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A rIgorous nonpcrturbatlvc appI'oach to radIative corrcctlons In chal'gcd-lepton scatterIng Is derived froQl a
rearrangement of the @EDperturbation series. The new series is covariant and involves no cutoff. Successive terms,
corresponding to an increasing number of "oblique" photons, incorporate the emission of an arbitrary number of
collinear photons. The infrared spectrum of an oblique photon is shown to be suppressed. The zero- and one-
oblique-photon terms are computed and numerical results for the elastic contribution are presented. In the very
inelastic regime, small xs and large gs, we find an elastic contribution to the cross section much larger than that
predicted by standard perturbation theory, %e note that our results may modify somewhat the current picture of
scaling violations, at least in the very inelastic regime.

I. INTRODUCTION

An outstanding problem in practical QED radia-
tive corrections is the following: how to reconcile
the soft-photon nonperturbative treatment, essent-
ial for example in describing radiative tails, with
the perturbative calculation of hard-photon emis-
sion, believed to be justified. In the usual appro-
ach'~ to this problem, one turns to some energy
cutoff which defines the boundary between hard and
soft photons. Since soft-photon contributions,
which involve the infrared divergences, exponenti-
ate, one sums up these contributions to all orders,
whereas hard-photon effects are computed per-
turbatively. The drawback of this approach, which
was very important in proving cancellation of in-
frared divergences, is the unphysical, noncovari-
ant, cutoff dependence of the final results. This
cutoff dependence is awkward when both soft- and
hard-photon effects are important.

The main contribution of this p5per is a new,
practical scheme for the radiative corrections in
charged-lepton scattering. Let us quote what has .

been already achieved by this work.
(a) The approach is rigorous in the sense that our

series is nothing but the QED perturbation series
in a rearranged form.

(b) The theory does not involve any cutoff on pho-
ton energy.

(c) All infrared divergences are canceled out.
(d) There is no limitation for the applicability of

the method.
(e) For very inelastic p, +p scattering, the elastic

contribution we obtain using our method is much
larger than what is predicted by Mo and Tsai's'
one-photon-emission formula, which does not
properly take into account important higher-order
multiphoton emission.

Let us now summarize the basic ideas we rely on
and the methods we use in this paper. It is well
known that, at high energy, real-photon emission

is mainly concentrated along the directions of the
charged particles. This fact leads us to separate
the emitted photons into collinear and oblique pho-

The important point is that collinear photons
exhaust the rea/-photon infrared divergences, and
their effects are included t0 al/ order in Pe~tu~b a-
tion theory through the use of the spectral weight
function we have derived in a previous work. ~'
Oblique photons, whose emission probabilities are
given by a set of precise rules, are treated one at
a time, that is, perturbatively. Let us note that
oblique yhotons are always accompanied by an ar-
bitrary number of collinear photons. Thus, the
radiative tail of any process is automatically in-
cluded. This is the essence of our rearranged
perturbation series.

In Sec. II we present first the guidelines of our
approach and then we derive the oblique-photon ex-
pansion, in analogy with the method of Grammer
and Yennie' (GY). In Sec. III, we give the explicit
zero- and one-oblique-photon terms for applica-
tions to charged-lepton-proton scattering. The
physical meaning of an oblique photon is clarified.
Section IV is devoted to the analysis of the numeri-
cal results for the elastic contribution, arising
from zero- and one-oblique-photon terms and to the
comparison with standard perturbation-theory re-
sults. In Sec. IV, we summarize the results ob-
tained thus far and enumerate refinements of the
program which remain to be done. Finally, a short
appendix is devoted to the azimuthal integration of
the lepton tensor.

II. OBLIQUE-PHOTON EXPANSION SERIES

%'e present first the motivations of the oblique-
photon expansion series and we introduce the nec-
essary ingredients. The second part of this section
is devoted to the detailed derivation of this expan-
sion.
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A. Guidelines of the approach

In this paper, we concentrate on lepton- (electron
or muon) protoh scattering, although the general-
ization of our method to similar processes is
straightforward. Also, our considerations will be
limited to the one-photon-exchange approximation
and we shall neglect all radiative corrections to the
hadron vertex. The slight change of notations from
Ref. 6 is done for consistency with the more nu-
merous symbols needed in the treatment of oblique-
photon emission.

Let p and p' be the momenta of the incident and
scattered lepton E, E' the corresponding labora-
tory energies, and 8 the scattering angle. The pro-
ton and lepton mass are denoted by M and m, re-
spectively. Note that nowhere is m neglected; use-
ful approximate forms of some formulas, valid at
high energy, are preceded by the symbol ™.We
denote by Qsm and x~ the squared momentum trans-
fer and Feynman variable (Z is for experimental)
defined by

—
2,2 (j'j p)&, (&'), (2.V)

where o. is the fine-structure constant, jP the clas-
sical current

and

.p
P" P'

p' k p' (2.8)

V, (u') = V(k')8(k, ) = g(k, —k),
k

(2.9)

where &o„= ) k t.
Let us rephrase soine of the results of our work

in Ref. 4 on which we rely in this paper. As a
starting point, the peaking of the emitted photon at
high energy leads us to attach to the emission of
one photon the relative probability density

before photon emission, respectively.
When the emitted photon is soft, k, -O, k goes

down to the light-cone vertex and we encounter the
infrared divergence. In this limit, the relative
probability density in k space, summed over photon
polaxlzatlons ls given by

=2(ZZ' -pp' cos8 —m')

= 4EE' sin' —,'0 (2.1)
nr, (&)=- aL f 5'(a -vt)

+aA. , 54 k -g'l', (2.10)

2M(z -z') ' (2.2}

We introduce two positive-energy light-cone mo-
menta I and /', which almost coincide with P and P'
at high energy, by

A. =2A= 2 dQ~ -jap, (2.11)

where A =A/2 in the notation of Yennie, Frautschi,
and Suura (YFS), '

I+r ' 1+r (2.3)
and. , explicitly,

The kinematical variable r, which is such that

l'=l"=0, l, ~O, l', o0, (2.4) (2.12)

is given by

I -Qg m m 2

1+ us Qs
(2.5)

Here, u~ is the lepton velocity in the Breit frame
which is given by

pB ~z (2.6}

Consider now the momentum k of an emitted pho-
ton, "drawn" on the positive-energy light cone.
When the lepton mass can be neglected, there is a
large probability for 0 to be collineur with l or l';
this is of course the well known peaking approxima-
tion' which emphasizes the, p and p' peaks. These
peaks arise from k p and k ~ p' denominators cor-
responding to the propagation of the lepton after or

The above considerations allow us to distinguish,
among the light-cone photons, collinear and oblique
photons. ' The important point is that collinear
photons exhaust the infrared divergences arising
from real-photon emission and their effects can be
included to all orders in perturbation theory
through the introduction of the spectral weight
function

y2 2 y -aA
z„(p,p';Z) = ',-- r-'(aA)e" i"&

E

dV dO' 4x ... ~x b'(K -al -o'l').
(o( &)1-cx

(2.13)

Here, I' and y are Euler's function and constant,
F (r) is a normalization function given explicitly in
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Ref. 4, and K is the effective momentum of the col-
linear photons. As we shall see shortly, the photon
mass regulator X which appears in this equation
cancels immediately, once virtual radiative cor-
rections are included nonperturbatively. Here, we
shall rely on YFS or GY analysis, although we use
the vertex function we introduced in Ref. 4. For
spacelike momentum transfer, this function reads

P —&nA7Z (1 + &A)&nB+n/ 2t( (2.14)

where 8 is the function defined by YFS. Note,
however, that I'„ is essentially e~~ at high ener-
gy. Ec[uation (2.14) will be the starting point for
virtual radiative corrections in this paper.

