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Inelastic thresholds and dibaryon resonances
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A method of Basdevant and Berger is applied to the problem of whether there are pp resonances near the nci ++

threshold. In particular, the D, partial wave of proton-proton elastic scattering is analyzed around this

threshold. The method is expected to determine (in principle) whether the pp partial waves in which structure has

been observed are resonant and, in this event, allow a reliable determination of the resonance parameters.

I. INTRODUCTION

Remarkable structure has been observed in
polarized proton-proton scattering data at inter-
mediate energies, near the inelastic threshold
for &" production. ' This structure has been in-
terpreted by many as evidence for dibaryon re-
sonances. ' Furthermore, recent phase-shift
analyses of these data indicate resonancelike be-
havior in the 'D, and 'E, partial waves. ' ' Be-
cause the n&" channel gives a large cross section
in this energy range, there can be reasonable
doubt whether the partial-wave structure observed
corresponds to a second-sheet pole, or reflects
solely the opening of q. strong inelastic channel. '

Indeed the problem of what happens in one chan-
nel when one passes a strong threshold in a second
channel is an oM problem in strong-interaction
dynamics. ' Studies of high-lying mN resonances
in m& phase shifts must take proper account of
the effects of the inelastic channels in order to
accurately extract the resonance parameters. '
A notable example of resonancelike structure
not necessarily accompanied by a resonance pole
is the elastic &P system which caused specula-
tion of the existence of an exotic ~ resonance. '

The problem of properly accounting for a strong
threshold opening in a many-channel problem
is itself part of a larger problem, that of de-
scribing an amplitude when it contains a large,
known background component. For example, the
behavior of the 3& system in mN- r7t'mN is dom-
inated by the one-pion-exchange process mN- (mm)vNwhich induces a 1' resonancelike structure.
In addition, there is the possibility of a true 1
resonance (4,) superimposed on this background.
A similar problem occurs in &N -«m& with the
(SCm) system given by a ba.ckground generated
by pion exchange, and a true 1 resonance (Q).
A practical method for handling this problem has
been proposed and applied to Q and A, productioh
by Basdevant and Berger in a series of papers. ' "
We apply their approach to the problem of di-
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baryons.
Specifically, we examine the 'D, PP -PP partial-

wave amplitude near the threshold of the n&

channel. Our treatment of the 'D, system differs
from the phenomenological analysis of the phase
shifts by Hoshizaki' in that we seek to understand
the large background terms which, in that analy-
sis, were added by hand. To do this we explicitly
introduce the inelastic channels, rather than
parametrizing their effect by the inelasticity para-
meter. In this way we are able to discuss some
of the analytic constraints. In a practical sense,
however, we expect our results to be qualitatively
similar to Hoshizaki's for those things he is able
to calculate.

The problem of dibaryons on PP scattering has
been addressed by many authors. " Some have
taken a purely dynamical approach, trying to
understand the NNm system through the NN and
Nm forces. Others have used two-body dynamics
as a starting point for a phenomenological an-
alysis —for example, in an &/D calculation, the
form of the N matrix has often been motivated
by the one-boson-exchange model. In this paper,
we make no assumption about the origin of the
dynamics but attempt to reconstruct the S matrix
from phase-shift information, subject only to the
constraints of unitarity and analyticity. We con-
sider only two-body and quasi-two-body channels,
although some features of three-body unitarity
are incorporated.

In Sec. II we present the methodology of the
analysis of the 'D, system. In Sec. III we carry
out the analysis on the presently available data.

II. METHODOLOGY

A. Choice of channels

In this paper we investigate the J~ =2' dibaryon
system, leaving to a later paper the ~ =3 sys-
tems. Since one is above the m production thres-
hold, there are many channels which couple to
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the elastic pp('D, ) channel. The exclusive single-
@ states are dr and N+r. In the foreseeable fu-
ture one does not expect to have reliable phase-
shift analyses for the inelastic processes. Lacking
strong empirical guides, we have selected for
study only one inelastic channel, the quasi-two-
body n& '('S,). We assume that n&" dominates
the three-body final state Pnv (Ref. 12) and ne-
glect the higher waves ~~ ( D„G„D,) which
are suppressed by centrifugal-barrier factors. "
The three-body process PP -PPr' has only about
2%0 the cross section of PP -Pnm', and is ne-
glected here. The remaining channels which can
couple are )) 'd('I'„'&, ). The @dc'hannel is im-
portant at the single-r production threshold, but
is less important than njm for s ~ 4.4 GeV', the
region of interest. " In this analysis we do not
include this channel.

