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Spontaneous CP nonconservation and natural flavor conservation: A minimal model
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A minimal model based on the standard SU(2))&U{1) gauge theory, with spontaneous CP violation and natural
flavor conservation, is presented in some detail. In particular it is shown that one on the minima of the classical
Higgs potential leads to spontaneous CP breaking. The generalized Cabibbo-type matrix is real and there is no CP
violation in the manner of Kobayashi-Maskawa. The CP nonconservation is entirely due to Higgs-boson exchange,
and can be characterized by a single phase for an arbitrary number of quark generations.

I. INTRODUCTION

It has been recently pointed out' that the con-
straints of spontaneous CP breaking and natural
flavor conservation' (NFC) lead to a class of theo-
ries where CP nonconservation' arises exclusively
through Higgs boson exchange' (for an arbitrary
number of fermion generations). A key problem
in incorporating CP violation in a unified gauge
theory is to understand the smallness of the vio-
lation. ' The class of theories considered here
provides an attractive scenario for understanding
the strength of CP breaking: Since Higgs-boson
exchange leads to a Fermi interaction of strength
G~ m~'/m„', the smallness of C& violation sim-
ply reflects the fact that Higgs bosons are much
heavier' than light quarks.

In this paper, it will be shown how a minimal
model with spontaneous CP breaking and NFC can
be realized in the context of the standard SU(2)
xU(1) gauge theory. The present paper is organ-
ized as follows: In Sec. II we discuss the require-
ments which should be satisfied in order to have
spontaneous CP breaking. In particular, it is
demonstrated that if one imposes NFC, then at
least three Higgs doublets are needed in order to
violate CP. We then classify the various minima
of the corresponding Higgs potential according to
their CP transformation properties. It is shown
that for an appropriate range of the free parame-
ters of the Lagrangian the absolute minimum is
not CP invariant. In Sec.-III we exhibit explicitly
the fermion interactions with the physical Higgs
boson in the context of a minimal model. In par-
ticular, we compute the CP-violating component
of the Fermi interaction originated through Higgs-
boson exchange. Finally, in Sec. IV, we draw
our conclusions.

H. A MINIMAL MODEL

Let us consider the standard SU(2)~xU(1) gauge
theory, ' including an arbitrary number of quarks,

with the left-handed components forming SU(2)
doublets p, ~ = (st, , g, )~, while the right-handed
components are singlets. In this case, quarks
acquire mass through their Yukawa couplings with
Higgs doublets 4',. = (4+,C ', ). lt turns out that if
one adheres to the principal of NFC in the Higgs
sector, then a minimum of three Higgs doublets
are necessary in order to have spontaneous CP
violation. ' This can be easily seen by considering
a model with only two Higgs doublets. It is well
known that in this case the constraints of NFC
necessitate the introduction of some extra sym-
metry, the simplest choice being

with all the other fields unchanged. The most
general SU(2) x U(1) xR-invariant Yukawa interac-
tions can then be written

+a„(e tc,)(e tc,)+ I „(CtP, )(e', C, )

+ [e„(4t4,) (4 tc, ) + H.c.] .
Using the SU(2) gauge invariance of the theory,
one can assume, without loss of generality, that
the minimum of the potential is at

(3)

(4)

with v;, se real. It can be easily shown that for an
appropriate range of the parameters of the Higgs
potential, the minimum occurs at zo = 0, as needed
in order to have an unbroken U(1) for electromag-
netism. Furthermore, . it is clear from (3) that

a=Q (y~irl&C'i x)z+q~ir „4, a,„+H.c., (2)
ied

where 4, =io,c'*, . The coupling constants F,&
are

chosen to be real so that the Lagrangian is CP in-
variant. The most general Higgs potential con-
sistent with (1) is given by

V(C ) =m, '4,4, +m, 'C tc, +a„(4,C,)'+a„(4,4,)'
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V(C ) depends on 8 only through the last term. It
follows then that