As in Ref. 6, we shall introduce a spectral func-
tion free from infrared divergences, which takes
into account the contribution of collinear photons
and also part of the virtual-photon effects repre-
sented by E(l. (2.14). This function is given by

E(P, P'; Z) =Z„(P,P'; Z)F,'

)( $4(ff gf off( }

(2.15)

1 l(.e~ I, 1 Qs m

E(r) =F(r) +2B + —-A, ln — — =' —ln
Q & m 6

(2.16)

The form of F(r) which takes into account the com-
plete lepton-mass dependence is given in Ref. 6.

In some kinematical domains, for example the
vicinity of the elastic peak, the emitted photons are
necessarily soft owing to phase-space limitations.
In this case, the collinear photons alone, which are
also soft, represent an excellent approximation to
the physical process. When we vary slightly the
kinematics in such a way that more phase space
opens to the emitted photons, we can still describe
the process in terms of collinear photons, pro-
vided we include a "hard factor" derived from corn-
parison with standard perturbation theory. A full
account of this approach as well as explicit compu-
tations using this nonperturbative technique is
given in Ref. 6.

For recent high-energy p, + p experiments ' jn
the very inelastic regime (small z~ and large q '),
the emitted photons can no longer be considered as
soft and the above approximation becomes totally
inadequate, at least for the contribution of the

elastic peak. In this regime, radiative corrections
are very large owing to hard bremsstrahlung, in
which the squared momentum t, transferred by the
exchanged photon, can be considerably lomer than

Qsm. This process leads to a "f peak" where sim-
pie kinematics shows that the minimum value of t
is given approximately by tm~= M'x~'. On the other
hand, a collinear photon implies t =t~ or t =t~. ,
which are the values of t for the P and p' peaks,
respectively. Consequently, as emphasized by Mo

and Tsai, ' there are large discrepancies between
the peaking approximation and the exact one-pho-
ton-emission formula in the very inelastic region,
especially for the elastic contribution. In Ref. 6,
we emphasized that in the very inelastic region,
hard bremsstrahlung becomes a basic process by
itself and, as such, it must be radiatively cor-
rected. In other words, at least for small x~ and

large @~2, we must take into account additional
photon emission on top of the bremsstrahlung pro-
cess. These "corrections" can, and indeed do,
modify the already large hard-bremsstrahlung
cross section. Here, the separation between hard
and soft photon is unclear and, in any case, non-
perturbative effects are too much involved to be
computed by the known techniques. This is not a
minor problem since inadequate radiative correc-
tions to the data will give misleading radiatively
corrected structure functions.

The above problem is completely solved within

our theory. We take into account the contribution
of collinear photons to all orders in perturbation
theory and, in a precise technical sense, we ex-
pand in the number n, of oblique photons. The t

peak can be reached beginning with n =1. Without

any cutoff, it turns out that an oblique photon is
mainly hard since the soft part of its spectruIn,
d&u/v, is suppressed. As we shall see, the emis-
sion of oblique photons is always accompanied by

an arbitrary number of collinear photons. In this
sense, radiative tails are automatically incorpor-
ated in the cross-section formula.

B. Rearrangement of the perturbation series

%'e shall now derive a rearrangement of the
cross-section perturbation series in the one-pho-
ton-exchange approximation. Although differing in
presentation and objective, this derivation is quite
similar to the QY method.

The differential cross section for lepton-proton
scattering with emission of n unobserved photons

is given by
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Here W „"„"is the usual nonradiative (NR) proton
structure tensor, p' is the amplitude for the emis-
sion of n photons of momenta k& and polarization e„
and q is the momentum of the exchanged photon.
For n =0 there is of course no k integration. I.et
us note the fol.lowing properties of p": (a) symme-
try in photon momenta, and (b) gauge invariance,
leading to the Ward identities

k&'p"„...„(p,p'; k„... , k„) =0. (2.18)

In what follows we take the explicit convention of
expressing p" as a function of p, p'; k„..., k„, con-
sidered as independent variables. This extends its
definition outside the support of the 5' functions in
Fq. (2.1V). Equation (2.18) allows us to sum over
photon polarization using

The lepton tensor@ T~„& ~ are simply related to the
amplitudes p through

Tt )«X(PIP &k19'''9k «) Pug'''ll P)(~''p «
tl [ +PgD(6 (k 2)]

2g

(2.21)

The X index attached to the TI„')) reminds us of the
infrared divergence of these tensors which is due to
virtual radiative corrections. To get rid of the
Lorentz contractions in Eq. (2.20), let us write the
standard form of the nonradiative hadron structure
tensor,

waW ~,(P, q) =,
~
P -=;q ~ P, -~ q, W, "(q', u)

and Eq. (2.1V) becomes

(2.19}
WNR(q2 +) (2.22)

dg Pygl

n

( $~,
5' p-q-p'-p a)w„"„'(p,q)

t

where v = I' q. Since the lepton tensors verify the
following Ward identities,

x ™Id'k, V'("„)„(p,p';k„. . . , k„).

(2.20)
and also similar identities with q„-q„, , we can
write Eq. (2.20) as

d&g o! ' d 4, —,
~

—,

4
dQ~dZ~ p ( ( +)~ p q p Z ~ J ~ ~ Wi (q ~ &)~g(«)).(P~P ik» ~ ~ ~ ~k«}

=1 -1 (2.24)

with the following definitions:

ill PuPv uv
Tz(«)) R((v V («) k~ T2(n)X M2 T(«p. ' (2.25)

C(" =b(P P'k )k"k"

OI'" =gI'"-k(p, p';k, )k,"k," . .
(2.2V)

(2.28)

The function b, suitably chosen later, depends on
the fermion lines pair (p„p,) emitting and absorb-
ing the photon of momentum k, It is precisely this
dependence which distinguishes Eq. (2.26) from a
trivial gauge transformation.

The following analysis is most easily understood
by representing Tt„')„or T&(„)), as a fermion loop cut
on both lines with n photons, also cut, going across.
Photons arising from virtual radiative corrections,
of course not cut, can be included. Now the basic
ingredient in the rearrangement of Eq. (2.24) is
Grammer and Yennie's' decomposition

(2.26)

with

I

To sum up the contribution of the collinear (C)
photons, we shall use the Vizard identities repre-
sented in Fig. 1. The graphs include the propaga-
tors of the fermion lines. The dashed line repre-
sents a gauge photon, that is, a photon with a k"
polarization vector. After multiplication of these
identities by the inverse propagators S '(p'} and
S '(p} and insertion between free-fermion wave
functions, the right-hand side of these identities
reduces to the second and first term, respective-
ly.

Let us now expand every real photon which con-
tributes to T&„&z, in collinear and oblique parts ac-
cording to Eqs. (2.26)-(2.28}, beginning for exam-
ple by photon n. The oblique contribution of k„will
be noted

(B)k(pt P t» 1 kyl » 0«) ~

The contribution of the collinear part can be com-
puted since it is obtained by attaching in all possi-
ble ways to T&„»&, which is proportional to
p(~ ~) p(~ ~)~ a gauge photon k~ For a, fixed emis-
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p(p p k ' k )

=T(„)),(prp r'kyar ~ ~ 'r kn rr -On}

+ ~I(k.}T(. ,)g(p, P"k u ~ ~ ~ k.-r» (2.29)

sion point, w'e can sum up over absorbed photons
belonging to the same line using Fig. 1 identities
and then over emission from the same line, these
photons having the same b factor. Thus we get the
following identities:

k

k4

k3

k2

k&

k4

k3 -e
k2

kg

k4

k3

k2

kq

where

I(k) =-, .[k(p, p;k)+f (P', P';k)

2b(p, p'; k)], (2.30)

x
4gp

k4

k2

kq

k

k4

ks

k2

k)

k4

k3

kp

kq

equivalent to the GY identities.
For later reference, let us reduce one more pho-

ton. Using twice Eq. (2.30), we obtain
FIG. 1. %'ard identities in graphical form. The graphs

include the propagators of the external fermion lines.