To put these assumptions in perspective, note
that at P„b =1.2 GeV/c (s =4.62 GeV'), the total
inelastic PP cross section is approximately 10 mb,
of which 1.2 mb is PPn', 2.5 mb is r d, and 6.3 mb
is Pnw . These cross sections are good to about
20% since they are based on crude interpolations
of the measured cross sections which are not
available at many energies in the region of in-
terest. Moreover, the total inelastic spin-singlet
contribution has been estimated by Hollas' to be
only about 5 mb. This is consistent with the
phase-shift solutions' ~ which predict an inelastic
'D, cross section of about 5 mb, and negligible
inelastic cross sections for the other singlet
states. If the exclusive inelastic singlet cross
sections are in the same ratio as the total, then
one would estimate the singlet PPm', m' d, and
Pnn' cross sections as 0.6, 1.2, and 3.2 mb, re-
spectively. These estimates are not unreasonable
since the presence of substantial polarization"
in PP -m d scattering indicates that the inelastic
cross section for this process is shared among
at least two partial waves, thus considerably re-
ducing the )T d contribution to PP('D, ) inelastic
scattering from 2.5 mb.

We conclude from this discussion that there are
a variety of uncertainties in estimating the ex-
clusive singlet cross sections which could easily
amount to 1-2 mb in the 'D, cross section. We
are searching for a resonance effect which, if
Hoshizaki's background can be used as a guide,
amounts to about 2 mb out of the 5-mb 'D, in-
elastic cross section at the resonance peak
s =—4.62 GeV . This resonance effect is not much
larger than what we estimate for the m d contri-
bution, or the uncertainty in the inelastic 'D, cross
section. " The restriction to the two channels
pp('D~) and n~ ('S,) should therefore be taken as
provisional, and could be improved as more is

learned about the partial-wave structure of the
inelastic channels. In defense of this approxima-
tion, however, we note that none of the effects we
ignore are expected to have a sharp energy de-
pendence over the region we are discussing. Our
analysis may suggest the extent to which the ap-
pearance of a resonance depends on the energy
dependence of the partial-wave amplitude though
not on its precise values.

B. K-matrix approximations

Our goa1 is to analytically continue the scat-
tering matrix away from physical s and search
for poles which would be indicative of dibaryon
resonances. Since only the elastic component
of the scattering matrix has been partial-wave
analyzed, an inherent ambiguity is present in a
multichannel program and only relatively simple
parametrizations of the scattering matrix are
warranted. The &-matrix formalism provides
a way to construct an analytic unitary scattering
matrix from phase shifts and also has the feature
of admitting simple parametrizations. "'" To set
the notation, we reproduce below some formali-
ties.

Consider an N-channel problem in which the
N-channel unitary 8 matrix has been exactly
determined experimentally to all energies above
the elastic threshold. " In this paper N is 2. For
the moment we assume channel i consists of two
stable particles with masses m,. and M,. in an
orbital angular momentum state L, At a c.m.
energy v s, the unitary symmetric S matrix,
S(s), is related to the partial-wave f matrix by

S(s) =1+2if'(s). (2.1)

This W matrix contains threshold factors, which
when removed define the boundary value of an
analytic T matrix

T(s) =p(s) ' v'(s)p(s) ' (2.2)

where p(s) is a diagonal matrix whose value in the
ith channel is

=p' (s)S(s)p ' (s). (2.4)

This S matrix satisfies S~S =SS*=1 and will be
useful in the discussion that fol.lows.

