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We examine the reaction NN~NNrr for "soft-pion" kinematics (ii =0 in the center of mass). An earlier
calculation based on the Adler-Dothan theorem severely underestimated the |i = 0 cross section for pp~npn + at
740 MeV. We attempt to understand this discrepancy in the context of a. relativistic, unitary, three-body isobar
model. The postemission 3-pole contributions are shown to be very important, even for these "soft-pion"
kinematics. Relatively high partial waves in the NN~Nd isobar amplitude are significant. However, after summing
all the postemission and preemission diagrams, the discrepancy with experiment is only partially removed.

I. INTRODUCTION

It is apparently not widely recognized that soft-
pion techniques often predict pion-production
cross sections an order of magnitude smaller
than experiment. These techniques stem from
a soft-pion theorem' based upon the concept of a
partially conserved axial-vector current (PCAC).
The assumptions of current algebra are not in-
volved. The theorem says that, in the soft-pion
limit (e.g. , p, -0, then m, -0), the pion-pro-
duction amplitude is given by nucleon-pole graphs.
For the process NN-NNm these graphs are shown
in Figs. 1(a) and 1(b). Other contributions, such
as the breakup of resonances [Fig. 1(c)] or in-
ternal-emission graphs [Fig. 1(d)], are of higher
order in P, and, presumably, small. The ampli-
tude given by the pole graphs of Figs. 1(a) and 1(b)
is to be calculated using axiaj. -vector KNm cou-
pling at the vertex. Further, the blobs representing
NN-NN scattering are to be evaluated on shell.

(c)

FIG. 1. (a) and {b) Nucleon-pole graphs, presumed to
be dominant in the soft-pion limit; (c) breakup of the 4,
or (3, 3) resonance; (d) internal emission graph.

This procedure is similar to calculations using
the low-energy photon theorem for NN brems-
strahlung. '

The calculation outlined above for NN-. NNw

was carried out more than ten years ago' in
anticipation of an experiment that would measure
the "soft-pion" production cross section. ' For
physical pions (m, =—p, 40) there is some ambiguity
as to what kinematic situation best corresponds
to the soft-pion limit. A common choice has been
the limit in which p, =0 in the center-of-mass
frame. This prescription was followed in Ref.
3.

The exper imental pp -np~' cross section at
TL,„=740 MeV was subsequently found' to be
about 8 times larger than the soft-pion predictions
(for T, , ~ 30 MeV). Since the 1VN phase shifts
in the energy region of interest were not too well
known at the time the calculations of Ref. 3 were
done, we repeated these calculations using more
recent phase shifts. ' %e found that the predicted
p, = 0 cross section changed by less than 20%%uo and
the serious discrepancy remains.

One suggestion' made for understanding this
situation was that the cont. ributions of the ~ isobar
[Fig. 1(c)] were non-negligible for "soft" but
physical pions. In particular, the kinematical
situation with p, =0 enhances contributions from
the higher N& partial waves. Reference 6 showed
that a crude extension of the Mandelstam isobar
model' to include a small d-wave contribution
could predict a cross section in agreement with
experiment.

Since that time soft-pion calculations for sev-
eral other production processes have also pre-
dicted cross sections much smaller than experi-
ment. These studies include the reactions Pp

-NNm, AAmvi, ' and EKEKmm. In each case it
is quite likely that, apart from the leading pole
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diagrams, there are large contributions ("back-
ground terms") from resonances, such as N*,

or
The present paper considers the importance of

resonance contributions, for "soft-pion" kine-
matics, in a specific model for the NN-NNm
reaction. This investigation emerges naturally
from recent nucleon-nucleon dynamical calcula-
tions at intermediate energies. "" The model,
which assumes the isobar breakup mechanism
(Fig. 2), gives a total pion production cross sec-
tion in good agreement with experiment. (There
are essentially no free parameters in the cal-
culation reported in Ref. 12.) We thus consider
the p, =0 ("soft-pion") limit of this model to deter-
mine more precisely how ~ resonances enter this
special kinematic situation and whether their role
is as important as conjectured in Ref. 6. It turns
out that at 800 MeV, inclusion of the postemission
4-resonance contributions gives a cross section
4 times larger than that using postemission nu-
cleon-pole terms alone. Moreover, as Ref. 6
suggested, many high partial waves are involved.