(8,) . =n,nidor .c„&0,

(8,) . = 3 for c» & 0 .2n+1
(6)

In the case of (5), there is clearly no spontaneous
CP breaking. It turns out that solution (6) is also
CP invariant. To show this, assume that c»& 0
and let the tree-approximation minimum of V(C )
be at

(0[&,'[0)=~2 e"', (0[&,'[0)=~~ . (7)

Under time reversal 7, the Higgs fields transform
as

TAROT-1

el&g yO

A T-invariant minimum (i.e., T
~
0) = [0)) implies

&0II,'lo&=&ol r y,. r-'lo&*=e-*"~ &Oly,'. [0&*, (9}

where we have used the fact that T is antiunitary.
It follows then from (7) and (9) that &g should
transform as

gII Ty3T 1 yo

Since the Higgs potential is invariant under (10),
it follows that (7) corresponds to a CP-invariant
minimum. We have thus shown that in a model
with NFC and two Higgs doublets, CP is con-
served by the tree-approximation minima. Fur-
thermore, one can invoke the Georgi-Pais theo-
rem' to conclude that CP will still be respected
by higher orders in the perturbation expansion.

At this point, it is worth emphasizing the key role
played by NFC in our analysi. 's. Had we not in-
sisted on NFC, V(C') would contain terms such as
(4,.4, )(4,4,), which in general would lead to
spontaneous CP breaking.

In view of the previous result, we consider next
the case of three Higgs doublets, which turns out
to be the minimal structure required to achieve
spontaneous CP violation. The simplest way to
conform" to NFC is by preventing the third Higgs
doublet 4, from coupling to quarks (this is easily
achieved by introducing a reflection symmetry
R' under which 4,- —4, while all other fields re-
main unchanged). The most general gauge-in-
variant Higgs potential consistent with B&A' can
be written

3

V(C) = +[m)34, 4';+a); (4, 4) )3]+

+ Q (a; ) (4 t 4; )(4 ~
4

~ ) + b, ) (4 t 4
~ )(4 ~) 4 ) )

+ [c,& (4, 4& )(4&~4& )+ H.c.]),
where all the coupling constants are real, so that
CP invarianee holds at the Lagrangian level. We

assume the minimum to be at

(12)

as required by charge conservation. Since only
relative phases are physically meaningful, we set
8, =0. From (11) and (12) one obtains the follow-
ing stationarity conditions

1 2 1 2 1 2 1
m, '+ a„v,'+ 3 a„v,'+ 3a~3v, '+ 3b„v,'+ 3b„v,'+ c„v,'cos28, + c„v,'cos'(8, —8,) = 0,

1 1 2 1 2 1
+ 3 + 3a13 1 + 3a33V3 + 3 bg2 g

+ 3b23 3 + c12vg Cos(28') +C33V3 Cos(283) = 0

1 2 1 2 1 2 1
m3 + a33v3 + 3a~3v~ + 3a33v3 + 3b~3v~ + 3 b33v3 + c~3v~ cos2(8~ —83) + c33v3 cos283 = 0,

c»v, ' sin28, + c» v, ' sin2(8, —8,) = 0,

c» v, 'sin2(8, —8,) —c» v33sin283 = 0,

(13)

We now classify the various solutions of (13), ac-
cording to their CP transformation properties.

(a) CP-conserving solutions. These correspond
to

with n, m integers. It can be easily verified,
following arguments entirely analogous to those
leading to Egs. (9) and (10), that these solutions
are CE conserving.

