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Pionic corrections to the MIT bag model: The (3,3) resonance
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By incorporating chiral invariance in the MIT bag model, we are led to a theory in which the pion field is coupled

to the confined quarks only at the bag surface. An equivalent quantized theory of nucleons and 6 's interacting with

pions is then obtained. The pion-nucleon scattering amplitude in this .model is found to give a good fit to
experimental data on the (3,3) resonance, with a bag radius of about 0.72 fm.

I. INTRODUCTION

The problem of understanding pion-nucleon
(wN) scattering in the energy region of the (3, 3)
resonance has had a long and fascinating history.
Chew" showed that a field theory which involves
pions and nucleons interacting via a Yukawa
coupling could be used to explain the appearance
of this resonance in mN scattering. The Chew
theory consisted of summing (within the static
model) the series of graphs of Fig. 1. Chew and
I ow' showed that a resonant scattering amplitude
could also be obtained by solving a nonlinear inte-
gral equation (the Low equation) that was the fore-
runner of dispersion relations (e.g. , Refs. 4 and

5). An expansion of the Low equation in powers of
the coupling constant is the same as summing the
series of Fig. 1, but it was also pointed out that
there are an infinite number of solutions of the
I ow equation. ' There has been much recent in-
terest in pion-nucleus scattering as a probe of
nuclear structure. The consequent need to under-
stand ~N scattering in a very precise fashion has
led to a recent series of very sophisticated appli-
cations and modifications of the original Chew-
I ow theory. "

Shortly after the work of Chew and I,ow a vast
number of mN resonances and other new par'ticles
were discovered. In order to find some order
among all the particles Gell-Mann and Ne'eman'
introduced the eightfoM way. In this model the
mN P33 resonance is essentially a stable particle
(the &), which consists of three quarks. The
corresponding wN t matrix can be calculated by
defining Fig. 2(a) to be a K matrix. In this way
the t matrix includes all the self-energy graphs
of Fig. 2 with an on-energy-shell pion. There have
been several recent calculations" "of ~N scatter-
ing using models of this kind.

The observed rN resonances can therefore be
"explained" either in terms of pions and nucleons

(Fig. 1), or in terms of 4's that consist of quarks
(Fig. 2). In the present work we unify these ap-
parently contradictory views of the (3, 3) reso-
nance.

In our model, as in the work of Chodos and
Thorn, " the Stony Brook group, ""and Jaffe,"
the baryon is regarded as consisting of three
quarks confined in a bag that is surrounded by a
cloud of pions (hence the name cloudy bag). We
use the MIT bag model, ""which has been very
successful in describing hadronic structure.

In its simplest form the MIT bag model gives a
degenerate nucleon and &, consisting of three
massless up or down quarks moving freely in a
spherical region of space of radius A, called a
bag. 'The confinement of the quarks is guaranteed
by demanding that no color-electric or -magnetic
fields penetrate the surface of this region, that
the quark wave functions are zero outside the bag,
and that the pressure exerted by the quarks on the
bag surface is balanced by an external pressure.
The radius of the MIT bag is typically of the order
of 1.2 fm, which yields an average nucleon and 4
mass of about 1.1 GeV. This degeneracy is re-
moved by including the color-magnetic interaction
between the quarks —essentially a spin-spin force.
For a summary of the many achievements of this
model we refer to several recent review arti-
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The MIT bag model raises a number of fascina-
ting problems when looked at in the context of
nuclear physics. In particular, there has been
little effort to include the coupling of the pion to
the nucleon in the MIT model, even though it is
well established that the long-range part of the
N-N force is given by one-pion exchange. " Even
given some NN~ coupling, it is rather difficult to
see how two nucleon bags in a nucleus, which
would be touching, could easily interact through
pion exchange. There is also the controversial
question of the stability of nuclear matter against
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FIG. 2. The 6 model. The wiggly line is the bare h.

FIG. 1. The Chew series. Nucleons are represented
by solid lines and pions by dashed ones.

percolation" if the nucleon bag h6,s the MIT radi-
us.

In an attempt to overcome these objections,
Brown and Rho (BR) showed how the ideas of
PCAC (partial conservation of axial-vector cur-
rent) and the "Princeton bag"" could be used to
derive an NNw coupling. They obtained an equiva-
lent Yukawa theory in which the parameters. of the
nucleon and the ENw vertex could be related to the
bag-model parameters. At large internucleon
separation, this automatically yields the usual
one-pion-exchange force. In an earlier report"
we extended the BR model by observing that the
equivalent Yukawa theory should include both nu-
cleon and & bag states, and the appropriate inter-
action vertices.

In the present work we derive (Sec. II) the cloudy
bag model in a much more rigorous way, by im-
posing chiral invariance on the MIT bag model.
One advantage of the new derivation is that one
obtains exact expressions for the NNn, ANn, and
44m vertex functions and coupling constants in a
very straightforward manner.

In Sec. III formal expressions are obtained for
the nucleon wave function and the mN scattering
amplitude. The complete renormabzation pro-
cedure is also discussed in some detail. An ex-
plicit expression for the wN scattering amplitude
in the P» channel, based on this formalism, is
obtained in Sec. IV.

Numerical results are presented and discussed
in Sec. V. There are two parameters in our mod-
el: R, the bag radius, and ~, the difference be-
tween the renormalized ~ and nucleon masses.
The quantity u~ is not necessarily the resonance
energy (293 MeV) because the terms of Fig. 1 con-
tribute to nN scattering. We find that the best fit
to experimental data is obtained with R = 0.72 fm
and ~~= 294 MeV. With these parameters the ef-
fects of the pionic terms are relatively small:
the 4 terms contain about Sly of the strength of .

the resonance. However, the pionic terms do
contribute a non-negligible background. If they
are completely neglected, but otherwise the same
parameters are used, the position of the calculated
resonance is shifted upward by 50 MeV.

Our results are summarized and plans for fu-
ture work are discussed in Sec. VI.

As demonstrated by Chodos and Thorn, " it is
possible to incorporate both the Dirac equation
for massless quarks and the two-boundary condi-
tions of the MIT bag model in a single Lagrangian
density

S= d4xS x (2 2)

be invariant under the variations of the fields and

bag surface

q, (x)-q, (x)+ 5q, (x),

q, (x)-q, (x)+ 5q, (x),
8„-8„+&4,,
&,-&, -Cn &&, ,

(2.3a)

(2.3b)

(2.3c)

(2.M)

(where n" is an outward normal to the bag sur-
face), we find

iyq, (x)= 0, x c V

iy nq, (x)=q, (x), x cS

(I = -—n I(~ tT.(x(q.(x})=P, E ES(
( a

(2.4a)

(2.4b)

(2.4c)

(where Pn is the Dirac Pressure exerted on the
bag surface).