(n)k(pr P r rr ' ' r n} T(n)X(pr P r kv ' ' r kn-xr On-rr On}+ ()(I(kn-)}T(n- )y(ip Prr k)r ' r kn-xr On-rr 0„)
+aI(k„)T(n ))~(pr p, k„.~ ., k„2)0„„0„}
+ (R I(kn) a I(kn, )T(„,)~(p, p, k„.. ., k„„0„„0„). (2.31)

n

T()y(p p 'k k )=g
r=O j+ &5 ~ ~ ~ &i cn

1 2

We return now to Eq. (2.24), Using the Fourier representation of the () function,

I ("i,) ''I(ki„)T(„„)),(p, p';0„». ~, Oi, ''0; '' 0„)» (2.32)

The arguments marked with an overbar are in fact missing. We note that every missing argument is trans-
mitted to a factor aI. By iteration, we can reduce all photons in succession with the result

()4(p pr g k ) i(p q p')x --id-rix (2.33)

and Eq. (2.32}, we write Eq. (2.24) as

don ci P' d'x «p q pr» dqq
NR( 2 )dn' dE' P ! (2~)' (q')'

n , p, .xg~g d &)e &" I &g ''I &]„
r=D 1 5 &a2»r ' ~ &j; ~ ' &Il 5= I.

(2.34)

Owing to the symmetry of T«„„) in the momenta k, , . . . , k, , all terms of Eq. (2.34) with fixed p. give equal
contributions. The number of such terms being

n(n —1) ~ (n+ 1 —q ) n!
gt ~! (n-r)! '

Eq. (2.34) becomes

don Q p & d & i(p-q pr)x 'q WNR(q2 p) [I(g)]xTO (p pr .~)
dQ' dE' p „= r'. (2&)

Here,

r(x) = fd'rr(r)e "
&rr&r(r P'*) = —„fI, d ri ~ ' '*) Xrr&i(r, r'; r„. , r.),

and we have used the abbreviation

T (- )r'kn(PxPr rp 'r n} Tj( - )(np xP)(r0r1r ' ' r Oirr ' 'r Oiler ' 'r n}

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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(2.40)

for the lepton tensor components corresponding to oblique-photon emission. Upon summation over unob-
served photons, we get from Eq. (2.36)

x4 e d zx2 W' (q )Ei(p P '&) ~ T ( )x(p P i&)
J 0

after permutation of r and n summations. Here,
E z is the spectral weight function4' in x space, de-
fined by

E~(p P'; ~) =exp[~ I(~)) .

Equation (2.40) is more transparent in momentum
space. The spectral weight function, which takes
care of the emission of an arbitrary number of col-
linear photons of effective momentum K, being
defined by

At this point, we follow' a different course from
GY. The b function, which w'as left arbitrary up to
now, is chosen such that ().I(k), defined in Eq.
(2.30), is now the collinear function of Eq. (2.10):

d '
~,(k) = +X 64(k-~i)++X, 54(k -o'1')

0' 0

According to Eqs. (2.10) and (2.11), the sym-
metric form of the b function is then

d «((r, (r';d() = f q, ).«"*d((r, (r', «)

(2w)4

a4
&E:x+nF(x)

Eq. (2.40) becomes

da' Qtp d g 4 gR
dn'dZ' ( ')'

x Ex(P, P', P -q P' -Q)-

g T;(„),(P, p';Q).

(2.42)

(2.43)

Bl
d( ;(r;(r}d= J d(), - f rr (q -«)),

(2.46a)
q

2

( d'(; r ()r= qfdQ. . .. Jl
', I!'(d-r!'i'),

(k. p')-

(2.46b)

k(p, p'; k) = b(p', p; k) = dn,
(k p)(k. p')-

(mp. P~ P i ~ ~ ~

1= 1

x 5'(Q- k,.) .
= l

(2.44)

Another form of Eq. (2.43)„which uses Eq. (2.44),
appears as

da

d 0' dE'
ao

( &4 m
Q, P dQ ~&= 4 p 1 ~

2i2 «, d k) Tj( )x(p mpq q1} '''}' n)
d

P m=0" (g

x W"."(q, v)E~

«~ P P" u-&-&'- (2.45)

ln the last equation T&&„)~(p,p'; Q) are the inclusive
lepton tensor components corresponding to the
emission of m oblique photons of total momentum

Q which, i'rom Eq. (2.38), are given by

q!,.(dd ;()) f(„,).'"*=«,';.„(d,q'; ).
~««

x —,
' 54(k —gl)20'+,54(k —o'l')

20'

(2.46c)

where k" = k)'/&o, and the 0„ integrals have been
computed in going from (2.11) to (2.12).

Equation (2.43) or (2.45) must be complemented

by similarly analyzing virtual-photon contributions
to the lepton tensors. This has been done by Gram-
mer and Yennie and we shall, throughout this pa-
per, rely on their results, except for the replace-
ment of e" by E„gi evn in Eq. (2.14). F„has the
correct threshold behavior for timelike momentum
transfer, but e and E„differ very little at high
energy. Of course, both functions exhaust virtual-
photon infrared divergences. When I'„' is lumped
w'ith Z~, infrared divergences cancel and Eq.
(2.45) can be written in the form

, 2,2 Wd "(q', v)T;(,)(p, p')E(p, p'; p q —p')-
(g j

2

+ (,), d'kW, ". "(q', v)To(,)(p, p';kg)(p, p';p —q —p' —k)

. «Q r«' ——,—, d')rr rq"'(q', «)q'i r((r, d', d, , d. )d q, d';(r-q-(r'-Ed;), (q.qq)
HO=2
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where Z is given explicitly in Eq. (2.15) and

T(l(pp'k, k)=T&ly(pp'kk)/F
(2.48)

are infr ared-convergent lepton tensor s. To lowest
order, every one of these tensors can be computed
in the tree approximation. The next order, in.-
frared divergenceless virtual radiative correc-
tions, are known only for the simplest lepton tensor
T j(0) from our knowledge of lepton e -m vertic es to
third order.

The first term of Eq. (2.4V), which describes an
arbitrary number of collinear photon emission,
was discussed in detail in Ref. 6. The next term,
corresponding to one oblique photon and an arbi-
trary number of collinear photons was taken care
of approximately. In particular, we have shown
that when the t peak is not very conspicuous we can
take into account, approximately, the effect of the
second term of Eq. (2.4V) by multiplying the zero-
photon lepton tensor T;«& by

II =" (1 —v+ —,'o')(1+ o'+ —,
' v"), (2.49)

where o and o' are the parameters appearing in Eq.
(2.15). Strictly speaking, oblique photons are
merely corrections to collinearity, especially in
the quasielastic domain (xs= 1) where II can be
less than one and the second term of Eq. (2.48) is
negative.

The above approximation breaks down when the
lepton loses a large fraction of its energy in the
scattering process. Since t has its lowest value
when the hadron vertex is elastic, this breakdown
occurs first for the elastic contribution. In other
words, when the t peak becomes important, we
have to compute exactly the first two terms of Eq.
(2.4V). This is done in the following sections.
From a close examination of our results, we shall
claim that two-oblique-photon emission, whose
contribution could be computed with some labor, is
not expected to appreciably modify our results.

F,=F„,—, in~ '[1+O(n )] .2g
(3.4)

Taking these corrections into account, Eq. (3.2) is
modified to

T, )«=2(Q~' —2m')V„'(1+ r C,),
T„„=(4zz' q, ')v-„'(1+~c,),

where

(3.5)

(3.8)

n, 1 a '(1+y)x —lny ln'y
w 8 m (1-y)

(Z + Z') 2a 1nr o. 2 in y.