1 D„D„D„D„
2 D 2 D D12 13 23

D D D )i'
23 13 12~

(15)

where D;&=c&& v v&'. Since in general 28, +n7t,
this solution leads to spontaneous CP breaking.
In order that this solution exists, the following

l

(b) CP-violating solution. Fortunately, there
is another solution of (13), namely,
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inequalities have to be satisfied:

[ D„D„[& [ D„D„[+ [D„D„),
[ D„D„[& [ D„D„[+[D„D„),
I D13 121 I D18D28 I I 12D23 I

(16)

HI. INTERACTION OF HIGGS BOSONS
AND FERMIONS

The quark Yukawa interactions are still given

by Eq. (2), since the third Higgs doublet does not

couple to quarks. From (2) and (12) one obtains,
after spontaneous symmetry breaking, the follow-
ing mass terms:

~2 t&iL("1 iI)e ' IR+ iLv2 ii)&IR) ~

leS

These relations have a simple geometrical inter-
pretation: The three quantities )D»D23), ) D»D»),
and (D»D» [ should form a closed triangle. In the
Appendix we show that if V(4 ) is bounded below
and if we assume all D, &

to be positive, then the
CP-violating solution is the absolute minimum of
V(C').

mg

ms

m,

with the generalized Cabibbo matrix given by
Oc = (OL) 03L. The reality of Oc guarantees that
the vector gauge interactions conserve CP, for an
arbitrary number of quark generations. It has
been previously shown' that this result is much
more general and applies to any model based on

SU(2) xU(1), provided one conforms to NFC and

spontaneous symmetry breaking. We now ex-
hibit the Yukawa interactions with the charged
Higgs boson. Using (2) and (19), one obtains

I+
Z(P') = W2 (2&0~M, d

1

I+
-u„M,O~ d ' +H. c.),5~

where Qi'= e 'ei g and M„, M3 are diagonal
matrices:

As noticed before, ' by making a phase redefinition

4ej
+gB e +gk (18)

iL ( L )iI dIL & iR (OR)iI IR

+iL ( I)iI IL& 8 iR ( R)iI IR

The weak charged current is then given by

~pL=&iL &i (Oc)iI dIL

(19)

(20)

one obtains real mass matrices, which are diagon-
alized by the usual biorthogonal transformations:

' (22)

There are three charged" Higgs states. One
component 6' remains massless and is just the
Goldstone boson which is absorbed as the longi-
tudinal component of O'„'. The other two compo-
nents H~ acquire mass and remain as physical
charged scalars. In order to find their Yukawa
interactions, we analyze next the Higgs-boson
mass matrix. From (11), (12), and (13) one ob-
tains the following mass matrix in the basis of
@I.

1, (X„+X„)
V~

1 (x„-i&)
V~V~

(X„+iY) — (X„iY)-1 . 1

V~V~ V~V3

1 (X„+X„) — (X„+i 1')1
V~ . V2V3

(23)

1 . 1 . 1
(X,8+iV) — (X„—iY) 2 (X„+X„)

V~V3 V2V3
"

V3

where

Xii —[ 2~iI+ ciI cos2(8i —8I ) vi vI2] (24)

I

The Higgs-boson mass matrix is diagonalized by
performing a unitary transformation

'sin28

= —c13v1' v 3' sin2(81 —88)

H+, =UH

t
3

(26)

= -c»V, 'V3' sin26I3 . From (23), one obtains by inspection
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Ej=(d„M O U )(u„M„O d ) (30)

1
G ——(v~Q~+ v2 $2+ v3$3 ),v

where v'=+v . By appropriate choice of the
H& phases, the matrix U„assumes the convention-
al Kobayashi-Maskawa" (KM) form, with the first
row and first column real. Two of the KM angles".
8, are deteimined by (26):

(v 2+v 2)&/2
sin8, =

(28)
V3

~V2 +V3 g

Similarly, sin8, and the CP-violating phase 6
can be determined in terms of the parameters ofI„. Using (21) and (26), one obtains the quark
interactions with the physical Higgs boson H, .
Note that since the generalized Cabibbo matrix
O~ is real, the only CP-violating phase comes
from U„. Exchange of charged Higgs bosons
leads to an effective Fermi interaction, whose
CP-violating component is given by

c~ m 2 2
Im

( 4 4)A++( 4 4)A H,

(29)

with

the KM-type mixing angles 0,- and the CP-vio-
lating phase 5. If one assumes that only one of
the Higgs bosons is relatively light (i.e., m„'
«m„'), expression (34) becomes