The first boundary condition (2.4b) guarantees
that there is no current flow through the bag sur-
face, and the nonlinear relation (2.4c) expresses
conservation of momentum at the bag boundary.
Taking the static limit fn= (O, r)], we find that Eq.
(2.4b) leads in the familiar way"'" to a set of
quantized energy levels for the quarks, and (2.4c)
provides a relation between 8 and R.

A. Chiral symmetry

Thus far we have been able to confine the quarks
and guarantee energy and momentum conservation.
Unfortunately, the necessary reflection of the
quarks at the bag boundary violates chiral invari-
ance, and the axial current associated with (2.1) is
far from being conserved. Formally, this is
equivalent to the observation that under the global
chiral transformation

Z(x) = —Q q, (x) 8'q, (x) B-8„--,' Q q, (x)q, (x)&, .
(2.1)

In this equation q, (x) is the usual Dirac field
(color a), 9 a phenomenological energy density,
8„afunction which is one inside the confinement
volume and zero outside [8„=8(R -r) in the static
case], and finally &, is a surface 5 function. By
demanding that the action
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q, (x)- q, (x)+ -ey, q, (x)

the third term is not:invariant, viz. ,

Z(x)- Z(x) --,' Qq, (x)i~&, q, (x)&, .

(2.5)

(2 6)

formation

q, (x)-q, (x)+ —7 eZ, q, (x),

7(x) -7(x) —ef.

(2.11a)

(2.11b)

Indeed, as Jaffe" has observed, the linear boun-
dary condition (2.4b) is not unique in guaranteeing
vector current conservation. The most general
condition which guarantees this is

Associated with this invariance, of the Lagran-
gian there is, of course, a conserved axial cur-
rent. This can be shown in the standard way, "to
have the explicit form

iy nq. (x) = e' "'q.(x), x cS (2.7)
Qu —

& qp~y 7q g+
a

(2.12)

Zc&&&&(x) g q (x ) iraq (x ) B 8
Q J

x &ig'Ã(&)r5lfq

a

+-.[6„4()][8"4( )] (2.8)

(where the subscript CBM means "cloudy bag
model" ). Notice that for the moment the isovector
pseudoscalar field Q(x) is massless and that Eq.
(2.8) reduces to (2.1) when P is zero. If one now

performs a variation on the p field as well as the
variations (2.3), one obtains the field equations

and our solution above corresponds to the choice
n=Q.

A very natural way to make up for this lack of
invariance is to introduce a compensating pointlike
pseudoscalar field &t&. Of course, this will even-
tually be identified as the pion, and we must
therefore exclude the pion from those states des-
cribed by Z(x). Since our main interest is nuclear
and intermediate-energy physics, we shall consid-
er only two quark flavors, up and down. The new

Lagrangian density is

Of course, in the rea, l world we want to identify &t

as the pion field. If we add a mass term
[-0m, '&t&'(x)] to the Lagrangian density (2.8), in-
stead of the current (2.12) being exactly con-
served (B„A0=0), we find (since 9 8 "&t&=m, '&t&)

B,A~ =fm, 'y. (2.13)

a= d'x T"x, (2.14)

where

700(x) Q SOq gg0080@

, s(s.t,)

If we define && as the usual field conjugate to Q (s
= &&0&t&), Eq. (2.14) (with a pion-mass term) be-
comes

(2.15)

H= d'x — qt8 q, +8 8„
a

his is exactly the form required for PCAC but
derived at a somewhat deeper level than in the
original work of Gell-Mann and Levy. '

Since we shall eventually deal with a Hamiltonian
formulation of pion scattering, we now construct
the Hamiltonian as

i&q, (x) = 0, x c V,

i& nq. (x)=e*'0&"&" «q. (x), x'cs,
(2.9a)

(2.9b) q ~~v er5lfq g

(2.9d)

Once again it is easy to show that the linear
boundary condition (2.9b) implies current conser-
vation at the surface, viz. ,

(2,10)q, (x)iy nq, (x)=n'J'(x)=0, xcS.
The new equation (2.9d) shows explicitly that the

P field is free except for a source term at the
bag surface. Of course, the major reason for in-
troducing Q(x) is that the new Lagrangian density
Zc0~(x) is invariant under the global chiral trans-

8=-—,
' n S g [q,(x)e"o'"'"' ~q, (x)], x cS, (2.9c)

a

s'y(x)= ——gq, (x)e"""'"0«7y q (x)~„vx.

+ 0 (7& &&+ VQ V&t&+ m 0&t&0) (2.16)

1—e&~ 0&x&r, «q, ~ q,0~q, ~ +q &. &t&(x)q q0~
(2.17)

If we also neglect the second term in Eq. (2.17)

Up to this point our derivation has been exact.
It may be possible to work directly with Eq. (2.16),
and in the classical case we have made some pro-
gress which will be reported elsewhere. In the
present work we intend to deal with a. quantized
pion field, and to make the calculations tractable
we shall assume that the pion field is rather
small. In that case, we can expand the exponen-
tial in Eq. (2.16) as
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in the linea, r boundary condition (2.9b), the quark
fields will correspond to exactly the usual MIT
model. Then we can write Eqs. (2.16) and (2.17)
in the form

pions) of the original MIT bag model. "'" Consider
the complete set of colorless baryonic bag states
~o.'). In this representation Eq. (2.18b) becomes

H=Hwz+H, +Hi t

where

Ha, = d'a(- g qra q, a)H „q,

H~=g dx m 7+7' ~ V +m~

(2.18a)

(2.18b)

(2.18c)

(2.19)

where m„is the mass of the bare bag state.
Next we examine H, which is simply the Hamil-

tonian for a quantized, free pion field. The eigen-
states of H, are described in terms of pion crea-
tion (at) and destruction (a,) operators. Then the
free quantized field (t( is given by