However, in many applications of the soft-
pion theorem, preemission nucleon-. pole graphs
[Fig. 1(b)] are found to be larger than the post-
emission nucleon-pole graphs. Thus, to give a
full discussion of the p, = 0 cross section, we have
extended our calculation to include such graphs,
even though this procedure may deviate from the
spirit of the three-body model. The isobar ampli-
tudes needed in the preemission graphs are again
taken from our three-body model. The inclusion
of the preemission graphs brings the predicted
p = 6 cross section to wlthln a factor of 3 or So of
the experimental value. The difficulty we have
in reproducing the experimental cross section at
p =0 may therefore be an indication that the dy-
nal11ics ln the soft-pion kinematic 1 eglon 18
more complicated than has been suggested in the
past.

It is useful to put the ~-pole corrections to the
soft-pion NN-NNm into context with other soft-
pion current- algebra calculations. Significant
~-pole contributions have also been found in elas-
tic mN scattering, '""nonleptonic hyperon decays, '
and photoproduction of pions from nucleons. "
Typically, these "hard-pion corrections" have

been of the order of 20 to 20%, and it has always
been the else that they have improved the agree-
ment between theory and experiment. %hat is
remarkable about the ÃN-NNm case discussed
here is that the &-pole corrections are quite large
(-50%). Unfortunately, the &-pole graphs do not
completely remove the discrepancy between the
large experimental p, =0 cross section and the
prediction based on the soft-pion theorem.

This paper is organized as follows. Section II
gives the derivation of the amplitude and cross
section for NN -NNm at p, = 0, in the isobar mod-
el. The numerical comparison of the 4 and nu-
cleon postemission graphs is discussed in Sec.
III. Section IV presents the details needed to in-
clude preemission graphs in the calcuIation. The
results of the complete calculation are discussed
in Sec. V, and Sec. VI summarizes our conclusions.

II. AMPLITUDE AND CROSS SECTION
IN THE ISOBAR MGDEI.

A. Amplitude

In the isobar model, the two-to-three-body
amplitude for NN-NNv is given (schematically)
by

(tv¹iTiNN) = gg v G"'T

where the index n runs over the isobars (or
quasiparticles) in the model. Equation (1) is
depicted graphically in Pig. 2. Here g and v
are the coupling constant and vertex function
(including all spin complications) for the n-Nv
vertex, G"' is the two-body propagator for the
(sometimes resonant) vN state n represented by
the wavy line, and 'T is the NN- Na isobar
amplitude.

If we restrict n to N' and &, i.e., mN inter-
actions in the P„and P„partial waves, respec-
tively, then the vertices, propagators, and isobar
amplitudes are aj.l specified. in terms of the uni-
tary, relativistic three-body model described in
detail in Ref. 13. Our discussion of the g, v,
6"', and T will follow that reference closely.

Figure 3 shows the labeling of the two-to-three
amplitude with respect to (center-of-mass) mo-
menta and spin and isospin quantum numbers. The
a-Nm vertex for a =N', ~ can be written as

(vÃ
~
n) -=(p, = 0, t,', —p', m,', t,

~
n; —p', m, t )

FIG. 2. Two-to-three-body 1VN -NN~ amplitude in the
. isobar model. Here the sum on 0,'includes the N' =—Pff
and 4 =—P33 ~N isobars {quasiparticles).

where E contains everything that does not depend
upon direction or spin and isospin components.
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m&, t&, -p
F~ (p') =g~ v~ (V")N(E', m)N(8 ', M') (p'/M')G~~ '(p'),

L, S, J, I-

IT I
i

$ t
I

7 P

FIG. 3. Quantum numbers and labeling of a general
isobar-breakup graph. The spin projection of the isobar,
m~, must be summed over in calculating the amplitude.