The real analytic symmetric matrix T(s) is

(2.3)
Corresponding to the & matrix is a nonunitary
S matrix

S(s) -=1 +2ip(s)T(s)
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defined in the complex s plane, is analytic in the
upper half plane with left- and right-hand cuts
along the real s axis. Across the right-hand cut

T(s') -T(s ) =2iT(s')pT(s ) (2.5)

C(s') —C(s ) =2ip(s)

and & is a symmetric matrix whose elements
are real analytic meromorphic functions of s.
For E the unitarity condition is

(2.7)

1-C(s )K(s) =S(s)[1 -C(s')K(s)]. (2.8)

This shows that the & matrix provides a solution
to the Hilbert problem. "

The Hilbert problem is that of finding a real
analytic function D(s) with only a right-hand cut
whose boundary values satisfy

D(s ) =S(s)D(s') . (2.9)

In general this problem is solved by finding an
integzal equation for ImD(s). Specifically, one
defines N(s) by

D(s') -D(s ) = —2ip(s)N(s) (2.10)

and writes a once subtracted dispersion relation
for D(s):

s ", p (s')N(s ')
s, s'(s' -s +is) '

Then, N(s) satisfies the integral equation

(2.11)

N(. ) =G(.) 1 '-Z ~',",)"", (2.12)n, s'(s' -s)
where the symmetric matrix G(s) is defined by

and reproduces the unitarity condition 8 8 =I. The
&-matrix approximation to 1' is

T(s) =K(s)[l —C(s)K(s)] ',
where C(s) is the Chew-Mandelstam function

satisfying

C. Chew-Mandelstam functions

The parametrization (2.6) will be complete once
the Chew-Mandelstam matrix C(s) is defined, and
the form for K is chosen. Now (1 —CK) is like
a D function which has an intrinsic polynomial
ambiguity. We choose to put this ambiguity into
4 and use a canonical definition for C:

c(.) = '- d",",')
s s'(s' -s)

0
(2.15)

The Chew-Mandelstam function for channel
1, PP elastic scattering in the 'D, state, may be
obtained from (2.15) using

5/2

p, (s, m, m ) =

Near the PP elastic threshold,
5

Pl ah

(2.16)

as expected of an & =2 wave. The total Chew-
Mandelstam function is

C, (s, m, m')

-2 (4m s) & +(-s)'"
= ——p(s m m)in-

& y&

4m, ' ' 7 4m, ' 23
s 3 s 15

The solution to the Hilbert problem provides the
analytic continuation of D(s), but not N(s) I.n
general N(s) will be real analytic with left-hand
cuts.

The E-matrix approximation in essence re-
places N(s) by a. meromorphic function. K(s) is
determined algebraically from the scattering data
using (2.8):

K(s) = [S(s)C(s') —C(s )] '[S(s) -I] (2.14)

rather than through the integral equation (2.12).
As a solution to the Hilbert problem, (1 —CK) is
well determined for complex s.

G=—T(1+ipT) '. (2.18) (2.17)

The integral equation involves quantities evaluated
only in the physical region and therefore can be
solved whenever the scattering matrix T is given.

The T matrix is given by

T(s) =N(s)D '(s)

so that when one continues T into the complex
s plane one needs to continue both N(s) and D(s).

Note that C, is real for s g4rn ', has a discon-
tinuity of 2ip, for s ) 4m~', and vanishes at s =0.

The kinematics for channel 2, n&" scattering in
the 'S, state, are complicated by the instability
of the ~ which decays predominantly into Pm .
If the &"were stable, the Chew-Mandelstam
function for n& would be that appropriate to two
particles of unequal masses in an L =0 state:

[s —(m~+m„)']'~'[s —(m~ -m„)']'s
p2(s, mg, m„

S (2.18)
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2 [(m +m )2-s]'s+[(m~-m„)'-s]' '
C2(s, m~, m„) = —— p2(s, ~2i6„m„) ln

2(m.m„)'&

m~' —rpg„' m~ m~'+m„' m~
2s m„2(m~2 —m„') m„2 (2.19)

C, is real below threshold, has a discontinuity of
2ip, above threshold, and vanishes at s =0.