H. ,=— d' q,y, ~ q, &, . (2.18d)
(2.20)

Qur procedure is to obtain the eigenvalues and

other observables of H. To do this we consider
the sum (H, ) of HM, T and H, to be an unperturbed
Hamiltonian, and work with matrix elements of
H, in the representation of unperturbed direct
product states. Let us examine the individual
terms of Eq. (2.18a). The first, H»T, is simply
the Hamiltonian describing the hadrons (excluding

and

H, =Q fdkraqarrqad. (2.21)

The interaction term in the Hamiltonian Eq.
(2.18d) is particularly interesting in this represen-
tation, as nondiagonal matrix elements are not
necessarily zero, viz,

H, =Q ~a)(((
~ 2

a fd'» Zq. (a)&',qq. (a)q(a(a, (()
e, g 0

(2.22)

(2.23)

where v is a spin and isospin wave function,
(=—(d, ,) = 2.04, and R is the bag radius. The nor-
malization constant N is given by

N'=R 'IL(d'+ ~/[2(cu-1)]j. (2.24)

If we now substitute the usual expression for the
quantized pion field from Eq. (2.20), the N¹
term in H. , becomes

H" '= ~N)(N~(27') ~ Q .~2(v a-„+v"Sa )
dk

To be more specific, not only will the matrix ele-
ments corresponding to NN(T and 44w (o(=P =N or
4) vertices be defined by Eq. (2.22), but there will
also be hlVm and Ã4m vertices.

These interaction vertices can be calculated
explicitly using the lowest-order bag-model wave
functions. The latter are constructed in the usual
way" in terms of the single-particle quark wave
functions

a."=— '
(N Pir, kr, r N). (2.22)

a

(N gir, .ka, r N) = —,
' aarir krra„,

a
(2.27)

where v„is the nucleon spin-isospin wave func-
tion. At last we have an NN vertex of the usual
form

v",/=i(4w)' 'I' "."')u„(k)v~o" kr,v„, (2.28)

where the vertex function (normalized to unity at
k=0) is

u„(k)=j,(kR)+ j,(kR) = 3j,(kR)/kR,

and the coupling constant is

(2.29)

(2.30)

:: Using the explicit nucleon wave functions, one
finds that the quark spin and isospin operators can
be eliminated in favor of the nucleon operators.
That is,

where

(2.25)
It is interesting to notice that this value off„'"„,

is quite close to the observed NNw coupling
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strength. Let us use the Goldberger-Treiman re-
lation to replace f ' on the right of (2.30}. Then
we obtain

(2.31)

The coefficients in Eq. (2.32) are related to the
transition spin and isospin operators (S and T—
see Ref. 10) by the equation

(o)

v -"=f(4m)' ' "'
u~(k)@AS kTqv„. (2.33)

This coupling constant can also be expressed in
terms of the parameters of the bag model. How-
ever, since the coupling occurs only at the surface
of the bag the details of the wave functions are ir-
relevant, and [f~+,/f„'ON), ) takes the SU(6) value.
For the same reason, if the nucleon a,nd 4 bag
radii are the same, the form factors u„(k)and

u~(k) will be identical:

u„(k)=u, (k) =q,(kII)+q, (kII ) . (2.34)

These form factors provide a very natural high-
momentum cutoff for the theory [M(k)-k ' as k

OO ]
The practical problem with Eqs. (2.19) and

(2.22) is that in principle there are an infinite
number of terms in the expansion. In the present
work we shall be concerned with the energy region
where, at most, one real pion is allowed. Highly
excited bag states should be suppressed by large
energy denominators. 'Therefore, we shall trun-
cate the expansion after n equa, ls N or 4.

B. Summary of the cloudy bag model

Given the bag model of baryon structure, we
have shown that from considerations of chiral in-
variance one is led to include pion coupling to the
quarks at the bag surface. In our model the sys-
tem is in fact described by the Hamiltonian

(2.35)

and clearly the agreement is rather good. Note,
however, that both f „(~„,and g„will be affected by
higher-order pion-quark interactions. For ex-
ample, the mNN coupling constant will be renor-
malized (see Sec. III), and pion cloud contribution
must be included in calculating g„.

By an analogous procedure one can also esta-
blish the form of the ANm interaction term

H, '=Q(2v) i fda'v', a;+v";; ,.a'i. )l &)(&(+&.L.
(2.32)

m~ 'o.'n+ ~ a'a
0 kk k~ (2.36)

(2.38)

Finally we can write interactions v, ~ in terms of
the microscopic form factors u„(k),u~(k) of Eq.
(2.34) as

(2.39)

4 g (o)
V&N I""'u (k)r S k.k 2~ mk

(2.40)

The ratio of (f~('„),/f ('„),)' can be obtained from an
evaluation of the appropriate bag-model matrix
elements. Because the pion interacts with quarks
at the bag surface the ratio is the same as for the
SU(6) model, "i.e. ,

25
' (2.41)

It is convenient to group the hadronic creation
and annihilation operators with the interaction
strengths v, so that

AN NN Nf~

y~ bN g~N

(2.42)

(2.43)

and so on. Then the interaction Hamiltonian be-
comes

a, = V, ~ak+H e. . (2.44)
~, seer, ~) k

This model is a combination of the Lee model"
and the Chew-Low model. Note that whereas the
free Hamiltonian H, has two stable particles,
since the observed P33 resonance is unstable, H
has only one discrete eigenvalue.

In concluding this section we wish to add one
caution. We are in no way attempting to solve the
bag model with pion coupling self-consistently as
has been done by Chodos and Thorn" and by lento
et al." (This because we neglect the influence of
the pion field on the quark wave functions. } We
simply assume that a self-consistent solution

&, = Q [(v, ')o"pa, +H.c.]. (2.37)
0'~8, k

Here o' (& ) and P (P ) are annihilation(creation) op-
erators for static nucleon (N) or 6 bag states of
baremassm, -=m, ' or m,' '. The boson opera-
tors ak and ak obey the usual commutation rules,
and the sum over k is a formal way to represent a
sum over pion isospin labels and an integral over
pion momenta



PIOÃIC CORRECTIONS TO THE MIT BAt MODEL:. . .

exists, and then examine its properties in a
somewhat phenomenological way. It is neverthe-
less very interesting that the bag radius which we
find, namely R=0.72 fm; is within the range of
solutions (0.5 ~R ~ 1.5 fm) that the Stony Brook
group has reported.