[We will also include the G "'(P') as a factor in it].
This simple form results from the assumption

p, =0. From Ref. 13, Eq. (5.5),

F„(p') = 3g„v„(V")N(E',m)N(8 ', M)

where

M' =—o =(P —P~) =W —2WE'+m

where

v~(V ') =P~'/(P~ + V"), g~ =2.43, P~ =0.46 GeV.

[In these expressions we have suppressed a factor
of (4v/3)'t' which eventually will be canceled when
we use the addition theorem for spherical har-
monics. ] The vertices here differ slightly from
the expressions in Ref. 13 in that there we took
M'=m or M~, independent of P . The reason for
this choice in Ref. 13 was to avoid complex values
for N($', M') when doing the integrations required
to solve the coupled three-body equations for the
T . Here, however, it is more appropriate that
M' be the invariant mass of the wN system [par-
ticularly since M =m would, by Eq. (3), mean
F„—0]

The propagators G'-'(p') differ only' by a factor
from the three-body propagators that appear in
the integral equations for the T,

= (P,'+P.)2=m'+2 pE'+ p, 'o (m+ p)', G"'(P')= (2m) 'G„"'(P')=-1/D (o'), (5)

g ~ (M~2+p&2)1/2 E~ (m2 pe2)j I 2

W'=4m'+2mT„„p'=[ —,'(W- tj)2 —m J't',

N(E, m) =[(E+m)/2m]'t', v„(V")=exp[--' V' /p„'],

V = pP'/M', g„=13.41, Pz ——1.75 GeV.

Likewise,

where the D functions are discussed in detail in
Sec. IV of Ref. 13. For a'& (m+ p, )', these functions
are complex, reflecting the two-particle unitarity
cut. The P» propagator G~ ' has a nucleon pole
at 0'=m'j and G~"' resembles a Breit-Wigner
resonance factor.

With Eq. (2), the contribution of isobar o.' to the
two-to-three amplitude is

1 1

&NN IZ'. (NN&=F. Q
~ I

~F„,(p ) &N;p'm, 't, , p' '. t'. ~T—~XN;pm, t„-pm, t, &

t,' t'.~Im,
' ~'m.')

(-,' 1 s.)(-,' s. S"'I(L S" Z'I

m,' ~' m,) IIm,
' m'. .-) I I

" o M1

/ I

I;,(P) &N~, P', I."S"ZI
~

T ~NN, P, LSZI&, (6)
(m, m, oj(p oM

where, in the second equality, we have used the partial-wave decomposition [Ref. 13, Eq. (3.1)] « the
isobar amplitude with quantum-number labels as indicated in Fig. 3.

The amplitude in Eq. (6) needs to be antisymmetrized with respect to the initial and final nucleons. As
written, however, the expression is quite unsymmetric in the final nucleons. Using standard angular-
momentum techniques, "we can eventually rewrite Eq. (6) in the form

I.sr, I, ' s' r'&
C ~ (LSI, L 'S I')B (t, t, I, t,' t 2

I' )A ~ (m, m, LS,P; m, m, L 'S', P
' ),
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where the isospin is contained in

1 X/=' 1

B(t, t, r, t,'t,'I') =' '
t, t, M, )V,

' t,' M,')
the spin and geometry is contained in

A~= QA~„(m, m, Ls, p)A~„(m,'m,'L S',p'),

A~~(m, m, Ls, p) —
! !!

!Y~„(p),
(-,' —,

' s) I. s z)
(m, m, gf (p oMf

and all the dynamics are contained in

C, (LSI,L'S'I') =F.(p')( 1)i"i.s.i' S' ' '
1 I i (M~

e tX & 1

x g ( 1) "L "S"~' L L
~
'

iO O Of 1 S"

S' L" 1 L'
(Nn, p', I."S"JI IT INN, p, Ls'I»

s S' J S"

(lo)
with a= (2a+1)' '. The C~ are complex quantities because of the D function (in E„) and the partial-wave
isobar amplitude T .