4ZZ' -Qx' m (1-y') v 4(1-y)2

(3.8)

%'e note that these corrections are small compared
with those already taken into account via F„.

We shall denote by E and E' the energy compon-
ents of the four-vectors t and t'. From Eq. (2.3)
we get

E -xE m —, E' -xE m

i+g ' 1+x (3.9)

and, from Eq. (2.25),

T,«&(P, P') =2(g~' —2~'), V',
«&

=4ZZ' -Q~',

(3.2)

where Q~' is defined in Eq. (2.1). The infrared-
convergent parts of higher-order virtual radiative
corrections to T;&» are easily derived from the
known expressions of the electric and magnetic
lepton vertices which, in our notation, read"

F, =F„V~

n (1+r)= F 1+— —in~ ' —1 +O(a')
m .2(1-~)

(3.3)

III. METHOD OF TREATMENT OF OBLIQUE-
PHOTON EMISSION

A. Summary of previous results and kinematics

For later use, let us first present a summary of
zero-oblique-photon-emission treatment, discussed
in detail in Ref. 6 and represented here by the first
term of Eq. (2.4V). To lowest order, the lepton
tensor correspondirg to zero-photon emission is of
course well known and is given by

Besides Z =P p/M and Qz', one needs one more
"experimental" invariant which is chosen as

v, =p (p —p') =p (1 —t, ') =M(z -z')
=M(z -z')

or, alternatively,

zU@ =(P+ p —p ) =2v@ —Q@ +M

(3.10)

(3.11)

Let K be the total momentum carried off by the
emitted collinear photons which, from Eq. (2.15),
is represented by

Tg =-,' Tr[y~(P'+m)y"(P'+m)]

=2(m' -pp') g""+2(p"p'"+p"p'")
I

(3.1)

K = ol+ o'l'. (3.12)

Without oblique-photon emission, the spacelike
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momentum transfer u carried off by the exchanged
photon is given by

u=P -p' K=l E K
= l(1-o) —l'(1+ o') . (3.13)

The fundamental invariants, which incorporate col-
linear-photon emission only, are defined as

q' = -u' =qs'(1 —o)(1+o'},
v =a u=-M~5'=VE-OMZ -O'MS',

(3.14a)

(3.14b}

co = (P + u)' = M +2Mb.E -Q
= zo @

—vA s —o A. Et + o(T Q s2 I 2 (3.14c)

Here AE and AE. are the following useful combina-
tions:

As =2ME -Qs 2,

A@i =2ME"' + Q@

(3.15)

(3.16)

and we have used the equation

(l - l')' =(p -p')' = Q.'. (3.1V)

Setting Eq. (2.15) into Eq. (2.4V), the zero-
oblique-photon contribution to the differential cross
section can be written in the form

Here I'0 is the Mott cross section,

2 P' (4EE' —Qe') m of' cos'8/2
P Qs' 4E' sin'8/2

oo, oo

W"o '= (oA)'e""" V„'
J

do do'(&m')"" '
0 0

cr ~ 0, o'-0 and I' ~M', p~ 0, (3.21)

we make the change of variables (o, o') - (su', v),
where z is a variable which varies between 0 arid 1
along a constant m line,

(ms' -Ã') (1 —q.)
As[1-z(u')v]

(Ws' -CO') ~

(3.22)

(3.23)

W (zv' Q')
(1 }2(1~ P)2 7 ( ' )

where we have used Eq. (3.14a).
In the (o, o') plane, the boundary of the integration

domain in Eq. (3.20) being defined by

do ~ =E W"o '(I+rC, )

2 2 2

+2W"o ' s (1+ rC )4EE' —Q

where

Qs'(wz' —w')
AEA. E

(3.24)

(3.18)
I

Equation (3.20) results in the form

QA)2 ecF(t)1 'd7. w@ dgg2 ~A@2 q2)p'"O 0=
(A~s. )"" ", [~(I —v)] '-"" 2 (~ '-S')' ""[I-z(Ã')~]~~(l-o)'(I+o')' (3.25)

(3.27)

We note that while the exponents of the 7 = 0 and 7 = 1 singularities are decreased by nA, that of the zv2=zoE2

singularity is decreased by ~.
When we consider the elastic contribution to the structure functions, this last equation simplifies. The

elastic, nonradiative structure functions are expressed in terms of t"E and G„, the electric and magnetic
proton form factors by the well-known formulas

2 2 2

(3.26)

For numerical applications in this paper, we shall use the dipole expressions of the proton form factors
proton

Gp ot.n
2 793 (1+ q'/0 71 GeV')' '

Using Eqs. (3.26) and (3.2V) in Eq. (3.25) we get

(aA)'e"""'2MV„' ' d~[~(I —7)]""-'W(q')
(w '-M')' ""(A A, )"&, [I -z(M')~] "&(I-o)'(I+o')' ' (3.29)

where z, o, and cr' are given by Eqs. (3.22)-(3.24) with W'= M'.
Let us end this summary by noting that a very efficient method for effecting the w and m integrations is

the Gauss- Jacobi quadrature described in Ref. 6, which we use frequently in this paper.
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B. Practical form of one-oblique-photon emission

We study now the second term of Eq. (2.47). The lepton tensor corresponding to one-oblique-photon
emission is known only in the tree approximation. Higher-order infrared-convergent virtual radiative
corrections, not known for the moment, age expected to give small corrections to the cross section we
shall compute, in analogy with the case of the zero-oblique-photon cross section we have presented [see
Eqs. (3.3)-(3.8) above]. The reason is that these corrections, unlike additional photon emission, do not
modify the kinematics of the basic. process; they are neglected throughout this paper.

The ordinary lepton tensor, corresponding to one-photon emission, is given by

e'
5 („,), g (~, )

g(P" + k+ m) y" y"(p'-P+ m)g
(2v)' ' (, ) g 2k P' 2k P

and, explicitly, reads"

y" (P" +k+ m)g g'(P'-k+ m) y"
2kP' 2kP (3.30)

TI,") = --2, 5,(k')(2(-j') [(m'-p p')g"'+ (p"p'"+ p"p'")]+ RI'n j, (3.3l)

,, (kP kP kP kP'"'
)~ik P' k P &(k P)' (k P')' k P' i P,

+ 2(p "p'"+p"p'")
I

t'

Ek"P'

P~k'+P"k» &P P'
kp' t, kp

4pgP~llj 4p]l~P pPPI P+ pPPI P p pt ~2
kP kP' kP kP kP' kP
m' 4m'a"a"———

—, +1
k p' (k p)(k p') (3.32)

2P'P' ' m'
(k P)(k P') (k P)' (k ~ P )' (3.33)

lt is well known that the classical current term, proportional to (-j ), leads to an infrared divergence
while the "remainder" 8 gives an infrared-finite contribution. prom Eqs. (2.29), (2.l, o), and (3.l. ) the cor-
responding lepton tensor is given by

@x
T(i) =~(i) —[2(m'-p p')g""+2(pP'"+pp'")] nX '~'(k-o, &)+ nX —,' 5'(k-a', l') .