A. The physical nucleon

In developing perturbation expansions it is use-
ful to use energy denominators involving physical
nucleon masses. This is done [following Sec.
XII(d) of Schweber" ] by introducing a mass shift
into H„

(m —m,' ')n'n, (3.1)

where m,' ' is the bare (i.e. , bag) mass, and m
the mass of the physical particle. [The meaning
of m~ is made clear in Sec. IV—see the discussion
near Eq. (4.37).] Thus we find

H =Hp+ H

Hp=Hp+ 5m,

Hr =Hr - &m

(3.2)

(3.3)

(3.4)

and H, acting on the bag state (lN) or
l

A&) gives
the physical mass

H, ln)=m ln). (3.5)

Notice that the completeness relation for baryon
number one is

'=~
j &&nj+~ l

k&&n kl

III. FORMAL DEVELOPMENTS

The effective Hamiltonian (2.35) is a combina-
tion of two textbook models, the Lee model and the
Chew-Low model. In this section we extend
standard treatments (see Refs. 31 and 32) of the
Chew-Low model to include nucleon excitation.
The key results are (i) an expression for the wave
function of, the physical (dressed) nucleon; (ii) an
exact expression for the mN scattering amplitude,
which is the basis for the developments of Sec. IV;
and (iii) a proof that this scattering amplitude
should obey the Low equation. (In Sec. IV we show
that our solution does indeed obey the Low equa-
tion)." In view of point (iii), the CBM is an ex-
plicit (and we feel physically well motivated) ex-
ample of the well known result that the Low equa-
tion does not have a unique solution. '

(3.7)

where

H, jn& = E„jn&.
For example, if jn& is

l
A, k&, the energy E is

(m~+ &~). (The kinetic energy of the A's and nu-
cleons is neglected in our treatment. )

'The eigenstates of H correspond to the physical
nucleon N&, and the set of scattering states
lN, k&, jÃ, k, k'&, and so on, corresponding to an
incident pion of momentum k scattering from a
real nucleon [total energy (m„+co~)], and two in-
cident pions of momenta k and k' scattering from
a real nucleon [total energy (m„+&~+ co~,)]. No-
tice that whereas H, (HO) has two discrete eigen-
states, H has only one. The bare 4 becomes a
resonance in the pion-nucleon system when H, (H, )
is turned on.

The physical nucleon satisfies the equation

(3.8)

H lN) = m„lN) . (3.9)

To understand what are the components of jH& we
rewrite lN) as

jN&=Z"'lN)+Ale&, (3.10)

where A jy& is to be determined —and the projec-
tion operator A is given by

(3.11)A =1-lN)&Nl .
Thus A

j
y& includes the components other than the

bare nucleon. To obtain A
l
X) use (3.2), (3.5), and

(3.10) in (3.9) to find

Ajx&=( .-H. ) 'H, lN& (3.12)

A useful integral equation for lN) may be obtained
by using (3.12) in (3.10):

lN) =Z'/'jN&+Z'/'A(m~ -H ) 'Hz lN) . (3.14)

However,

H, lN&=(H, —6m)lN&

v", ' Xk + e", '* ~k —m„-m, ' X,
(3.15)

lN) =Z' lN)+ A(m„-H,) H, lN&. (3.13)

[In obtaining (3.13) the relationship A'= A has been
used. ]

To appreciate (3.13) let us itera. te (3.13) and

keep terms of first order in Hr:

+ Z ln, k, k')&n, k, k'l+"
+g ltgA

or in a shorthand form

(3.6)

so that (3.14) may be written as

~» irk ~ t~k
jN& Zl/2lN) Zl/2 Q

k 0 mb. 0 N ~

(3.16)
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FIG. 3. The physical nucleon Ifrom Eq. (3.16)].

Equation (3.16) is illustrated in Fig. 3. To the
stated order, there is a probability Z,

SNNVNN+ Q ~V 4N
g-j y

k k k k 3 ]7
(m~+ (k)2, —m2()

that the physical nucleon is a. bare three-quark
state. In addition, there is some probability that
the nucleon looks like either a nucleon or a & bag
with a pion "in the air."

Finally we note that the mass shift can be ob-
tained by considering the matrix element
(NiHz iN), which is zero because

(NiH, iÃ)=(NiH H, iN-& (3.18a)

—o- &N iH1 —6m„iN&, (3 18b)

where the last equation is obtained from (3.5).
The use of the relation (N iN) =Z'~' in (3.18a) then
gives

FIG. 4. Nucleon and 6 self-energy terms.

The boundary condition is imposed by writing

(3.22)iN, k&. = a', iN&+ iX&. ,

where
i
X), has only outgoing waves in the asymp-

totic region. As usual this amounts to letting E
become (E+iz) and taking the limit e- 0+.

By following analogous steps to those in Sec.
IIIA, one can find an integral equation for iNk&, :

iN, k), = a', iN)+ (m„+(d, + iq -H) g V, ()
iN& .

0' e 06 Qr ~ 4 )

(3.23)

For ingoing boundary conditions we simply re-
place +i& by -ie, so that the S matrix is

S(N'k', Nk) = (N'k' iNk),

-2vttt(tv -tv, ) (N'2' Q V, ,').
(3.24)

6m„=Z-'~'&N

To the lowest order in H~, we find

(3.19) Therefore the exact expression for the ~N t ma-
trix in the CBM is

g(vt"eP* vt'vt"'
) (3.20)

t(N k'Nk)= (N', 'k', Q V;t N). (3.25)

which corresponds to the first two self-energy
diagrams shown in Fig. 4(a).

'The operator g () V~~ is simply related to the pion
current, i.e. ,

B. Pion-nucleon scattering
[H, a', ] —(u, a', =Q V", a, = (3.26)

Following Wick,"we suppose that the scattering
wave function for a pion (k) incident on a. nucleon
leading to outgoing scattered waves is iN, k)..
For this case the Schrodinger equation is

To obtain the Low equation for any other model
simply replace Jk by the corresponding operator
for the other model. Equation (3.25) is used to
obtain the mN phase shifts in Secs. IV and V.

H
i
N, k).= (m„+&,)

i
N, k).. (3.21)

C. The Low equation

If we now use the integral equation for (N'k'i in Eq. (3.25) we find

t(N k , Nk) (¹ QV t '.'N)v(N =Q(V ) (vt 'v .— tt) '
QNvV "N), (3.27)

where the relation [J~,a~.]= 0 has been used. To simplify the quantity a„,iN) consider Ha~. iN&:

H a, .iN) = a, , m„iN)+ [H, a~.] iN) .
Using the definitions of H (2.35) and V~N" [(2.42) and (2.43)] we find

a, ,
i
N) = (mN —&~ —H) ' Q (V', . ) iN& .

