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Matter effects on three-neutrino oscillations
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We evaluate the influence of coherent forward scattering in matter upon neutrino oscillations in the three-neutrino

picture. We write down the exact solution and also approximate first-order solutions that exhibit general features
more transparently. Oscillation characteristics in matter that could be observed in deep-mine experiments are
discussed and illustrated using an oscillation solution suggested by solar and reactor data.

I. INTRODUCTION

Interest in neutrino oscillations' has been
heightened recently by indications from beam-
dump experiments, ' from reanalysis' of old re-
actor data, and from a new reactor experiment
with reduced sensitivity to spectrum uncertain-
ties. If such oscillations can be clearly re-
solved, they will not only show that neutrinos are
massive but also provide information about their
mass differences and mixing matrix.

Deep-mine experiments that measure high-
energy events from atmospheric neutrinos offer
unique opportunities to probe oscillations in the
range L/E-1-10' m/MeV (where L is the path
length and E the energy) that is sensitive to mass-
squared differences 5m & 10 5 eV . Wolfenstein
has pointed out, however, that the standard vac-
uum oscillations can be significantly modified by
coherent forward scattering from electrons in
matter (that selectively affect v, and v, compon-
ents) when the path integral of electron number
density N, is of order fN, dL 10'N„cm '-where
N„=6x10' . Thus with electron densities in
typical terrestrial matter of order N, - 2N& cm ',
matter effects can occur over the distance of the
earth's radius, i.e. , in deep-mine events pro-
duced by upward neutrinos.

Wolfenstein has given a complete analytic solu-
tion for matter corrections to oscillations of two
neutrinos. We examine the properties of this
solution in detail in Sec. II. We then derive a
general solution for matter oscillations with any
number of neutrinos, but its implications are not
immediately transparent. We therefore also
write down first-order approximate solutions that
exhibit general properties rather simply. For
the case of three neutrinos, we give an exact
solution in closed form. In Sec. III we illustrate

the properties of the three-neutrino oscillations
in matter based on a vacuum-oscillation solu-
tion suggested by solar and reactor data.

II. OSCILLATIONS IN MATTER

A. General equations

Consider a set of neutrino charged-current
eigenstates v, (o. = e, p, r, . . . ) and mass eigen-
states v; (i = 1, 2, 2, . . .) at time t =0, disting-
uished by their suffixes and related by a unitary
transformation,

~
v~) = Q U~;

~
v;) .

Then, for a relativistic neutrino beam energy E,
we recall the standard amplitude A and probabil-
ity I' for v —vs transitions after a time t in
vacno,

A(v, —vz) =g U, exp(--', &~; &/E) U;z,

I'(v -v, ) = iA(v —v, ) i',
(2)

~
q(t)) =Qq, (t) iv,.) .

For an initial state v at time t =0, $,.(0) = U, ,
and the v - v~ transition amplitude is

A(v -v~)=-QU', ,g, (t) . .

The time evolution is controlled by the equation

where m,. are the mass eigenvalues and the inter-
ference terms in A~ are oscillatory. We us-
ually write L/E in place of t/E in Eq. (2), where
L is the length of the flight path (units 0= c = 1).

To treat neutrino evolution in matter, we con-
sider an arbitrary state vector in neutrino-flavor
space,
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zd)l), (t)/dt = m, '/(2E) g,(t) -Q ~& G&,U, U„g,(t)

=H„q)I)))(t),

(5)

where K, is the number of electrons per unit vol-
ume and 6 is the weak coupling constant. In Eq.
(5) we have dropped a common overall phase in
the )t), which produces no observable effects; this
includes the phase shift from neutral-current
scattering which is the same for all neutrino
flavors. The coefficient v 2GN, in Eq. (5) dif-
fers from the value GN, given in Ref. 8; this cor-
rection is confirmed by Ref. 9. This equation
applies strictly for neutrinos, ' for gntineutrinos,
change the sign of the &2GN, term and substitute
U for U.