(35)

IV. CONCLUSION

We have shown how a minimal model with spon-
taneous CP breaking and NFC can be realized in
the context of a SU(2) xU(1) gauge theory. In par
ticular, we have verified that there is a solution
for the minimum of the Higgs potential which leads
to spontaneous CP violation. The generalized
Cabibbo matrix is real, and there is no CP vio-
lation in the manner of Kobayashi-Maskawa. "
The breaking of CP invariance is soj.ely generated
by Higgs-boson exchange and can be character-
ized by a unique Phase for an aribtxary number
of fermion generations.
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(31)

(32)

(33)

I P1+22++ 31+32 ~

m'=-'(m '+m ')
H1 H2

a'=-,'(m„2 -m„'),
where mH, are the charged-Higgs boson masses
and u, &

denote the elements of uH. Using the fact
that u„ is unitary, it follows that 4, = —v, v, /v„
and 4, is therefore real. The CP-violating part
of the amplitude comes only from the A. term,
and vanishes in the limit of degenerate Higgs-
boson masses. " Computing the imaginary part
of A from (23), (26), and (31), one finally ob-
tains for the CP-violating component of the Fer-
mi interaction V=U(v, )+IV(v„8,), (A1)

APPENDIX

We show here that there is a range of the free
parameters of the Higgs potential for which the
CP-violating solution (15) is indeed an absolute
minimum of the potential. We do this by proving
the following theorem:

Theorem. If the function V(4) is bounded below
and if all the c,&

are positive, then the CP-vio-
lating solution given by Eq. (15) is the absolute
minimum of V(@).

Proof. From (11) and (12), it follows that
V(v„8, ) can be written

where

vv,
1 2

(34)
where U depends only on v, and 8'is given by

IV= 2 I c~2v~ v2 cos2 8~+ c~3v~ v3 cos2(8~ —8~)

+ c»v2 v3 cos28~]

g2
sin'g =

&'+ (4v'/v, 'v 'v ')Y''

and ~' is a quadratic form of the X,&
. Note that

in expression (34), Icos(( can vary from zero to
one, independently of the v, It is clear that
~~ can alternatively by expressed in terms of

In the case of the CP-breaking solution, one ob-
tains, using Eq. (15),

»v4+»» v4+»» v&~ (A3)
(c c c c c c

4& c„ 1
C13

2 3

If the function V(4) is bounded below, one of its
stationary points has to be an absolute minimum.
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It can be easily shown that if c,-& & 0, none of the
solutions corresponding to (13) can be an absolute
minimum. Consider, for example, the stationary
point

at any point with v =v',.", 0, t 0. Consider another
stationary point, corresponding to (13):

V")=V(v'." e =0 e =-.'-s)

1c (o) y(v(0) 0 g ())

= U(vo)+ —c v(0)2v(0)s
12

+ 1C V V(o)2 + —C V(o)2V(o)2
2 13 1 '

3 2 23 2 3

= U(v()) )+ )c v())25(l.
2 12 1 2

(1)2 (1)2 1 &1)a (1)2
2 13 1 3 2 23 2 3 ~ (A5)

It is clear that for c,&&0, V"' cannot be the ab-
solute minimum, since V assumes a lower value

It turns out that V assumes a lower value when

v,. =()( ) and 8; assume the values of Eq. (15).
This is seen by observing that

(c v*v ——c v'v' —-c v'v')+ — '* "-v + " '-' v'+ ""v')2 1 I C C C C . C C
2 12 1 2 2 13 1 3 2 23 2 3 4 C C23 13 C12

1
12(cls") +css "2 ) 23 )3"s ~

4C12 C13 C23

The same argument can be applied, mutatis rnutandis, to the other CP-conserving solutions-
given by (13). Therefore, we conclude that Eq. (15)corresponds to the absolute minimum.
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