(3.28)

(3.29)

Using (3.29) in Eq. (3.27) gives
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t((('O', Nk)=(¹ QV,"'(m~ -~, H(' Z-(('p)~ N )
0( g3 pv

+ N' V, , ~ m„+(d,, -H+ia ' V„""N (3.30)

Equation (3.30) is the I.ow equation, as can be seen by inserting a complete set of eigenstates of H {c.f. ,
Eq. (3.6)] with ingoing boundary conditions

in) &ni.
it) &

Using Eq. (3.31) in (3.30) we find

(3.31)

(N'IZog V„ In) (nl+„„V~."IN) (N'IP~(((Vq. ) In) (nE „Vq"IN)
f(N ),Ni}=

ln& . mg —~a' +n my+ (dp' En+
(3.32)

However, from Eq. (3.25) (and its analogs for
more incident mesons), this is simply

t(¹k', Nk)

t~ ¹k, n t n, Nk' t~ ¹k', n t n, Nk

mN ~ Q)~ p ~ @At mN + ~i E„-+t6 „

(3.33)

which is the familiar form of the I.ow equation.
In order to make (3.33}tractable some standard

approximations are made. First, only the nucleon
and one-meson-nucleon states are included in the
sums over n. Thus inelasticities in the mN ampli-
tude are ignored. This should be a reasonable ap-
proximation for the (3.3) resonance region as the
phase shift is real up to pion laboratory energies
of about 500 MeV. We also keep only the nucleon-
pole contribution in the first term on the right-
hand side of. Eq. (3.33). Since a solution of (3.33)
that includes complete crossing symmetry has
never been found, this seems to be reasonable for
an initial study of our model. With these two ap-
proximations we find

,„-,„-,g &
' Z„„;." -)& - Z„„;"

N"

g f'(N "p,N'0')t(N "p,Nk)

(3.34)

The zero meson term arising from the second
term of (3.33) has been ignored because it gives
no contribution to scattering in the (3, 3) channel.

IV. THE P33 RESONANCE

With the theoretical basis described fully in
Secs. II and III, it is relatively. straightforward to
derive equations for wN scattering in the (3, 3)
channel. Our proof relies heavily on the renor-
malization techniques of Dyson34 as applied by
Chem' to the static model of the rN system. We
briefly review Chem's arguments in Sec. IVA, be-

fore proceeding to the analogous treatment of the
CBM in Sec. IVB. We show that with a small
number of very reasonable assumptions a simple
formula for the F33 scattering amplitude can be
obtained.

A. The Chew model

This model is defined by our Eqs. (2.35)-(2.44),
provided all mention of the & is omitted. 'That is,

Hc„= ~aa+m N N+ V a +V a, , 41

where V~ (=V~") includ—es a phenomenological
(sharp) cutoff to eliminate ultraviolet divergences.
Following Dyson, Chem grouped together all self-
energy graphs (see e.g. , Fig. 5) as Z(E). The full
nucleon propagator S(E) is therefore

S(E)= [E m, —Z(E)]-&. (4.2)

m= m, + Z(m) . (4.4)

(o)

r V'

I I j (

(c)

FIG. 5. Some contributions to Z(E) in Chew's model
(Befs. 1 and 2).

At this stage it is customary to assume that the
theory makes sense. That is, if Z(E) was evalua-
ted exactly, to all orders, that S(E) would have a
pole at the nucleon mass. In practice, one can
inly evaluate the l.omest-order terms, so that it
is helpful to impose this pole on the approximate
solution. Thus one expands Z(E) about the real
nucleon mass m as

S(E)= (E —[ma+ Z(m)]+ (E —m)Z'(m)+ Z (E)].',
(4.3)

where Zs(E) vanishes at least as fast as (E -m}'
at E=m. Clearly we must now identify
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S'(E) =Z 'S(E), (4-7)

and for consistency a renormalized coupling con-
stant

f' =Z,f (4.8)

As mentioned in Sec. III, Z, is the probability
that the dressed nucleon looks like a bare nucleon
and is therefore less than 1. Thus, as observed
by Chew there are two reasons for performing the
mass renormalization: (i) It leads to a simpler
propagator

If Z(E) was very slowly varying, Eq. (4.3) would
be simply S(E)= (E -m) '. Indeed the usual as-
sumption, introduced by Chew, is that higher-or-
der graphs such as Figs. 5(b) and 5(c) vary slowly
with energy, and therefore Z'(E) and Z (E) get
their major contribution from Fig. 5(a). That is,

Z(E) = Z(m)+ [Z„,(E) —.Z„,(m)], (4.5)

where Z„,denotes the self-energy contribution of
Fig. 5(a).

At this stage one has a choice. Since Z„,(E) and
its derivatives are all finite, one can work with
the propagator of Eqs. (4.3), (4.4), and (4.5), viz. ,

$(E)=((E —m)[1+ Z„',(m)] —Z„,(E)] '. (4.6)

However, it is more conventional to define a re-
normalized propagator

very nearly one in Chew's model).
With this renormalization, one has to calculate

fewer diagrams in studying mN scattering. Since
the renormal. ized NN~ coupling constant was rela-
tively small, Chew argued that an expansion in
powers off„'would make sense. The one addition-
al observation which he made was that the pole in
diagrams with only one pion in an intermediate
state would effectively lower it by a power f„'.
Thus each term. in the infinite series of graphs in
Fig. 1 is formally of order f„',whereas those in
Fig. 7 are of order f„'or higher, and are dropped

It is well known that the series of Fig. 1, with
f„'-0.08 and suitable choice of vertex function

v „(&)=t)(m —&), (4.12)

leads to the Chew-Low effective range formula,
and in particular to a resonance in the P33 channel
(see, for example, Ref. 36).

B. The cloudy bag model

This involves a very straightforward extension
of the theory of Sec. IVA to the more general
Hamiltonian (2.35)-(2.44), which was dictated by
our considerations of PCAC and the bag model in
Sec. II. The key results which we need are the
formal expressions (3.14) and (3.25) of Sec. III for
the physical nucleon and the mN scattering ampli-
tude. l

$'(E) = [E —m -Z, 'Zg, (E)] ', (4.9)
The nucleon

because as Chew demonstrated numerically this ip
very well approximated by

S'(E) =(E -m) ' (4.10)

for low energy pion scattering. (ii) Since Z, & 1,
renormalizing the coupling constant reduces its
magnitude, so that an expansion in powers of the
coupling constant is more convergent.