Berger and Basdevant give a practical pre-
scription for smearing this stable-particle Chew-
Mandelstam function to obtain one with both a
three-particle (npv') and a quasi-two-particle
(n&") cut." They point out that the Chew-Man-
delstam function arises from a loop integration
in a simple Feynman graph and that the instability
of one of the particles may be generated by the
replacement of the usual stable-particle px opaga-
tor by an unstable particle propagator:

I

function (2.19). As a result, the smeared Chew-
Mandelstam function is insensitive to the subtleties
of d{s) away from s =m6~'.

Throughout this analysis we use standard par-
ticle masses and widths": m& =938.$ MeV, m„
=939.6 MeV, m, + =139.57 MeV, m(~.= (1211-i49.9)
MeV. The resulting propagator parameters are
f' =2.3217 and m' =1.9252 GeV'. Of later interest
is the derivative of the propagator evaluated at
the & mass: d'(m~~2) =2.0807 +i 1 324.2

D. Parametrization ofE

1 1.
P.

s -m~' s -m'+f Z(s) d(s)
' (2.20)

(2.24)

The general form of the physical 8 matrix is

ge 2&op (1 ~2)1/2 ((61«62)

The parameters m and f are chosen so the pro-
pagator has a pole on the unphysical sheet at

2{1 q2)1/2e ((6162) qe 2 F62

s =(m6, -il 6,/2)2 =m/2.

The full Chew-Mandelstam function is

(2.21)

1 ", f 'ImZ(s')
2{ 1 61 tl)

[
t 2 f2Z( l)[2

(m~+m &

x C,(s, v's', m„). (2.22)

This represents the smearing of the stable Chew-
Mandelstam function over a range of & masses,
the weighting function containing all relevant
information concerning the & mass, width, and
decay kinematics.

Following Berger and Basdevant's treatment
of the p and E* propagators, we approximate the
self-energy part of d(s) by

Z(s) =[s -(m2+m, )2]C~ (s, m„m, ), (2.23)

whex e the Pr Chew-Mandelstam function has the
same form as (2.19). This self-energy function
has the proper threshold behavior for the decay of
an I. =1 state. The validity of our approximation
may be checked by examining the pr' phase shifts
that d(s) predicts. The pn' phases so predicted
agree well with experiment2' from threshoM to
above the &"resonance (1.16&s g1.63 GeV';
0 & T, g 0.25 GeV); at higher energies, the pre-
dicted phases approach 180' but not so quickly
as experiment suggests. It is interesting that,
for physical s, the smeared Chew-Mandelstam
function defined by (2.22) is numerically similar
to that which would be obtained by using m~~

=m6, if'6/2 ins-tead of m6, in the stable-particle

K(/ =a,/+5, p+c,.p2. . (2.25)

HI. PHENOMENOLOGY

A. Fits

Ne present four solutions for E and their
varying consequences. The parameters of these
solutions are given in Table I and the phase and
inelasticity predictions are shown in Figs. 1-4.

where q is the inelasticity parameter and 6, and

5, are the phase shifts for channels 1 and 2, re-
spectively. Recent phase-shift analyses by Amdt'
and Hoshizaki' have determined g and 6, fairly
consistently up to s = 5.1 GeV' (P„„=-1.5 GeV/e).
At present, 62 is totally unconstrained, although
conceivably polarization data now under analysis
for PP -Pn7t'will provide some crude n&" con-
straints. "

The range and quality of the pp('D2) elastic data
and the lack of n&" phases introduces unavoidable
ambiguities into the K matrix (2.14). Quite dif-
ferent E matrices which make consistent PP
elastic scattering predictions may differ sub-
stantially in their prediction of 5, and, thereby,
of Pp-n& inelastic scattering cross sections.

The energy range of interest is from npm' thres-
hold (s= 4.1 GeV.') to the limits of the i)p elastic
phase shifts (s = 5.3 GeV ). For such a limited range
of s, a variety of meromorphic K matrices maybe
expected to reproduce the measured g and ~, va-
lues. %e chose to parametrize the E-matrix ele-
ments as simple polynomials:
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TABLE I. Summary of solutions.