The amplitude in Eq. (7) corresponds to just one of four contributing graphs for the NN-NNv process,
that with external legs labeled as in Fig. 3. There are three other topologically distinct graphs that must
be included, together with appropriate signs to ensure the antisymmetry with respect to the initial and
final NN states. Because of the symmetry properties of B and A~„, the inclusion of these other three
graphs is straightforward. The final form of the two-to-three-body amplitude in the isobar model is

&NNv ~Z ~NN& =4
L SI, L' S' I'

J'

P(LSI)P(L 'S'I ') Cz(LSI, L S I )B(t,t,r, t,' t2I')A~(m, m2LS, P; m,'m', L'S', P'), (ll)

where the factor of 4 results from using the projection operators P(LSI) defined by

p(r, sr) = -,' [1—(-1)"'j .
The C~(LSI, I, 'S'I ') in Eq. (11) is the sum of the C ~, n =N and &, given by Eq. (10).

(12)

9. Cross section

The total cross section for producing pions with p, =0 requires summing and averaging over final and
initial spin projections and integration over all directions of the final nucleon momentum p . It is also
convenient (though not strictly necessary) to average over the initial direction p. Further, for a given
process with fixed isospin components MI, MI, we sum and average over the possible isospin projections
for the initial and final nucleons. Thus

f&&, f«, f(&N~f f»,T[*, )
iso ty tpmym2

t', t~m~m2

(13)

where n„, is the number of ways t, and t, can be
chosen so that t, +t, =Mr Substitutin. g Eq. (12)
in Eq. (13) and using orthogonality relations for
the ~M, I"s, and B's, we find

ave

(2z+1)
~
c,(r.sr, L's'I')! '.

niso~ LSI, L' S' I'

(14)

This result only depends on the dynamical quan-
tities C~. The double prime on the summation
sign restricts L+S+I and L +S +I' to odd values
only. For the process pp-npm+-, to which we
restrict our attention from now on, n„,=l and
I= l.

The p, =0 cross section can now be obtained by
integrating the invariant ! T ~

'„,' over phase space
and dividing by the incident flux. (There is an
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additional factor of ~ because of the identical nu-
cleons in the final state). We finally obtain

do & P'

p, dp, (2v)' p (uW(W- (o)

x g (2 +1) ~C, (f.sf, I.'S'I')
1,',

LS, L' S'I'

(15)

20—

where e is the total pion energy in the center of
mass. In this equation we have taken the rapid
dependence on p„which comes from the pion
phase-space factor, over to the left-hand side.

10—

HI. ISOBAR-MODEL RESULTS

In the calculations presented here we have used
the isobar amplitudes T obtained from the uni-
tary, relativistic three-body model of Ref. 13.
The coupled Blankenbecler-Sugar integral equa-
tions for T,, and T~, depicted in Fig. 4, have
one-pion-exchange (OPE) Born terms as driving
terms. These equations are solved for the par-
tial-wave amplitudes by iterating and forming
Pade approximants from the iterates.

The functions F„and I ~ have only small imag-
inary parts, since M', the energy in the mN cen-
ter of mass, is so close to the threshold at m+ p, .
Their magnitudes are plotted as solid lines in

Fig. 5 as a function of laboratory kinetic energy
of the incident proton. (The curves labeled F,
and F~ „,will be discussed in Sec. V). Even near
threshold, I"~ is comparable to I" ~, but above
1000 MeV I'~ becomes substantially larger. Its
steep rise as a function of Ty b reflects the onset
of the (3, 3) resonance. (F~ will continue to rise
until the resonance pole is reached at T„„=9
GeV).