In this theory there is no pion coupling to a nu-
cleon-antinucleon pair, and therefore no renor-
malization of the pion propagator. 'Thus the only
renormalization remaining is the inclusion of
processes as in Fig. 6. As shown by Chew, this
leads to a redefinition of the coupling constant

(4.11)

If for clarity we retain only the two lowest-order
nucleon self-energy graphs of Fig. 4 explicitly,
and call the rest 2„'"o&(E)(HO=higher order), the
nucleon propagator will be

(E) [E mN) g Ã~&(E) P 91'&(E) g N)(E)]-i

(4.13)

The large number of virtual pions in+go&(E)
means that it will be effectively constant in the en-
ergy region of interest. Thus these terms will
shift the mass down, but [cf., the discussion near
Eq. (4.6)] have a negligible affect on the coupling
constant. Vfith this assumption the renormaliza-
tion can be carried out as before, with

Once again Z, &1, but the lowest-order contribu-
tion of Fig. 6(a) has only & of the effect in in-
creasing Z, that Fig. 5(a) has in lowering Z,—
that is Z, is significantly less than Z, (indeed Z, is

and

S„'(E) = (E —m„)',

f' =Z2f,

(4.14)

(4.15a.)

sr
/X

) & i r i l ) wl r& )

FIG. 6. Contributions to vertex renormalization.
FIG. 7. Typical higher-order irreducible diagrams

contributing to mÃ scattering.
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& '=[I+X' '(m)+Z' '(m)] ' (4.15b) t(E)=(v +U )+(v „+5)G,(E)t(E). (4.17)

Once again Z, is the probability that the physical
nucleon looks like the three-quark bag. (Techni-
cally it also includes the possibility that the nu-
cleon looks like a bag with mo~e than one virtual
pion, but, by assumption this is small. )

Here vcL (CL=Chew Low) is the Chew driving
term of Fig. 9(a), and v~ involves formation and
decay of a n bag [Fig. 9(b)],

(keg(o&(E)g (k) (4 18

with
The 6 S «&(E)= [E —m", & —Z„'o(E)]-&. (4.19)

As we have defined it, the phys'ical & is a reso-
nance in the wN P33 scattering amplitude. Thus
we are led to consider the series of diagrams
generated by the perturbative expansion of the
exact scattering amplitude (3.25). This is done by
using the formally exact expression for the wave
function ~N'k'), m'" = m'')+ Z'

0 5 HOs (4.20)

As the higher-order & self-energy terms
[&»&o(E)—see e.g. , Figs. 8(g) and 8(h)] contain
many virtual pions, they should be essentially in-
dependent of energy in the low-energy region.
Thus we can define

(X k) =a', ~l&t)Z"'+, a, ~zk) .

(4.16)

and hence

5 (o&(E) (E m&»&)-& (4.21)

As Eq. (3.25) represents the solution to the Low
equation, the correct solution of the linear equa-
tion (4.16) along with a solution of Eq. (3.10) for
the physical nucleon must yield a solution of the
Low equation. As we discuss below, our t matrix
is indeed a solution of the Low equation.

Some terms of order coupling constant to the
fourth (or lower) are shown in Fig. 8. Note that
the nucleon mass renormalization is assumed
done, in the manner described above.

By the criterion suggested by Chew for treating
low energy pion-nucleon scattering, all of the
graphs in Fig. 8 [except Fig. 8(g)] are formally
of order coupling constant squared. That is, all
those with four vertices, except Fig. 8(g), have
one pion which can be on shell in an intermediate
state. Terms like Fig. 8(g) can easily be retained
as an essentially energy-independent shift in the
bare-& mass. If apart from such higher-order
self-energy graphs we adopt Chew's one-meson
approximation, the rN t matrix is easily seen to
be the solution of effectively a two-potential pro-
blem

Although we could solve Eq. (4.17) as it stands,
the problem is greatly simplified by using the ap-
proximation"" for the nucleon propagator in v«
[Fig. 9(a,)]:

(E —m„-cu» —(u», ) ' = (u —&u» —&u», ) '

(~ —~»)(~ —~» )+
y~»~»' ~»~»'(~ —~» —~» )

(4.22)

(4.22')

Note that the correction term in (4.22) vanishes
when either the incident or outgoing pion is on
shell. For fully one-shell kinematics our crossed
Born term is proportional to Il~». , and gives the
pole term of the Low equation (3.34). In the usual
Chew model, Eq. (4.22') leads to the standard
Chew-Low effective range formula. " Kith this
approximation 'Ucz, ls also separable, and t is the
solution of the Schrodinger equation for a rank-2
separable potential, which can be written analy-
tically. "

In fact, with the usual Chew-Low normalization
conventions, "

»»(k', k; ~) = 4'„u»(k',k; &u), (4.23)

(o)

/
A/VW

(e)

(c)
with P» the usual projection operator, "and

)
k'u»(k')u»(k)k f~, (,&( ) (4 24)
(2(d»i2co»)&i 3m,

(4.25)

The potential gc„with approximation (4.22) is

vcL(k', k; ~) = 4»P„vc„(k',k; (u),

(g)

FIG. 8. Terms of Eq. (3.25) after renormalization. FIG. 9. Born terms of Eq. (4.17).
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and

)
4 f„„,'

O'M)&(k')u&&&(k)kcL" ~ i 3 ma (2~ 2&d)&1~

Fig. 4(c) involving a nucleon and a pion in the in-
termediate state. The renormalization consists of
replacing S~(z) by S' («)):

(4.26)

The nucleon and 4 form factors are related to the
Fourier transform of the quark wave functions in
the bag by Eq. (2.34). From Eqs. (4.24), (4.26),
and (4.21) it is easily seen that (v«+ &)~) is a
rank-2, energy-dependent, separable potential

and

S~((o) =Z,' ' 'S~((o),

SI (@=[(0

Z2~ = [1+2'„,)
((L& )]-&.