Solution 1 Solution 2 Solution 3 Solution 4

b«(GeV ')

b„(Gev-')

c&2 (GeV )

b2, (GeV ')

c2& (GeV )

He(s&) (GeV )

Im{s~) (Gev'3

M~ (QeV)

I' (MeV)

r, (Mev

I; (Mev)

36.0

-6.0
0.0
2.8162

0.0
0.0

16.4081

—2.2947

0.0
4.705

—0.271

2.17

68

—147.1730

68.1340

-7.8073

94.2323

—43.2066

5.0

-34-1870

21 ~ 5884

-2.9047

4.560

—0.232

2.14

108

95

32.1700

0.0
—1.6798

1.5063

—0.1761

21.8599

-4.9056

0.2777

4.582

-0.454

2.14

51

161

-203.1460

111.6128

—15.0

217.7444

-106.5620

13.1169

-135.2610

70.6292

—8.8764

4.592

—0.231

108

80

These solutions are representative of several
dozen we obtained. Note thai in the figures the
solid curve is the result of our analysis. It is
compared to the energy-dependent phase -shift
solutions of Amdt' (dashed curve} and Hoshizaki3
(crosses). No uncertainties are plotted for these
phase-shift solutions, although a. rough measure
of their systematic error may be obtained by con-
trasting the two solutions. These systematic dif-
ferences are typically larger than the statistical
errors quoted" for the phase-shift fits.

Solution 1 (Fig. 1) illustrates all the important
features of the analysis while using a very sim-
ple K matrix —K„and K» a,re linear in s, K
is a constant. The n& phase rises slowly from
threshold, peaks at about 10' at s =4.7 GeV',
returns slowly through 0' at s =5.0 GeV'. Solu-
tions 2-4 use the full quadratic form of K and

reproduce the pp elastic phases somewhat better.
Solution 2 uses a E matrix with K» and K» small
compared to K» at threshold. This solution could
be interpreted in a final-state interaction frame-
work, with strong n& elastic scattering being
reflected by unitarity in the PP channel. Consis-
tent with this view is an n~" phase which arises
dramatica. lly to about 50 at s =4.7 QeV . So-
lution 3. shows a quite different n& channel be-
havior —~, remains essentially at 0' until s =4.7
GeV', whereupon it goes quickly negative. So-
lution 4 shows a 5, behavior not unlike that of

solution 2, while demonstrating a larger variation
in the K-matrix elements than any of the other
solutions.

Common to all the solutions is a difficulty in
obtaining an inelasticity which drops quickly
enough just above njm threshold. Since this is
the energy region where the Pp —m d cross section
is largest, the inclusion of the m'd inelastic chan-
nel might remedy this problem. For s near the
upper limit of consideration, solutions 1 and 4
have pp phases which pass through 0', while so-
lutions 2 and 3 have PP phase. s which fall less
sharply. These behaviors are similar to those
of Hoshizaki's' and Amdt's4 phase shifts, re-
spectively. There is no correlation between the
behavior of ~, at high s and the type of behavior
of 5, .

B. Resonance structure

%e adopt as the definition of a resonance the
occurrence of a pole in the 8 matrix at complex
s near the physical region. "'" Equivalently, a
resonance appears as a pole in the T matrix.
Since our parametrization of the K matrix is well
behaved, a pole occurs only when

det(l —CK) =0.

The coupling strengths of a resonance to the
various channels are determined by the residues
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FIG. 1. Comparison of solution 1 {solid) with phase-
shift analyses {dashed and crosses).

FIG. 2. Comparison of solution 2 {solid) with phase-
shift analyses {dashed and crosses).
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FIG. 4. Comparison of solution 4 (sohd) with phase-
shift analyses (dashed and crosses).
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of the T matrix at the resonance pole. It is
convenient to use the T matrix, rather than the
8 or V matrix, because the kinematical factors
are automatically removed. '4 Near the resonance
position sg y

Z &ls ~ «eg+cg&+go
ig U~

R
(3 2)

Js Region (i)

V
/%

PP
I

I

I

I

npV

(iv}

FIG. 5. The complex 8 plane. The pp, ep7t', and e4
unitarity cuts are illustrated.

where g, is the coupling of the resonance to chan-
nel i and T',

&
is a well-behaved background con-

tribution. The phases in the pole term arise from
the background contribution in a way analogous to
Watson's theorem. Since the E matrix or, equi-
valently, the N matrix is needed to determine the
residues, the arguments of Sec. II suggest that the
residues are subject to more uncertainty than the
determination of the pole position.

