.13
0.07
0.05
0.05

0
0
0.02
0.05
0.05
0.03
0.02
0.05
0.02
0.03
0.04
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where 5, 5' are positive and of order v'/c'
- 1/R'm'. It is hard to fit the experimental values
of p, 'P' and 6„/G„with the relations (2V). In the

bag model there is a similar problem. Dne gets"

g 09 ~tof

to be compared, respectively, with 1.25 and 2.79.
These expressions assume g„/g» =1 and g„=0 for
the quarks. We should modify them by

Let us finally consider the deviations from
Cabibbo universality for vector Cabibbo angle
relative to axial-vector Cabibbo angle [relation
(13)]. For guarks heavier than the charm, we
have seen that due to the smallness of (25), the
effect is negligible. Defining the ratio (13) in the
charm sector, we get

tane" tane" '

py 2 y O26
™~c

y p26

G G g l (~et) +g0 M y (29)
if u, =1 or u, =2.2, respectively, and u, (m, ')
=O.V. The subscript means u- or c-quark transi-
tions.

where the subscript 0 means the uncorrected value

(u, = 0). We see that since (g„/g„) & 1 and g„&0,
the computed strong-interaction effects would make
the situation worse, lowering 6„/G» too much. "
In connection with this problem it is worth men-
tioning that in the Nambu-Jona-Lasinio model"
of spontaneous breaking of chiral symmetry (and
presumably also in the a model" ), the pion radia-
tive corrections give g„/g» &1 for the fundamental
fermion. This could be a possible way out, since
we are at large distances and these effects could
be comparable to gluon corrections. Another
possible way out could be to take seriously into
account confinement: Maybe the equal-mass re-
sult,

could be changed by cutting off the low-frequency
gluons. A possible calcul. ational scheme could be.
the QCD Feynman rules modified by confinement
formulated by T. D. Lee.' We think that unless
these effects could change the situation, the bag
model is in serious difficulty. Using a, = 2.2 we

get 6„/6„=0.51 and p, '~ = 3.3/2M~ (taking m

=M~/3 for the correction). The magnetic moment
goes in the right direction but the axial coupling
is terribly small.

VI. CONCLUSION

In conclusion, we have seen that for heavy-quark
transitions m~ m, strong interactions do not re-
normalize appreciably the V -A structure of the
SU(2)~&&U(1) model. For charm we get -10%%uo ef-
fects. For light quarks the effect can be large but
it is uncontrollable. The renormalization seems to
lower the nucleon axial-vector coupling too much."
The sign of the anomalous magnetic moment goes
on the contrary in the right direction. " Concern-
ing Cabibbo universality, we find 0~ = 0~ up to
corrections that are second order in the SU(3)
breaking, the study of deviations to the relation
6 ff (d-u) + G ff (s-u) = 6' due to the strong inter-
actions require a better understanding of the con-
finement of gluons produced by the bremsstrah-
lung.

ACKNOWLEDGMENTS

One of us (L. O. ) is indebted to Professor M.
Suzuki for many useful and friendly discussions,
and to Professor G. Chew and Professor J. D.
Jackson for hospitality at the Lawrence Berkeley
Laboratory, where part of this work was per-
formed. We are also grateful to J. P. Leroy and

J. Micheli for interesting remarks on the expo-
nentiation of infrared divergences.

*Laboratoire associe au Centre National de la Recherche
Scientifique. Postal address: B%t. 211, Universite de
Paris-Sud, 91405 Orsay, France.

R. E. Behrends, R. J. Finkelstein, and A. Sirlin, Phys.
Rev. 101, 866 (1956); A. Lennard, ibid. 90, 968 (1952);
S. M. Berman, ibid. 112, 267 (1958).

M. Suzuki, Nucl. Phys. B145, 420 (1978).
A. Ali and E. Pietarinen, Nucl. Phys. B154, 519 (1979);
N. Cabbibo, G. Corbo, and L. Maiani, ibid. B155, 93
(1.979).

4M. Chanowitz, M. Furman, and I. Hinchliffe, Nucl.
Phys. B159, 225 (1979).

5A. Halprin, B.W. Lee, and P. Sorba, Phys. Rev. D 14,

2343 (1976).
SM. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264

(1964).
~J. S. Bell, in High Energy Physics, 1965 Les Houches

Lectures, edited by C. DeWitt and M. Jacob (Gordon
and Breach, New York, 1966), p. 401.

SJ. M. Cornwall and G. Tiktopoulos, Phys. Rev. D 13,
3370 (1976).

SP. N. Bogoliubov, Ann. Inst. Henri Poincare 8, 163
{1968); A. Le Yaouanc, L. Oliver, O. Pene, and J. C.
Raynal, Phys. Rev. D 9, 2636 (1974).
T. De Grand, R. L. Jaffe, K. Johnson, and J. Kiskis,
Phys. Rev. D 12, 2060 (1975).



2912 GAVELA, LE YAOUANC, OLIVER, PEWE, AND RAYNAL

A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal,
Phys. Rev. D 15, 944 (1977).
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1977).
M. Gell-Mann and M. Levy, Lett. Nuovo Cimento 16,
705 (196O).
T. D. Lee, Phys. Rev. D 19, 1802 (1979).
We disagree with W. Bernreuther, O. Nachtmann, and

B. Stech fHeidelberg Report No. HD THEP-17 (unpub-
lished)] for the sign of g& —1 but we agree with P. Lan-

gacker and H. Pagels [Phys. Rev. D 9, 3413 (1974)].
Note that another p5 convention which would not respect
standard Ward identity would give another result.
A. Halprin and P. Sorba, Phys. Lett. 668, 177 (1977).
These authors have computed the anomalous magnetic
moments within the framework of the bag model and
they get a sign opposite to ours. In our opinion this
comes from their neglecting the negative-energy inter-
mediate states (Z graphs) which are included in our
Feynman graphs.