The individual contributions of the J~ partial
waves (J is the total angular momentum and

parity of the initial NN state) to the "soft-pion"
cross section do/p, 'dp, are shown in Fig. 6 for
pP -npm' for two incident energies. The separate
contributions of the N-pole graphs (cr„) and b-

Nl

+ i" pg

+
FIG. 4. Coupled Blankenbecler-Sugar integral equa-

tions for the NN —NN' and NN —NQ isobar amplitudes.

1000

Lab (MeV)

2000

FIG. 5. Energy dependence of the E defined in Eqs.
(3}, {4},{17},and {18}.

pole graphs (o~) are also shown. There is often
a great deal of interference between these two
contributions, which is reflected in the fact that
0„,4 o„+cr~. Besides noting that many partial
waves contribute to (T„„we observe the following:

(1) The Z~ =2', or 'D„partial wave gives a,

relatively small contribution, despite the usual
expectation that NN('D, ) -N&('S, ) is a channel
favored by angular-momentum barrier factors,
and thus is expected to be important. This, how-
ever, is not the case, because the relative N~
momentum P' is quite large for p„=0.

(2) The largest NN-N& contributions are in the
"triplet-odd" (I =4=odd, S=I,I=I) partial waves.
Even the 7 state, for which the N~ state has
relative orbital angular momentum L ~ 5, con-
tributes more than 2% of the total "soft-pion"
cross section at 800 MeV.

(3) In all partial waves but one (Z~ =2 ), the nu-
cleon-pole contribution, which is supposedly
dominant in the soft-pion limit, is small com-
pared with the ~-pole contribution.

(4) The relative importance of the &-pole vis-
a-vis the N-pole contributions grows as the en-
ergy increases, as expected from the behavior of
the I" as plotted in Fig. 5.

(5). The relative importance of the higher par
tial waves also grows as the energy increases.

Figure 7 shows the sums of all the separate
J partial-wave contributions as functions of
incident energy. Again, the ~-pole contribution
dominates the N-pole contribution at all energies.
In particular, at 740 MeV, the cross section in-
cluding the &-pole contribution is 3.6 times larger
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FIG. 7. The isobar-model prediction for the p

= 0 pp —npm' cross section as a function of incident
kinetic energy. The experimental cross section (Ref. 4)
is much larger, 2500 mb (GeV/c)+ at 740 MeV.

80—

0
C9

crN (J )

tj p~ (J )

I ~„,(J')

40— TLpb = 800 MeV

II Ks )
0 0+

I 2
P. D'

2+ 3 4 4+
r% ra

5 6 6+ 7 8 8+ 9

FIG. 6. Contributions of the individual partial-wave
amplitudes to the pp npz' "soft-pion" (p»= 0) cross
section at T &b= 800 and 1500 MeV. The contributions
of the N' and Q' postemission graphs are shown sepa-
rately, along with their sum.

that the preemission N-pole graphs contribute
three times as much to the predicted pp-npm'
cross section as the postemission graphs. There-
fore, in the next section we will consider the con-
tribution of graphs such as that in Fig. 1(b).

IV. INCLUSION OF PRE-EMISSION GRAPHS

Figure 8 shows the nucleon and 4 preemission
graphs that we consider in this section. These
graphs do not in fact appear in the isobar model
described in Bef. 13. If that model were to in-
clude a nucleon-nucleon quasiparticle interaction,
one could generate the nucleon preemission graph,
but the ~ preemission graph would never appear
in a three-body NNm model. %e will use the iso-
bar model of Bef. 13 merely to evaluate the Nn
-NN amplitude that occurs in the preemission
graph of Fig. 8. As a caveat, note that apiece of
the nucleon preemission graph contains the u-
channel nucleon pole contribution to the pN- mN

/~ t~ p&=0

than that from the N-pole graph alone.
However, the predicted isobar model cross

section for p, =0 is quite small compared with the
experimental value. From Ref. 4, the do'/P, 'dp,
at 740 MeV is about 2500 mb/(GeV/e)', nine times
larger than shown in Fig. 7. To a large extent,
this discrepancy is due to the lack of preemission
nucleon-pole graphs [(Fig. 1(b)j in the isobar mod-
el. In checking the calculation of Bef. 3, we found