Qg 0'
~ J

(3.34)

The physical meaning of this equation is obvious The ".counterterm" al, (k) T&,i, which is subtracted from
T~",~, avoids double counting of the P and p' peaks and, as we shall see shortly, cancels the infrared diver-
gence. To be rigorous, we may assume temporarily that the & functions are arbitrary test functions and

use them to control the infrared divergence of the separate terms of Eq. (3.34).
Upon contraction of T&",

&
according to Eq. (2.25), the oblique-lepton tensor components read

'2
dQ — dG~

T,(,)
= 2(qs' —2m')

2 6,(k') - N7L
'

(5k fo) —QX-~&'(k -cr', f') + —;— 6,(k') ll, (,),
7T 1

(3.35a)

'2 d d0'
Z",'„,=(4&E -qQ '-5. (k')-~X ' 5'(k ~,f)-nX —,' d(k-~;f) +( +) 5+(k')Il„„,

(3.35b)

where

)I' 1 '

1 k'p k p'l 2' k p' 0 p 1 1
A =8p pl — — +4- +- +4m', —--, —, +=- —--" 'lk'p' k p k'p' k'p j (k'p) (k'p')' k'p' k p

(3.36a)
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1 kp kp kp kp
R2(,&= —2 (2p'p'+m

k p' k p
+

(k p)' (k p')' + k'p' + k'p

] 4g ~ 4@~2 @~ k p ~ p pyg~ ]
k. p k p' k p k.p' M (k p)(k p') (k.p)' k p~ ~

~ ~

~

+4E-I k& p pI 'm' 1 l 4m2(J k)'
&(k P)(k P) (k P)' k P i M'(k P)(k P)I I 2 I 2 I (S.seb)

I

Using again Eq. (2.15), the one-oblique-photon contribution to the differential cross section, the second
term of Eq. (2.47), is

yo tt p22& ~2*I 00 CO d4kP (+A)2 eIIE(r& do doI (o o.I}nA-l ~NB To
dP' dE' P' (q2)2 J J(l& I

where now

q=u —k = l(1 —a) —l'(1+ o') —k.

Using Eq. (3.34), we can bring Eq. (3.37) to the form

NR T ~(o);
(q')'

(3.37)

(3.38)

CfVy TV o g o(p)
QA

( 2}2
k =eP'

(3.39)

where T, (» are the invariants formed from the ordinary lepton tensor T(,"). It is convenient to present
the last equation in a form similar to Eq. (3.18):

dQ'dE' ' ' ' 4EE' —Q
2 (3.40)

d'k dV ~NR
g&'IIo=& —(~)2 eII2'«& dgdoI (oo ')™A 1

J i (O& (q2/Q2 )2 & I'(&&
( /q2) 22

0 k= apl

do, W,
~I

I~

~~ ~

N
~

~

~
~

k ~~~II ~~ ~I

~I (s.41)

Here, TJ&» are given in Eq. (3.2) and there is no
summation over j in the right-hand side of this
last equation.

The collinear or (c, cr'} integration is the same
as in part A of this section. Thus, we need dis-
cuss only the k integral and the counterterms
for a fixed (c, o') point. Since W&a are functions
of se', the squared mass produced at the hadron
vertex, and t, the squared momentum carried off
by the exchange photon, it is natural to use these
quantities as integration variables in Eq. (3.41).
In the laboratory frame with u as a polar axis,

A
&=—&~ and xk = u 'k, these variables are given by

w' = (P +q)' = (P +u -k)'

Here, ~E is the energy component of u.

r&, E -=u, = E (1 —rr) —E ' (1+o') (s.44)

u = [u )
= [q'+ (&E)']"' (s.45)

0'-t+ w' -w'
2M

(s.48)

For the counterterms in Eq. (3.41), we shall use
w' instead of e„or o', variables. Using Eq. (3.42),
we get

From Eqs. (3.42) and (3.43), we note that the ener-
gy u of the oblique photon is given by

and

=u&' —2' (M+ &E -ux, ) (s.42) BP~2~g &

= (I + u —v&f )

= w2 —2o, (M$ + u l )

f = -q' = —(u —k)' = q' + 2~ (&E -ux ) . (3.43) = w —v&[2ME —Q@ (1 +0')] I (3.47a)
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'w I» ot)i= (p + u —(TIl )

=w' —2(J', (MP.
' —u. l')

=w' -o',t2ME'+ q,'(1 -o)1. (3.47b)

t&.(,)(w )= t~»; = —(u -s, l }

Q~'(1 ())(w-—w')
2ME' +ps» (1 —v)

(3.48b)

After the change of variables defined by Eqs.
(3.42) and (3.43) is effected in the first term of
Eq. (3.41), we are left with the azimuthal integra-
tion which is analytically effected in the Appendix.
0eflnlng

(3.49}

and, similarly [compare Eq. (3.31)]

1
(Rj()) 2 lkPAg())y

0

Eq. (3.41) becomes

(3.50)

W" '= (aA)'e" '~ J dw'I .dQ do'

j (oat )
)-IxA

(3.51a)

2

The corresponding t variables represent the
value of t for the p(kIIl) and p'(k(~ f') peaks, with
collinear photon emission incorporated. Using
Eqs. (3.43) and (3.47) we obtain

t„„(w')= f ~» .„=-(u-a, f)'

(I)R' (1 + (r') (w' —w')
2M'' —())

' (1+a')

(3.48a}
I I

I I

I I

Ah

W~'
W

FIG. 2. Integration triangle in the (gg, t) plane for
oblique-photon emission (schematic). The lines t&&~&

and t&&~~& correspond to the collinear counterterms sup-
ports.

represented by the lines t~(y) and t~i(», respective-
ly.

To demonstrate the absence of infrared diver-
gence and also to gain physical insight into Eq.
(3.51), we make the decomposition introduced in
Eqs. (3.35) and (3.36) in which we separate the
classical current contribution, which is of order
(d 2, from the remainder R which is of order ~
or higher. Furthermore, we effect on the inte-
gral representation of o.X (Eq. 2.11) the azimuthal-
angle integration (in the laboratory frame with u

as the polar axis) and we change the x» = cos 8»

variable to t. The result from Eq. (3.51b) is

28&uM q (~2) t T~(o)

1 mg mg'
+ —. 2P' p'X—2 g3 St3

WNR( 2 t) WNR( 2 t )
t 2t

aXQR W"; (w, t»(,)) Wj~ (w, f»(»—2 2 2 2I —SV - tp(, ) Epr(~)

(3.51b)

WNR(w2 t )
&

2t~'o)

(3.53)

and the integration limits on the t variable result
from Eqs. (3.42) and (3.43) and read

(w' —w')(b. E+ u)
t I+ Qgy~ (3.52)

Consequently, the integration domain for the first
term in Eq. (3.51b} is the ABC triangle of Fig. 2.
Let us note that, in our change of variables, the
origin of the light cone has been transformed into
point C, while the & =o,l and 0 =v', /' lines are

The combination 2P P'X —@Pa/S' —))Pa'/S is the
result of the azimuthal integration and is given
explicitly in the Appendix, while (d is given in
Eq. (3.46).

By noting that the quantity in the square brackets
of Eq. (3.53) vanishes at point C of Fig. 2, Eq.
(3.53}demonstrates the infrared finiteness of the
one-oblique-photon contribution and clarifies the
role played by the cqunterterms. This is a basic
result of our theory and has important corollaries.
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In particular, it implies that the oblique-photon
d(d/&u spectrum is suppressed and thus, in prac-
tice, an oblique photon is automatically a hard
photon without the need to recourse to any cutoff.
Note that the converse is not true: collinear
photons may also be hard. If the experimental va-

riables are such that only the soft domain of phase
space is available to the emitted photons, as it is
ease for x~ = 1, the oblique-photon contribution is
expected to become negligible.

Using the change of variables defined by Eqs.
(3.22) and (8.28), Eq. (3.51a) becomes

where 3; is given by Eq. (3.51b) or (3.58}. On this
last equation, we see that the one-oblique-photon
contribution involves, for a continuous spectrum,
a fourfold integral whereas the zero-oblique-
photon contribution, given by Eqs. (318) and (3.25),
involves a tw'ofold integral only. The delicate
integrations over I)' and v are very efficiently ef-
fected using the Gauss- Ja.cobi integration method
discussed and used already in Ref. 6. Here, we
shall quote the formulas permitting the fixing of
the notations.