The analytic continuation of E, C„and C, is
needed to conduct a resonance search. The X
matrix, being a polynomial in s, extends straight-
forwardly to complex s with no sheet structure.
The Chew-Mandelstam functions are more com-
plicated (see the Appendix), their cuts giving rise
to many sheets. C» [Eq. (2.17)] has a pp cut from
4m~' to ~ while C, [Eq. (2.22)] has an njv' cut from
(m„+m +m, )' to ~ and, on the second sheet of
this cut, an n& cut from (m„+m~)' to ~. These
cuts and the s regions of interest are illustrated
in Fig. 5.

Region (i), the physical region, is on the first
sheet of all the cuts (use C~„C',) and has Res
«4m, Ims «0. Region (ii) is reached by pas-
sing through the pp cut below npm threshold
[4m&' ~ Res s(m„+m&+m, )', Ims & 0] and is on the
second sheet of the pp cut while on the first of the
other two cuts (use CP, C', ). Passing through both
the pp and npv cuts [Res «(m„+m +m, )', Ims ~0]
region (iii) is found; it is on the second sheet of
the pp and npr cuts and on the first sheet of the
nn. ' cut (use Cn, CP). Still further, through the
n& cut, is region (iv) [Re(s —(m„+m~)') «0,

Im(s —(m„+m~)') ~ 0]; this is on the second sheet
of all the cuts (use CP, Ce"). A pole in regions
(ii)-(iv) is interpreted as a resonance, a pole on
the physical sheet on the real axis is a bound state
or virtual bound state and any other pole on the
physical sheet is a ghost (unphysical resonance).
A resonance pole on (ii), (iii), or (iv) is expected
to reoccur at a shifted position on one of the four
sheets which are farther from the physical region
and which have not been described. This fact
provides an alternate method for extracting the
resonance parameter s."

All of the solutions we obtained display a nearby
pole in region (iii) .(i.e. , on second sheet of the

pp and npm cuts, on the first sheet of the n&'

cut) not far from the n&' branch point. The pole
positions and partial widths for solutions 1-4 are
given in Table I. Two trends among the solutions
are observed. Solutions whose 5, behavior re-
sembles Hoshizaki's phase shifts' more closely
than Amdt' s (5, passes through 0' around s =5.0
GeV') display poles close to the physical region—
I' as low as 70 MeV. Solutions whose 6, behavior
resembles that of solution 3 (5, remains near 0'

until s =4.7 GeV' and then goes sharply negative)
exhibit quite distant poles and relatively large
coupling to the pp channel —I' as large as 220 MeV
and I', as large as 60 MeV. Based on all the so-
lutions we obtained we estimate

m, = 2.14-2.16 Gev,

I =70-220 MeV,

I", =10-60 MeV,

I', =60-160 MeV.

These results are consistent with those of pre-
vious single-channel analyses. '

A search of regions (ii)-(iv) yields no further
poles. On (i), in some solutions, a ghost is pre-
sent (Res ~ 4.0 GeV', Ims «0.3 GeV'). Ghosts are
symptomatic of the breakdown of an approximation
in the 3 matrix and can always be remedied by
improving the faulty approximation. " In this
regard, it is not surprising that a quadratic E
matrix does not extend well beyond the s region
for which it was designed.

IV. DISCUSSION

To summarize, we have used the E-matrix
formalism to build proper kinematic and unitarity
properties into a coupled-channeI 3 matrix for the
PP('D, ) and n& "('S,) system. We have used

pp —pp elastic -scattering phase -shift solutions
to determine a wide variety of reasonable E ma-
trices. For each solution, a prediction of the
8-wave ri& elastic phase was made. In all of
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our solutions, a diproton resonance with para-
meters, similar to those obtained by Hoshizaki was
found on the second sheet of the pp and npm uni-
tarity cuts, and on the first sheet of the n& cut.