I I'
m2, t2, —

L'S' J g'

I I
ITI

i
t p

2' 2'

m, , t, , p

L, S, J, I

FIG. 8. Quantum numbers and labeling for a general
preemission graph.
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amplitude. This is presumably the dynamical
mechanism responsible for generating the P33
gN resonance. Therefore, one might worry that
there is some double counting when both nucleon
preemission and ~ postemission are included.
Nonetheless, it is instructive to see how the p, =0

cross-section predictions change when preemission
graphs are included.

%e can again manipulate the preemission graph,
labeled as in Fig. 8, into the form of Eq. 7, but
with a different dynamical quantity C~ „„in place
of C~. The N-&m vertex is of the form

(~pn iN& =(p, = 0, t,', n, -p, m, t, i¹,-p, m» t, &

(t. 1 2)(s. 1

t'~t

jism

X ms)

(t, -t,'t.)(m, ~m.)
where we have used i = s . The &'s are

P„„.(P) = Sg„~„(V')N(Z, m)N(h, M)P —
&

—G„"'(P},

P, „,=W~. ~.(V')N(Z, m)N(S, M)P C."'(I),
where

8 =(M'+p')"', Z=(m'+p')"', V= qp/i',

M'= o = (P —p, —p, )2= (W —p)' —2(W- p)E+m' = (Ps —P,)'=m —2pE+ p,
' ~ (m —p)'.

Thus )

x (NN; p m, t,', -p m, t,
~

T ~Nn; p m, t„-pm, t & .

In contrast with the isobar amplitude in Etl. ('7), which has the right side on the mass shell, here the left
side of the isobar amplitude (the final NN state) is on shell. To relate this to the isobar amplitudes that

we calculate in Ref. 13, we use time-reversal invariance. With phases as given in Ref. 19, Eg. (2.8.2), we

find, after some algebra,

&NN; p'm,'t,', -p'm,'t',
~

T ~Nn; pm, t„pm. t.&
= &NN-; p' m,'t'„p' m—,'t,'~ T ~Nn; —pm, t„pm. t„&*

( ])Itlg+m2+mg+m/+tl+t2+tg+t/

x(Nn;-p-m, —t„p —m -t ~T ~NN; p'-m, -t„p' —-m, —t,'&

~(s —.
' S'}(i' S Z)(-' —. I ly (",)

z s', z" s"zP ~ tm,' ms o') (p g' M) tt', t2M'z)

(20)

The partial-wave amplitudes here are to be evaluated at an energy T» „„corresponding to an on-the-en-

ergy-shell NN center-of-mass momentum p'.
Substituting Eg. (20) into Etl. (19), and then carrying out some angular-momentum algebra, we can con-
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vert (NNw ~T p„~NN) to the form of Eq. (7), but with

I (I
C, „,(I,SI, L, 'S'I') =F„„,(P)(-1)"""2iS

Sn ~ z I

l /1
1)g~ i nSrr f P 2

(00gl

'Thus, the form of the "soft-pion" production cross
section is still given by Eq. (15), but with

C~(LSI, L'S'I') =C~~+C~+C~ y„+C~ p„.

V. RESULTS INCLUDING PREEMISSION

The quantities F„~„nad F~ ~„(which are real,
since M is less than the vN threshold at m+ p, ) are
also plotted in Fig. 5 as dashed curves. The
F~,~„ is even larger than ~F~ ~, indicating why

nucleon preemission is so important for soft-
pion kinematics.