Suppose we have to compute the integral

I(1; a, P)=2. (3.56)

The approximation for "degree" n to this integral
is given by

)(f;a, ()) = Q (:„„(a,(t)f (x„,), (8.5V)

where x„„are the roots of P~8i(x), the Jacobi
polynomial of degree n, and C„„the corresponding
w'eights. These polynomials are orthogonal on
the [ —1, 1] interval with weight function (1-x}
x (1+x) . When a =P =0, we recover the well-
known Gauss integration method where P~~ 8~ re-
duces to a Legendre polynomial. In this case,
x„„and C~ can be computed once and for all and
are available in many computer libraries. Sup-
pose now that e= -I+oA and P is zero. In this
case, the weight (1-x} """is concentrated in the
vicinity of x =1 and, if the function f is smooth
enough, the main contribution to the integral
comes from the vicinity of x =1. This fact is
taken into account automatically by this method
since, in this case, there is a root x~ =1 —O(aA)
whose weight is C,„=2 -O(aA) out of a total
weight of 2. A similar remark holds if a =P - —1
+ aA. . As for the Gauss method, the rapidity of
convergence of the Gauss-Jacobi method depends

+1

I(f;a, P)-=B(a, P}2 " s dx(1-x)~(1+x)~f(x),

(3.55}

where B (a, p} is Euler's 8 function and the normali-
zation is such that

I

on the smoothness of the function f; for a given f,
the convergence is accelerated when o.A. decrease.
Finally, to effect the@ integration in Eq. (3.54) or
(3.25) we have, for simplicity, scaled the whole
interval [M, w~] to [-1, 1]. Of course, whenever»M,
one may avoid the computation of roots and weights
of Jacobi polynomials of large degree by splitting
the w integrals into two (or more) parts and using,
after the appropriate sealing, the Gauss-Jacobi
method only for the interval involving so~.

Equations (3.25) and (3.54), which give, respec-
tively, the zero- and one-oblique-photon contribu-
tion to the structure functions, summarize the
results of this section.

IV. ELASTIC-CONTRIBUTION RESULTS

In this section, we present and discuss some
numerical results illustrating the physical con-
tent of our theory. Generally speaking the rela-
tive order of magnitude of the zero- and one-
oblique-photon contributions varies rapidly, at
high energy, with the experimental point (x~, Q~')
under consideration. For quasielastic scattering,
xE —- 1, w'e know already that the zero-oblique-
photon process is dominant, since the emitted
photons are necessarily soft. On the other hand,
the one-oblique-photon process is expected to
dominate in the very inelastic regime, for small
xs and large Q~'. Comparing Eqs. (3.25) and(3. 54},
we note that while the (~, s)') or (a, o') integra-
tions are common to.boih contributions, the one-
oblique-photon process involves two more inte-
grations delimited by the ABC triangle of Fig. 2.
Of course, one may consider that Eq. (8.25) in-
volves also the (t, w') integration, provided a
factor

6(w' —zv') 5(t -Q')

is incorporated in this equation. This remark
points to the fact that the zero-oblique-photon
contribution is concentrated at point C of Fig. 2,
while the leading contribution to the one- (or
more) oblique photon arises from the vicinity of
the line AC, that is for t-t, where t is given
by Eq. (3.52}. Using Eqs. (3.14c) and (8.45), we
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get after some elementary algebra

t (u') =
g' + (~' —M') q'(~E +u)/M

(u+ «)'[1+(« -u)/M] (4.1)

The lowest value of t„, t„(M ) is attained at point
A for the elastic contribution

O'
(u+t E)'[1+ (~E - u)/M] 4(~ E)'

(4.2)

and the indicated approximation holds for gE)'
For o =v' =0, we see that the minimum

value, of t is
(4.3)

I

which is very small in comparison with Q~, in
the very inelastic regime. For the rest of this
paper, we shall discuss numerically only the elas-
tic contribution, arising from zero- and one-
oblique-photon terms. In Ref. 6, we have presented
numerical examples of the zero-oblique-photon
contribution for continuous spectra and we intend
to compare the corresponding one-oblique-photon
contribution elsewhere.

For the elastic contribution, the zero-oblique-
photon term is given by Eq. (3.29). The corre-
sponding one-oblique-photon term is a particular
case of Eqs. (3.54) and (3.53) or (3.51b) where
W, (w', t) =2M5(xo'-M')W, (t) and we get

nQ@ u Wg(t) f'~(,) 2MaAQ@

I~2 ~~ ~ W 0

X
~ ~~ ~ ~ ~ ~

~

~

~

0

~

~t

M

d

~

~

~
A

~

~
~

~I I ~ ~ 2

~
~

4

(4.4)

Here, t&&» and t&t&» are given by Eqs. (3.48) while
the g, are given in the Appendix and, in all quan-
tities we must putz@' =M'.

Table I represents a small fraction of our nu-
merical results for the elastic contribution to
p, + p scattering. Our choice of kinematics was
inspired from Ref. 9 where the incident muon
energy is E =219 GeV. The results are listed for
fixed ~s =1/xs and varying Qs'. The first three
columns give the kinematics of the experimental
point. Columns four, five, and six give our re-
su its for E2 vE 8 2 E ] 2MB", , and the elastic
contribution to the cross section. Column seven,
labeled (ly) gives, in particular, the result of the
exact one-photon-emission cross section derived
by Mo and Tsai. ' The two lines corresponding to
every experimental point are, respectively, the
zero- and one-oblique-photon contributions com-
puted from Eqs. (3.29) and (4.4). For the column
labeled (ly) the content of the two lines is as
follows: The first line is the result of the peak-
ing approximation in perturbation theory using Eq.
(2.10). The same result is obtained' from Eq.
(3.29) if the ~ integral is computed in the Gauss-
Jacobi method with degree n =2 and the roots are
taken to be ~ = 0 and v = 1. The second line is the
result of Eq. (3.41}with a 5 function in place of
the spectral function. In more physical terms,
the second line is the difference between the
exact (ly) and the peaking cross sections.

The elastic contributions is thus the sum of the
numbers appearing in the two lines; for the
column labeled (ly), the sum reproduces Mo and
Tsai's~ (ly) cross section. Let us now point

I

out what can be learned from this table.
(i} The first u&~ value illustrates the quasi-

elastic regime. The negative signs of the one-
oblique-photon contributions to I'2 and to the
cross section are easily understood. In the vicinity
of the elastic peak, the one-oblique-photon contri-
bution can be incorporated' in the, zero-oblique-
photon term provided a hard factor H is included in
Eq. (3.25). From Eq. (2.49), we see that II ~ 1 for
the important domain o' = 0 and 0 & v ~ 1. We note
that for this argument to hold, one must assume
that the lepton mass can be neglected and this
does not seem to be justified for I',.

(ij) As Qz2 increases, the one-oblique-photon
contribution increases while the zero-oblique-
photon contribution decreases. This behavior is

,
steepest for larger&~.

(iii) For low Qs', our predicted cross section
is slightly /osier than the standard one.

(iv) The most dramatic results appear in the
very inelastic regime. Her e, the pr edicted cross
section is much larger than the standard one.
Looking, for example, at the last two experi-
mental, points of this table, we see that our cross
section, which is about four times larger than
the standard one at Q~'= 1.7 GeV', becomes about
twelve times larger at Qs'=2. 2 GeV'

Such discrepancies of our results from the
(ly) formula of Mo and Tsai, for large ~s and
QE', were so unexpected that we spent some time
to check our formulas and programs. Without
entering in all technical details, let us briefly
discuss the origin of the large cross section.
As we have said above, the (u(, 7 ) or equivalently
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TABLE I. Elastic contribution to p+ p scattering at E =219 GeV. For every kinematical
configuration, the first and second lines are the zero- and one-oblique-photon contributions,
respectively.