(4.s6)

(4.s7)

(4.s8)

=m~ -m~ .(0) (0) (4.28)

The solution to the Lippmann-Schwinger equa-
tion (4.17) for a rank-2 separable potential can
easily be obtained [cf., Eq. (9) of Mongans7] as

t(k', k &d) =N(k', k; cu)/D(~) (4.29)

v«(k', k; e)+ v~(k', k; &u)

= &dg(k')g(k)+ (&d —&&&") 'h(k')h(k), (4.27)

Although m~ in Eqs. (4.37) and (4. 38) wili. not
necessarily be the exact position of the observed
+33 resonance, because of the interf erence with- the
Chew-Low-type graphs, we expect it to be rather
close. The one minor difficulty with Eqs. (4.37)
and (4. 38) is that m~ is above the N)& threshold, so
that in fact we must carry out the subtraction pro-
cedure on the principal-vat. ue part of the self-en-
ergy integral only:

with

N(k', k;(o) =g(k')g(k)D2((o) + h(k')h(k)D&((o)

+gg(k )a(k) + h(k')g(k) JD,(~),

PZ'„,'(&d ) —PZ„,((o~)
Z2 (M) =1+

(0 —(d ~

Z2~ = lim Z2~((o),
Q» 4)g

(4.S9a)

(4.S9b)

D((o) =D, ((0)D,((o) &dD, '(&d-)

(4.SOa)

(4.30b)

where P means that only the Cauchy principal value

Here D, is very closely related to the Chew-Low
propagator, 200

( )
2(0 dqqg (q)

1 + 7
(d —40~

and D, is the propagator for the dressed 6:
&0& 2 "

dq q'h'(q)
(d —CO0 e

(4.s1)

(4.s2) l50

( )
2 dqq'g(q)a(q)

0 (d
(4.34)

As for the Chew model of Sec. IVA, all the
quantities in the cloudy bag model are finite and
no renormalization is absolutely necessary. How-
ever, just as for that case, there are advantages to
carrying out the 6 mass renormalization here. In
particular, we readily identify the term S~(«&) in
Eq. (4.33) as the b. propagator. Formally,

(4.36)

where+„', ' is given by the self-energy diagram of

S &( ) &0) AN~ "dq q ug (q)
3HZ& 7T 0 (0 Q3 —Q)

&

(4.as)

Finally, D, involves the interference between
Chew-Low and 6 terms

E loO
c

~~

CL

I-
b

50

I

l00 200
I

50 l50 250
T(u a) (MeV)

FIG. 10. Multiplicity of solutions of Ref. 27. The
vertex function was a simple cutoff at p&, and s (so) was
the renormalized (unrenormalized) 6 mass, with respect
to the mass of the nucleon.



22 PION IC COR RECTION 8 TO THE NIT BAG MODE L:.. .

of the integral is included. We also have

2
gl41( ) 2 ( ) 2 ( 11) fANs s2(y)p2 (4 40)

'

Q7 —QP ~ 3m~

where

p (~2 ~ 2)1/2

Finally we observe that this renormalization of
the b mass also leads to a renormalization of the

Mlm coupling constant.

C. Summary

In terms of the renormalized 6 propagator S~(&11)

of Eq. (4.37), and the renormalized coupling con-
stants" (f„„„f», ), the pion-nucleon P» scattering
amplitude for the CBM may be written analytically
fusing the standard approximation (4.22')] as

tcsM(k', k;&d) =g(k')g(k)[S~((o)]-' + h(k')k(k)D, ((0) + [g(k')k(k) + k(k')g(k)]D2(10)

D, ((o)[S~((o)]-'—(dD2'((o)
(4.41)

All the quantities in Eq. (4.41) were defined in
Sec. IV B, but for convenience we recall that g(k)
represents the 'NNv vertex, h(k) the ENv vertex,
D, is effectively the Chew-Low propagator, and D3
represents the interference between the Chew-Low
and 6 type of graphs.

The parameters in Eq. (4.41) are &o~,f„„„f»„
and implicitly the bag radius R. While we cannot
fix the renormalized 6 mass at the position. of the
experimental resonance because of the interfer-
ence from 21cL, we nevertheless expect &o~ (-=m

—m~) to be in the region of 290 MeV. The overall
magnitude of f», and f~„,is to be determined, but
we do not expect the ratio (f»,/fN„,) to be altered
much from the bag-model values. Finally the bag
radius appearing in u(k) must be considered an un-
known, although everyone has his own prejudices.

Now that we have our solution we can show that
it is a solution of the Low equation (3.34). The
amplitude (4.41) satisfies the criteria of Castillejo
et a/. ' for an amplitude to be a solution of the Low
equation. This solution is different from the
Chew-Low solution, but it has long been. known
that there are many such solutions. Indeed the
fact that different choices for the discrete spec-
trum of states of the unperturbed Hamil. tonian lead
to different solutions of the Low equation was poin-
ted out by Dyson" in 1957.

V. NUMERICAL RESULTS

As we explained in Sec. IV, the parameters of
, our theory are the mass of the dressed b, bag (&o~

=m~ —m„),which we expect to be near 290 MeV,
the strength of the renormalized b,Nm coupling con-
stant f»„and the bag radius R. The latter,
through the form factor (2.34), serves to cut off
the contribution of the high-energy virtual pions.

In our first calculations, "we followed the sug-
gestion of Brown and Rho' by using simply a sharp
cut off, 8(1/R-k), at the ~v and NNv vertices.
This gave a multiplicity of solutions, each of which

I

fit the P33 scattering data equally well. . For exam-
ple, Fig. 10 shows the fits to the experimental P3$
total cross section for two possible combinations
of (&o~, R), namely (950 MeV, 0.15 fm) and (550
MeV, 0.23 fm). In general, as &o decreased, the
bag radius for the best fit increased. In the limit
of very large b, mass, the solution was essentially
the Chew-Low result, and the percentage of 4 in
the observed P» resonance [as measured by the
relative strength of the gg and hA, terms in Eq.
(4.41) at the pole] decreased to zero.

From many points of view this multiplicity of
solutions was unsatisfactory. We needed some
constraint other than mN scattering to choose be-
tween the solutions. Fortunately, this problem
disappears when the theoretically derived form
fact'or (2.34) is used. Indeed, in that case it is
very hard to find a solutions. With f», anywhere
near the usually accepted range [and (f~~,/f„„,)'
=Lt] we were able to find only one acceptable solu-
tion. This fit is shown in Fig. 11. It is an ex-
tremely good fit, corresponding to (&0~, R) equal to
(294 MeV, R =0.72 fm). The coupling constantf„„,is 0.42, and the delta carries about 80@of
the strength at the P33 resonance. We stress that
this minimum in X' space corresponding to this fit
was quite sharp, and to the best of our knowledge
it is unique.