Figure 9 shows plots of how the four components
of a number- of the C ~'s compare with one another
in the complex plane. The nucleon preemission and

postemission contributions, in this model, are
generally of the same size as ~ postemission,

~post
0

0
N post

C~( I I I, 20 t )

FIG. 9. Contributions of different graphs to selected
C&LSI, I.'S'I') at T&~=800 MeV. The tota& p = 0 cross
section sums over squared magnitudes of these C& [Eq.
(»)j.

x(Nn, p, L "S ZI'i TENN, P', L'S'ZS'&. (21)

while ~ preemission is nearly always small. The
following remarks can be made,

(1) When the initial NN state is in a "singlet-
even" partial wave (L =4=even, S=0, I=1), the
final NN state necessarily has unique isospin I

This is because the final NN state has odd
parity following the pion emission. Similarly,
for a "triplet-odd" initial state, I' can only be 0.
Only for the "triplet-even" initial state (L =&
+ 1, 2= even, S = 1,I = 1), do final NN states of dif-
ferent isospin I come in (but without interfering).

(2) As a corollary to the above, I'=1 "triplet-
odd" and I' = 0 "singlet-odd" NN final-states inter-
actions never contribute to the nucleon pre-
emission graphs.

(3) For final NN states with I'=0, there is.no
~ preemission contribution.

(4) For the preemission graphs, which have a,

large value of relative momentum p between the
isobar and the spectator nucleon, the angular-
momentum barrier arguments are even less ap-
plicable than in postemission. For example, the
small & preemission contribution to C,(111,201)
comes about because of a cancellation between the
'S„'D„and 'D, N~ partial waves.

The contributions to the total soft-pion production
cross section from the separate partial waves

~post are again shown, at 800 MeV, in Fig. 10. Only
for the 0 initial NN state does ~ preemission
make a non-negligible contribution. The nucleon
preemission contribution is largest in the 1 and
2 partial waves. Finally, as in Fig. 6, there is
quite a lot of interference between the different
pieces of the total amplitude.

The total p, = 0 cross section, including both
preemission and postemission, is plotted as a

&post

0 function of energy in Fig. 11. The overall change
in appearance of do'/P, 'dp, from Fig. 7 is striking.

Npost Most of the difference is due to the nucleon pre-
emission graph, although the (mostly destructive)
interference of this graph with the postemission

C~( Ill, 2IQ) (isobar model) graphs is also important. Gen-
erally, at lower energies, the soft-pion production
cross section is much enhanced by nucleon pre-
emiss ion.

Specific comments on Fig. 11 include the fol-
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FIG. 10. Contributions of preemission and postemission graphs for individual partial @eaves for the j = 0 pp gp7t+

cross section at 800 MeV.

lowing.
(I) At 740 MeV

I ~~ ~
I' is about 30% of IN - I'

but these two contributions interfere destructively.
(2) The bump in IN~« I' at 900 MeV (for which

T„b ~,.=600 MeV) reflects the resonance-like

l000—

500—

st)

-500—
I

l000

TL.b (MeV)

2000

FIG. 11. Predicted "soft-pion" pp np 7l' cross section,
including both preemission and postemission N' and &
pole graphs.

behavior in the elastic NN-NN 'D, final-state
interaction. This behavior arises from the at-
traction provided by the unitary coupling to the
inelastic N& channel (see Ref. 14).

(3) The bump in
I
&,„,I' at 600 Mev comes also

from the sharp rise and fall of the 'D, inelastic
NN- N~ amplitude.

(4) IN„. I' is large at low energies because of
a strong 'S, final-state interaction. The effect
of this '8, interaction, however, is rather
model dependent. For one thing, the one-pion-
exchange force which drives the Blanken-
becler-Sugar integral equation that we solve for
the isobar amplitudes (Fig. 4) predicts a 'S,
phase shift quite different from experiment. '
(This is almost certainly due to the neglect, so
far, of short-range forces in the model). This
suggests that using more realistic 'S, amplitudes
would give a quite different curve for IN~,. I

'.
If we simply compare the If('S, ) I'=sin'5('S, ),
our model at 750 MeV (T„~,„=430MeV) gives a
value some 15 times larger than experiment.
(This explains why our predicted p, = 0 cross sec-
tion, due mostly to nucleon preemission, is larger
than that of Ref. 3). On the other hand, near
threshold this situation is nearly reversed. The
question of model dependence is further compli-
cated by the off-shell dependence of our NN-NK
amplitude, which can affect the predicted i (i.e. ,
'S, final-state interaction) contribution to the cross
section by as much as 50% in either direction,
depending on energy.