Q 2 @~ g

(GeV ) (GeV) (mrad) E2 =VZW,el el

This cwork

Eel = 2MTVel

This work

do el

, {nb/sr GeV)

This work

13

218.2

208.6

194.2

179.8

27
-2.3 xlp ~

1.64xlp 7

1.53 x 10 ~

3.22x 10-8
3.37X 10 '

3.30x 10
-1.4 xlp

17 3.51x 10 6

6.86X 10 '
2.2 xlp 3

2.87x 10
9.7 x 10 5

1.19xlp 7

8.48xlp 5

2.23xlp 8

8.30xlp 5

1.63 x 10 1.80 x 104

2.].7x 10"5

7.40xlp &

9.27x 10"i
4.p3 x 10"5

2.36xlp 5

8.73xlp ~

1.0pxlp 6

4.70xlp '

x lp2 6 77X lp2

7.22x 10 ' 7.99x 10 '
-3.2 x 10 4 -1.5 x 10

0.7

1.7

14.2

213.6

205.9

109.3 24

2.07x 10 3

-5.7 x10
4.82x 10 4

1.4 xlp ~

1.89xlp '
4.88xlp 3

(d@ = 14o5

5.23xlp 4

4.11X10 3

8.01x 10 5

3.96x 10 3

9.45 X 10
5.13X10 '

I1

(dg =40

4.46x lp
1.3
8.49x 10
2.22x 10 '

4.66x lp
2.0
8.78xlp 4

1.78x 10 '

2.96 X 10 3.10x 10
-8.2 xlp -6.9 xlp

0.7

6.2

8.2

9.2

0.7

5.2

5.7

6.2

0.2

1.2

1.7

2.2

204.1

161.5

86.9

44.2

22.9

196.6

132.7

36.8

20.1

201.9

116.7

74.1

31.4

18

29

10

21

27

37

10

2.06xlp '
1.5 xlp 4

3.29x 1 0 4

1.15xlp 3

7.13xlp '
2.82x lp '
7.77x].p 3

3.01x 10 '
9.35 x 10
1.68

2.14x 10 3

1.16xlp 4

7.48xlp '
4.63x10 3

9.62x 10 '
2.34xlp ~

3.45xlp '
6.9pxlp ~

2.46xlp '
2.86

4.77xlp 3

3.56 x 1Q
"5

4.88xlp 3

1.36x lp "2

1.55xlp 2

1.28xlp ~

1.88x 10 ~

2.1

1.87x 10 4

2.49x 10 3

1.41xlp 5

2.57xlp 3

1.47xlp '
3.68xlp 3

9.73xlp 5

6.67 x 10 3

7.82x 10 '
1.27xlp 2

co& —-60

1.28x 10 4

1.95x 10 3

1.89x 10 5

2.18x 10 3

1.09 x 10
-4.36xlp 3

3.08xlp 4

6.12xlp '
1.54xlp 3

1.04xlp '

co~ =160

1.68xlp 4

1.10xlp 3

6.21xlp '
1.18xlp 3

1.30xlp 4

1.60X 10 '
8.27xlP 4

3.15xlp 3

9.74x 103

7.39x 10
1.70
5.92
8.79xlp '
3.48
1.07 x 10
4.16
2.45xlp ~

4.42

6.25 x 10
3.4 xlp
1.74
1,P7 x 10
4.94x 10 '
1.20 xlp
6.53x 10+
1,31xlp
1.15
1.34 x 10

2.37x104
1.77 x lp'
3.74xlp
1.Q4 x lp2

1.68 x lp
1.39x10'
1.69 x lp
1.9 xlp'

1.01x 10
1.51x 10
1.74
5.92
9.02 &10
1.85
1.10xlp '
1.21
2.5p xlp '
9.38xlp ~

6.42 x 10'
4.p3 x lp
1.78
8.91
5.p5xlp '
3.34
6.66xlp ~

2.78
1.18
2.02

2.41 x104
2.51 x 10'
3.80 x 10
5.62 x lp
1.71x 10
3.26 x lp
1.72 x lp
1.59 x 10

This column is the result for a & function replacing the spectral function. Note that
the sum from the two lines in this column gives the Mo and Tsai (1y) exact cross section.
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the (e, o') integrations in Eqs. (4.4) are effected
by the Gauss-Jacobi method, using twice Eq.
(3.5V) with degree approximations n and m. For
fixed n and m, the roots of the relevant Jacobi
polynomials generate nx m points in the (o', o')
plane with weights C„„(-1+nA, O)C„(- I+ nA. ,
—1+ nA). Then, for every (o, e') pair, the f
integral is computed separately in the regions
corresponding to the t, P, and p' peaks and in
the region between the p and p' peaks. Apart from
the counterterms which may be computed separ-
ately, the t integral reduces to Mo and Tsai's
(ly) formula when o = o'=0 and this permitted
a useful check.

In Table II, we present 2 x 8 (a, cr') points with
the corresponding t-integrals and courterterms
for W", atE = 219 6eV, Qz'= 2.2GeV', and &uz -—160.
The weights attached to the gg j.ntegration are given in
the first line while the weights attached to the v
integration are, in this case, one for each l.ine.
The lines labeled I;, p, p- p', and p' give the
results of the I, integral in the corresponding do-
mains, p- p being the contribution originating
from the region between the p and p' peaks. The
lines labeled C-p and C-p give the results of
the p and p' peaks counterterms and the line
labeled s-total is the result of the total t integral
minus the counterterms.

Let us note two important facts appearing in
this table:

(a) Some (o, cr') points, typically with large o and

small o', overcompensate the handicap of a small
weight by a very large contribution to 8'2'.

T(,)(p, p', k„k,) = T (,)(p, p', k„k,)
ni(k, ) T„,(P, P; k, )

Di(kp)T(i~(p& p & ki}

of(k, )nf(k, )T&„(P,P') . (4.5)

To be sure, one would like numerical estimates

(b) The most important contributions arise from
the t peaks. It is possible to understand, technic-
ally, why the t integrals for large 0 and small
0' values are much larger than for v=0'=0.
What happens is that for the 0 = o' = 0 part of T,
all large terms of the form gz'(E'+ E")/[(k p)
(k p')] cancel, leaving' instead [t(E'+ E")—Qz~/
4]/[(k. p)(k ' p')] and this cancellation does not

hold for the terms proportional to 0 or o'. These
facts explain why, in the very inelastic regime,
our results are much larger than those predicted
by the (Iy) theory. We note that our Wf' values
are comparable to the (Iy} results, not presented
here explicitly.

At this point, the reader may object that since
the one-oblique-photon contribution to @ is much
larger than the zero-oblique-photon part, why not
include the two-obique-photon contribution and

so on. To answer this objection, we note that
loosely speaking, the large contributions arise
from the emission of a collinear photon whose
momentum is K= al besides the oblique photon
of momentum k. When we come to the two-obli-
que-photon term, these large contributions will
be suppressed since, according to Eq. (2.31),

TABLE Q. A 2x 8 table of unweighted t integrals and counterterms contributing to 8'2 at E =219 GeV, Qz =2.2
GeV, and o)@=160. The raw (T) weight is 1 for each line and the column (u) weight is as indicated.