The bag radius for the CBM fit is intermediate
between the Brown-Rho suggestion of -0.3 fm and
the MIT value of about 1 fm. It is more in line
with the suggestions of many of the early papers
dealing with quark confinement. The mass &~
=294 MeV corresponds to a dressed b, mass very
close to the observed P33 resonance position, but
slightly lighter (m~ -1232 MeV, compared with 212~

=1236 MeV from experiment).
En our model the bag radius is extremely well

determined. (A shift of only one-tenth of a fermi
would destroy the fit. ) However, there are many
features of a complete theory of mN scattering
which we have omitted in this initial work. In par-
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b
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FIG. 12. A possible higher-order vertex correction to
the NN~ coupling constant obtained in this work.

As we have emphasized our model keeps both
pionic and 6 terms. One may investigate the rela-
tive importance of the two kinds of effects by set-
ting f„,or f„,equal to zero T.his is shown in
Fig. 11. If f„„,=0, the position of the calculated
resonance peak moves up by about 50 MeV. Thus
pionic terms are important. If f~„,=0 the calcu-
lated resonance goes away; hence, 4 terms are
much more important than pionic terms.

50—

0 IOO 200
T A~) (MeV )

VI. CONCLUSION

By incorporating chiral invariance in the MIT
bag model, we obtain a theory in which the pion
field is coupled to the confined quarks only at the
bag surface. This leads us naturally to a theory
of bare (bag-state) nucleons and 6's interacting
with a quantized pion field. Renormalization of

FIG. 11. Best fit in the cloudy bag model (dashed
curve) to the experimental P33 total cross section (solid).
The dash-dotted line shows the effect of arbitrarily setting
fez, (f&z,) to zero, with all other parameters unchanged.

200

ticular, the inclusion of crossing and inelasticities
would probably increase the size of the source
somewhat. From our experience with the Chew-
Low model, this could increase R by as much as
20'~/~. Thus if forced to quote some estimate of the
possible systematic error in the determination of
A in the CBM, we would guess 0.72 + 0.14 fm.

%e also note that the NNm coupling constant for
the CBM solution is about 10%%u, lower than the ex-
perimental value f„„,2=0.06. [Recall that f „,is
given in terms of f~„,, by demanding that (f~„,/
f„,)' be '2. ] Since we do not claim better than

perhaps 20/o accuracy in the determination of the
bag radius, this level of agreement is acceptable
for the moment. Future work may involve the ex-
plicit calculation of vertex corrections like Fig.
12.

The essential feature of the CBM is that one
must keep both couplings f~, and f„„,nonzero.
Nevertheless, it is interesting to turn one of these
off to obtain either an elementary 6 model or an
equivalent Chem-I ow model. In both cases only
one good solution could be found. For the ele-
mentary 6 model" ~ was 265 MeV, and R was
0.16 fm. In the effective Chew-Lom ease, R was
0.22 fm. These two cases 'are shown in Fig. 13.

I50—

IOO—

50—

20050 l00 l50
T(LAB) (MeV

FIG. 13. Best-fit calculations using the CBM form
factor but retaining only the delta graphs (dash-dot-dot
curve, R = 0.16fm), or only Chew-type graphs (dot-dash,
R = 0.22 fm) —the solid line is the experimental result,
and the dashed curve is the full CBM curve of Fig. 11.
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this theory is necessary and is carried out. Ex-
plicit equations were derived for the physical nu-
cleon and the mN scattering amplitude. This scat-
tering amplitude satisfies the Low equation.

In the present model the 6 resonance is given by
the coherent contribution of elementary 4 and

Chew-Low-type graphs. Although the 4 is not an
exact eigenstate of the Hamiltonian, by examining
the residue of the (3, 3) t matrix at the pole it is
found that 80% of the strength is carried by the
elementary 6 contributions, and only 20% by
Chew-Low. This is a very satisfying result, be-
cause it unifies the two apparently contradictory
theories of mN scattering, namely the quark model.
and the Chew-Low model, which have existed side
by side in the literature for many years. In a
later paper we intend to examine the consequences
of this new model of the off-shell behavior of the
mN interaction for pion-nucleus scattering —partic-
ularly the Lorentz-Lorenz effect.

The bag radius which we obtain (0.72 fm) is in-
teresting for a number of reasons. It lies below
the MIT value (R ~ 1 fm) but considerably above the
value of -0.3 fm oringinally suggested by Brown
and Rho. '~ (However, recent self-consistent cal-
'culations by the Stony Brook group" have suggested
that any value of R from 0.5-1.5 fm could be ac-
ceptable. )

One of the most fascinating observations con-
cerns the charge distribution of the neutron. In
our model (to lowest order) the physical nucleon
is 61% of the time a nucleon bag, 25% an Ew

state, and 14'%%u~ a hv state. In the absence of
quark-quark interactions the neutron bag has no

charge distribution. In higher order their spin-
spin interaction would tend to give a negative
charge radius, but with R =0.72 fm this effect is
far too small. On the other hand, the N-bag-plus-
pion state has a probability —, of being a proton bag

with a v- cloud at the surface (hence the cloudy
bag model). Since this cloud is very much local-
ized at the surface, we see that there is a very na-
tural explanation of the positive charge core of the
neutron and its negative tail. Most important for
the moment, we see that the bag radius will be
very naturally associated with the zero of the neu-
tron charge distribution. Experimentally this oc-
curs at about 0.8 fm, which is surprisingly close
to our bag radius. Detailed calculations of the nu-

cleon (and L) charge form factors and magnetic
moments will be reported in a forthcoming paper,
but there is reason to believe that this relatively
small pion admixture will help to cure a number
of quantitative failures in the pure quark bag mod-
els.

Another interesting feature of this bag radius is
that it is no longer so difficult to accommodate
classical nuclear physics with the bag model of nu-

cleon structure. Our nucleon bags will only occu-

py about 35'l/& of the typical nuclear volume, and

there will certainly be long-range pion exchange
forces between them. In addition, the lower limit
on the critical density for percolation, as discus-
sed by Baym, "is p, = 0.34/ —,'4vff' = 0.22 nucle-
ons/fm', which is some 30'gj& above normal nuclear
'densities.
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