(5) A "better" calculation of these preemission
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graphs might therefore be to use our model only
for the N&-NN amplitudes and to take the NN
-NN amplitudes from experiment (as in Ref. 3).
If that were done, then

~
~p,„~ would be about equal

to ~IN~„~' at 740 MeV, instead of the 30ojq noted in

(1) above.
The most important point about Fig. 11 is that,

despite the inclusion of ~-resonance contributions,
the predicted p„=o cross section is still a factor
of 3 or so smaller than experiment.

Before closing this section, we take this op-
portunity to illustrate the importance of using
unitarized isobar amplitudes. Figure 12 shows
the total p, =0 cross section calculated above com-
pared with a similar calculation which used the.
8 (the Born terms, or driving terms, of Fig. 4)
in place of t;he unitary T~. This latter calculation
might be called a Born approximation for NN

-NNw (and it is very similar, for example, to the
calculation of Ref. 21). The effects of using 8 's
for T s in evaluating the C~'s are quite large,
both in magnitude and energy dependence. It is
interesting that the Born- approximation calcula-
tion One@predicts the "soft-pion" cross section
by abo~t 5(P/o We .feel there is an important lesson
to be learned from Fig. 12, namely, that t'he near
agreement of the Horn approximation with thedata
point is misleading.

VI. CONCI. USIONS

In accord with the suggestion made in Ref. 6,
we have seen that the & postemission graph con-
siderably increases the predicted. p, =G cross sec-
tion over the nucleon postemission graph. Ne
have used a, unitary, relativistic model to cal-
culate the NN-NN' and NN-N& isobar ampli-
tudes needed in this isobar-model calculation.
.The isobar-model prediction is much smaller
than experiment. Including the nucleon preemis-
sion graphs, in accord with the soft-pion theorem,
brings the predicted cross section into much
closer agreement. There is a lot of model depen-
dence in the nucleon preemission contribution,
but the major point we wish to make remains valid:
The &-resonance "hard-pion" corrections to the
soft-pion amplitude are very large in the NN-N¹process.

Since we nevertheless do not predict a p, =0
cross section that agrees with experiment, let us
note a number of points that couM be considered.

(1) The vNN vertex used in this work is pseudo-
scalar coupling rather than pseudovector, as would
be properly required by the soft-pion theorem.
For the basically nonrelativistic nucleons involved
here, we do not feel this mould make significant
numerical changes.

5000—
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FIG. 12. Comparison of the Born-approximation cal-
culation with the full calculation using the unitary isobar
amplitudes obtained by solving the integral equations
depicted in Fig. 4. The data point for this pp npg'
cross section comes from Ref. 4.
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(2) Perhaps when the model of Ref. 13 is extended
to include short-range forces in the Born (driving)
terms, the NN-NN amplitudes needed for the
nucleon-pole graphs may be quite different. It
is unlikely that this will improve agreement with
experiment, since using experimental NN ampli-
tudes instead of our model amplitudes would prob-
ably lower the predicted cross section. [See
comment (4) at the end of the previous section].

(3) The P» nN input used in our isobar model

can be improved (see Fig. 7 of Ref. 13). How-
ever, since 0' is so close to the nN threshoM, me
feel that this also would not make much difference.

(4) Perhaps the most likely reason for the re-
maining discrepancy with experiment is that more
complicated dynamical mechanisms for pion pro-
duction are needed. For instance, the internal
emission graph shown in Fig. 1(d) may also be
important for the p, 0 kinematical situation.
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