C~(v, 8) 1.8542 0.0614 0.0323 0.0208 0.0141 0.0093 0.0056 0.0023

t
p
p-p'
p/
C-p
C-pc
s total

0.0005
0.0000

7.8x1p '
1.2x 1p 1

6.2x10 4

2.5x10 5

1.0x10 ~

2.8x1O '
9.6& 10

0.0000
0.0035

0.0908
0.0031

1.9
1.5x1O '
8.7x1p 4

4.1x10 5

1.1x10 '
9.px1p 9

2.0

0.0004
0.-6271

0.2705
0.0092

1.7x 10
0 "1

1.9x1p '
1.2x1p '
1.4x10 '
1.3x10 ~

1.8x 1p

0.0013
1.8688

0.4802
0.0164

5.4x 10
1.6x10 ~

6,5x10 3

7.2x1O '
2.1x1p '
6.8x10 6

5.4x 1p

0.0024
3.3176

0.661+
0.0226

7.7x 10
2 6xlp-1
3.1x10 '
7.5x10 3

3.9x 10 ~

7.5x 10
7.7x 10

0.0033
4.5692

0.7804
0.0266

3.5x 10
7 1x 10-1
1.8x 1p ~

1.Ox1O '
9.8x1p ~

6.1x 10
3.5x 10

0.0040
5.3912

0.8371
0.0286

3.6
2.9
1.2
1.3
3.8
1.8
3.5
0.0043
5.7826

0.8544
0.0291

7.6
2.6x 10
1.3x 10
]..7x 1p
3.3x 10
3.0x 10
7.1x10 ~

0.0044
5.9019

t
p
p+'
p/
C-p
C~'
s total

7.9x10 2

1.2x10 ~

6.1x 10 4

2.5x 10 5

9.9x10 2

2.8x10 9

9.7x10 2

7.9
&.2x10 '
7.0x10 5

3.7x1O 6

4.7x10 3

3.2x1O 9

7.9

3.4
4.1x10 5

2.8x10 7

3.8x10 ~

5.1x10 5

4.2x10 9

3.4

5.6x10 '
8.6x 10 ~

1.9x10 '
7.8x 10-s
1.3x10 '
6.6x10 9

5.6x10 '

5.4x10 2

1.0x10 ~

3.9x 10-s
3.5x 10-s
1.5x 10 7

1.3 x 1o-s
5.4x10 '

2.0x 10 3

6 1x 10-s
2.8x 10
3.4x 10-s
8.2x 1p-s
3.3x 10
2.0x 10

8.px 10 6

1,3x 10 . 7

6.2x 10
8.4x 10 s

1.6x 10 7

1.3x.10 7

7.9x 10

2.6x 10 7

9.3x10 ~

4.6x10 ~

6.4x 10 ~

1.2x10 '
1.1x10 s

-1.5x 10



of the two-oblique -photon effects. This involves
a quite lengthy computation of the trace implicit
in T, and one additional photon momentum inte-
gral which could, presumably, be done analytic-
ally since it affects the lepton tensor only. This
program is under way.

V. DISCUSSION AND CONCLUSION

We have presented a rigorous nonperturbative
method to effect the radiative corrections in
lepton-proton scattering in the one-photon-ex-
change approximation and neglecting the radia-
tive corrections to the hadron vertex. Every term
in the rearranged perturbation series incorpor-
ate the emission of an arbitrary number of colli-
near photons. The d&u/co spectrum of an oblique
photon is suppressed. We have applied this meth-
od to compute the elastic contribution arising from
the zero- and one-oblique-photon terms. In the
very inelastic regime, this elastic contribution is
larger than expected from ordinary perturbation
theory. %e observed that this involves two hard
photons, one oblique and one collinear.

From the theoretical point of view, our method
resembles that of Grammer and Yennie for the
rearrangement of the cross- section perturbation
series. Using the spectral function derived in
earlier work, we avoid the noncovariant separ-
ation between hard and soft photons. In the se-
cond work of Ref. 3, Tsai incorporates phenomen-
ologically multiphoton effects by the method of
equivalent radiators. We do not believe that our
method is equivalent to the latter. Even if one
considers that his exponentiation is similar to
the use of the spectral. function, the most impor-
tant effects, associated with the kinematical mod-
ification of the lepton tensor, are missing in
Tsai's method. Of course. we have, in this paper,
neglected all straggling and ionization effects
which are negligible for p, +P in the kinematical
domain we have considered.

Within this framework, it will be possible to
check by explicit computation in the near future,
that the two-oblique-photon contribution is small.
Here, we have just presented a qualitative argu-
ment to explain the suppression of the large con-
tributions encountered in the one-oblique-photon
process. Also, finer details such as higher or-
der, infrared finite virtual radiative corrections
must be derived and incorporated in the one-obli-
que-photon emission. To go beyond the one-pho-
ton approximation, without being involved from
the start with nonperturbative quantum chromo-
dynamics we have demonstrated how to rearrange
the QED perturbation series for charged-lepton
scattering, k + l' - l + /', in the ladders and cross-
ed-ladders approximation and we hope to present
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APPENDIX

In this appendix, we give the details of the azi-
muthal integrations appearing in Eq. (3.50). We
set

k.p = (u(a+ b cosy),
k p'=&u(a'+b'cosy),

where

a = E —p cosB~cosB~, b = -p sinB~sinB~

and

(A1a)

(Alb)

(A2a)

a' =E' —p'cosB~, cosB„b' = —p'sinB~, sin9~.
(A2b)

Here, 8~, B~,, and B~ are the angles of p and p'
and 0 with the polar axis u in the laboratory
frame. Simple geometrical considerations lead to

cos8~ = -, cosB~. =pX —p'cosay p cosBX —p'y

(As)

p'sinBy . p sinBx
sine~= - -, sin8~, =

D Q

where

(A4)

1+a'+r(1 —a) m i+ Oti+r
From these equations we observe that

(AV)

In effecting the y integration in Eq. (3.50) we use
the foQowing formulas:

the results of this work soon. By extrapolating the
result found in this problem, we expect that multi-
photon exchange are not expected to significantly
modify the results of this paper.

This theory predicts, for small x~, larger rad-
iative corrections than the Mo and Tsai, and
Tsai' method used by experimentalists. However,
until one demonstrates that the two-oblique-
photon contribution is indeed small we cannot,
convincingly, explain part of the scaling viola-
tions of the structure functions as originating
from inadequate radiative corrections.
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where we define

—=X(a, b, a', b'),
(ASb)

(a2 bQ)l/2 SP (ag2 by2)x/2 (A9)

In Eq. (ABb) the advantage of the second form over
the first, in a numerical program, is the absence
of the spurious singularity which arises from the
vanishing of the denominator g'b —~b'. Using Eqs.
(A2), we can write Eels. (AQ) in the form

E m'
S =p[(cos8 ——cosg )2+ —sin'g ]'/'

p P p2 P

gs
2

m'
S'=p'[(cosg ——cosg, )'+ -sin'g ]'/'

pi 0' pr& p&

(A10a)

(A10b)

Using Eblis. (3,36) into Eq. (3.50) we get after
straightforward algebra,

(Qx'- 2m') m'a pyPa'
1 (j.) +2 P P+ SP3 g13 l (1)

(Alla)

]. 2 de ]. ]. if
dye g

2v, a+bcosp S ' 2v, (a+ b cosy)' S'
(ASa)

and

2g

2v, (a+ b cosj )(a'+b' cosy)

b

(a'b —ab ') S S'j
(ya'+xa)

SS'(yS'+@ST

where

(2p p'+m') 1 1
(R, (, )

= -4
S S'

4'' 1—— (aa' —bb~) ———+ 41"S' S"
(E Ei)

g ()=4p p' —— -m2X2 1

2
+ —[2p p'+m'-2E(E+E')+2E'(o]

Q)S

2 —[2p p +m —2E~(E+ Et) —2E(d]

2m'
S, — (aa'-bb'-2E'a)

2m2+,, (aa'-bb'-2Ea') -2l', (A.12b)

I'(a, b, a', b') =—+ + (aX' - a'y)
1 I

x y RS' yS

(A13)

%e note that & is a function of t and w' given in
Etl. (3.46). The variable x, is also a function of
t and a/2 as is seen from Eg. (3.44).

I

(4EE~ Qz') ( m2a m'a'
2n) 2 I2p p 3 g3 + 2(1)

cu & S S'

(Al 1b)
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