Many authors" have been concerned that the
resonaneelike behavior of the pp'D, wave might
simply be the result of the opening of the n&'
channel —Hoshizaki's resonance' occurs very
near the n&" threshold. Our analysis suggests
that this is not the case and that the diproton re-
sonance is present even when n&' kinematics are
considered. In a preliminary analysis of the
three-channel pp('D, ), n& ('S,), and v d('P, )

. system, we obtain results similar to those re-
ported here —a variety of phase-shift behaviors
for the unconstrained n&" and m'd channels
emerge and, in all cases, a diproton resonance
is found. However, the uncertainties involved
in reducing the problem to a small number of
quasi-two-body channels must be considered and
these uncertainties preclude making a definitive
statement on the existence of the diproton.

Supposing the existence of the diproton re-
sonance was unambiguously established, its
theoretical interpretation would still be subject to
considerable debate. Is the resonance a tightly
bound six-quark object, such as the ones sug-
gested by Jaffe, "or is it a molecularlike object
of two spatially separated baryons such as the
deuteron? While our approach should in principle
shed some light on this discussion, there are not
enough experimental constraints to permit definite
conclusions. In the following remarks we indicate
some apparent features of the diproton which are
common to all our solutions and some which de-
pend on the presently unconstrained 5, behavior.

From the pole's location on the second sheet
of the pp and npm cuts, the diproton is seen to be
unstable in the pp and npw systems. That the pole
is on the first sheet of the n& cut suggests it is
stable in the n& system —the dibaryon may be a
virtual bound state of n and &. The dibaryon pole
also appears on a distant sheet (on the first sheet
of the pp cut, on the second sheet of the npm cut,
and either on the first or second sheet of the n&
cut), so it has properties in common with Breit-
Wigner resonances. "

The importance of the interchannel coupling in
the production of the resonance is closely con-
nected to the interpretation of the nature of the
resonance. Assuming, as in our analysis, that
+ is chosen without poles, all the poles of T arise
froxn zeros of

det(1 —CE) =(1 —C,E„)(1—C,E„)—C,C,E„'.
(4 1)

A zero of det(1 —CE) may arise in one of two
ways. " If either (1 —C,E») or (1 —C,E») ha. s a
zero and E» is not large, det(l —C E) willhave
a nearby zero. This is interpreted to mean that
one of the individual channels has a resonance
and this resonance is reflected in all channels
through unitarity. The other type of zero of
det(1 —CE) arises from a, general cancellation
in (4.1), with no zero of either (1 —C,E») or
(1 —C,E»). Unlike the first situation where a
resonance is present even when Ey2 0 this case
requires E» to be sufficiently large for a re-
sonance to occur. Both behaviors are observed
among our solutions. Those solutions with &~

rising to about 50' and leveling off (e.g. , solutions
2 and 3) exhibit a, zero of (1 —C,E») near the zero
of det(1 —CE), usually on the second sheet of the
n& cut. For these solutions the dibaryon seems
to be a feature of the n& system which is visible
in the pp channel through unitarity. Those solu-
tions with 5, small and then negative (e.g. , so-
lutions 1 and. 4) have no zero of (1 —C,E») or
(1 —C,E»)—the zero of det(1 —CE) arises through
a general cancellation and the dibaryon is a fea-
ture of the full coupled-channel problem

It is tempting to use Levinson's theorem to
identify those solutions with positive ~, with an
unstable elementary particle or a dynamical re-
sonance depending on whether

5, (~)+5,(~) =m or 0,
respectively. Similarly, it is tempting to identify
the solutions with negative 5, with a dynamical
resonance or virtual bound state of a higher chan-

nell

depending on whether

5,(~) + 5,(~) = 0 or —m,

respectively. Implicit in this discussion is the
assumption that a multichannel relativistic Le-
vinson's theorem is meaningful"" and that the
asymptotic phases may be identified at these low
energies. While the above classifications may
not be strictly justified, we believe they provide
useful mnemonics for the two types of solutions
that have been found.

A serious question that can be raised at this
point is will we ever be able to experimentally
distinguish these two classes of solutions? The
only possibility at this time is to make use of
inelastic polarization data to try a crude inelastic
partial-wave analysis. If this proves impractical
further insight may have to depend upon theoretical
models.
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APPENDIX: THE ANALYTIC CONTINUATION
OF THE CHEW-MANDELSTAM FUNCTION

( )
where e =1 for Im(s —4m~')&0 and e = —1 for
Im(s —4m ') & 0.

The definition (2.22) of C, may be used straight-
forwardly on the first sheet of the nPm' cut (I);
however, care must be taken when extending this
definition to the second sheet of the nPw' (II) and
to the second sheet of the nr ' cut (III) because
of the presence of pinching singularities in the
integral (2.22). An analytic weighting function
is defined as

Throughout this analysis the square-root function
is assumed to be cut from — to 0. Figure 5 il-
lustrates the cut structure of C, and C2.

The definitions (2.16) and (2.17) for p, and C,
may be used on the first sheet of the pp cut (I).
On the second sheet (II),

C~'(s, m, m ) =C,'(s, m. , m ) —2iep~(s, m&, m&),

A1

f '[s' —(m, +m, )']p~ ~(s', m„m, )

d(s ')[d(s ') —2if '[s ' —(m~ +m, )']p (s ', m, m, )J

The definition (3.7) becomes

(A2)

C~(s m+,'m„) = — ds' W(s')C2(s, Ms', m„),
1

( m~+m~)

where C', (s, v's', m„) is the na, ive extension of (2.19). Since this is cut from s =(v"s' m„)' to infinity,
C,"(s,mg, m„) and C,'"(s,mg, m„) are built from both C,'(s, v's', m„) and C,"(s,Ms', m„). Analogous to (Al),

C'~(s, 4s ', m„) = C'(s, v' s ', m„) 2iep'(s, v —s ', m„), (A4)

where z =1. for Im[s —(v's'+m)']& 0 and e = —1 for Im[s -fs'+m)']& 0. The smeared n&" Chew-Mandel-
stam function on the second sheet of the np~' cut is

1 R pt: Yg-m~) 3 1 ( s-mfa)

C", (s, m~, m„) = — ds' W(s')C,"(s,V's', m„) +-
(m +m )2 R e[(~g-mt' )

ds' W(s') [C,"(s,Ks', m„) —C', (s, v's', m„)]

1
+ — ds' W(s')C,'(s, Ms', m„).

R4if&g-m„) ] (A5)

Using (A4),

I ( g mfa)

C2n (s, m ~~, m „)= C', (s, m ~~, m„) — ds ' W(s ') p,'(s, Ms', m„) .
m (m+~)2

(A6)

The nd" cut now appears through the integral in (A6) and may be exhibited explicitly by performing the
integration over the pole piece of W(s'). We are interested in the part of sheets II and III nearest the
physical region, i.e. , Ims &0 and so consider only the pole of W(s') at s' =(m~)'. We define

1 1s 2id'(m*')-s' -m*' '

There is also a pole at s' =(m~)' which would affect the evaluation of (A6) for Im(s)& 0. Specializing to
Ims &0,
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(A8)
1 (~s-m„&

ds ', „,p', (s, Ms', m„) .

The n&" cut appears only in the last integral and the first two terms are numerically stable in the vicinity
of this cut. The last integral becomes

J(~g-rn„) 2 ]ds', —,— p,'(s, v's', m„)
. (m+m )

s —m„2 —m +m, 2 '+ V's+m„2 —m +m, 2 '+

[(ps —m„) —(m, +m, )']'~'+[(V s +m„)' —(m, +m, )']'&—2(s m„—m+& ) +
2(V sm„)'~'

+2[(v' s —m„)' —m~']'~[(v' s +m„)' - m*']' ')

x 1 [(I + „)' - *']' [(g )' ( ) ] [(v'
—

) ] /[(g
—

) ( ) ]
[m*' —(m +m, )']' '[4v sm„]' '

—ice/21 I,

where

e =1 for Im[(v s -m„)' m~']) 0

for rm[(v's -m„)' -m+'](O.
On the second sheet of the nA" cut (Qj), O', n has
the same form as C,", (A8) and (A9), ~jth jnst
the sign of 6 reversed.
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