We assume that the vacuum oscillations are
already prescribed so that U and the rn, are
known. The problem of propagation is therefore
to diagonalize the matrix H defined in Eq. (5).
Let us suppose that it can be diagonalized by
proceeding to a new set of basis state

~

vz )
l

v )= V& U &lvj), where V is a unitary ma-
trix. Then if the eigenvalues of H correspond-
ing to these states

l
v,".) are written as M, '/2E, the

solution for a uniform medium is given in prin-
ciple by Eq. (2) with m,

' and U replaced by M,.
'

and V, respectively.
There is another way to solve the propagation

problem without explicitly constructing the ma-
trix V. For n neutrinos, Eq. (5) has n indepen-
dent solutions for the row vectors )l)&(t). We
choose the set of solutions )I)&" (z =1, . . . , n) that
are pure mass eigenstates at time t =0:

)t) I '(t = 0) = 5 () ~ (8)

If these row vectors are assembled into an nxn
matrix X according to

(X,(t) = )I),"'(t),
then X satisfies the matrix equation

8. Two-neutrino case

We take the charged-current (CC) eigenstates to
be v„v„andparametrize the 2x 2 matrices U, V

that relate them to the mass eigenstates v, and
matter eigenstates v& by

U, &
——U 2

——coso,', U, 2
——-U

&

——sin, (i2)
V,&

——V 2
——cos&', V,2

——-V» ——sin&'.

There is just one mass-squared difference 5m'
= rn~ —m2 . VaeuurD oseillations of two neutrinos
determine only l5nz

l
and sin 2o.', leaving the

sign of 5m and the quadrant of 2& unresolved.
By convention we take «45'. The ambiguity in
the sign of 5m' is resolved by the effects of mat-
ter.

It is convenient to define the oscillation length
in vacuum /~ and a characteristic length /'„for
matter effects by

ir 4zzE/5m', l„——=- 2zz/(v 2 G&,) . (13)

For antineutrinos, the sign of /„is reversed.
We note that l~ or E„canhave either sign. With
E in MeV, 6m' in eV, and N, in cm ', the os-
cillation lengths in meters are given by

l =2.48K/5m', l„=1.77 x 10'N„/K, . (14)

. For terrestrial matter N, -2N&, cm in the
mantle (3.5x10 &r&6.4x10 m) and N, 5N„cm-
in the core (r &3.5x10 m).

Following Ref. 8, the solution in the neutrino
cgse ls given by

knowledge of the original mixing matrix U and the
mass-squared differences 5M'„.=M, -M, , 5m

„

2 2 2 2= pn, —rn& and M& —m& . For computation, the
matrix X ean be rewritten via Lagrange's form-
ula as

'()ZH- iMi")) ) I,'I
)) -'zx'z' 5M))g - & 2E

tdX/dt =XH (8) tan2Q, = sln2&/(cos2& lr/lzz) (15)

with the boundary condition X(t = 0) = 1. An an-
alytical solution to Eq. (8) is possible for con-
stant N„

X(t) = exp(-zHt)

Row i of X describes the state that started as the
mass eigenstate

l
v, ) at t = 0; column j describes

the amplitude that it has evolved at time t into
mass eigenstate

l
v&). In the presence of matter

the transition amplitude of Eq. (2) is modified to

li( (g vvs) Q UggzX( g 8
ig

The resulting transition probability requires only

for the oscillation angle in matter, and

5M = 5m [1- 2(ly/lzz) cos2o'+ (/v/lzz) j (18)

for the matter eigenmass-squared difference.
The associated oscillation length in matter is

l = l,[1-2(l„/l„)cos2~+(i,/l„}']"'.
The physical consequences are clear.

(i) if ll. l
« IV I» e the vacuum-oscillation

length is very short on the matter scale, then &'

, 5M =-5m, and matter corrections are neg-
ligible.

(ii) If
l
lr

l
»

l l„l,then u' =0 and the matter
corrections damp out all oscillation effects.
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E (MeV) &10'
I

&~' (eV')
I

(v) For given 5m the vacuum-oscillation length

l~ depends on E, whereas l„doesnot; hence,
there is always some energy range where matter
effects are important.

(vi) There is always some energy where lv/1„
= cos2n and hence n' = 45 for either v or v de-
pending on the sign of 5m . Hence, there is al-
ways some energy where v or v matter mixing is
maximal. At this energy, the diagonal transition
probability vanishes at a distance

(18)

I =—cot2n .~N

2

a = 22.5'

(iii) At intermediate values
I
lv I

-
I l„Ithe mat-

ter corrections are very significant and differ
between neutrinos and antineutrinos. More-
over, matter effects resolve the vacuum-oscil-
lation ambiguity in the sign of 5m .

(iv) For matter corrections to be observable,
the distance traversed in matter must also be an
appreciable fraction of l„.Hence matter correc-
tions are very small in all terrestrial contexts,
except when neutrinos traverse a substantial
fraction of the earth's diameter and have ener-
gies

With n =22.5' and N, =2N„cm, this distance is
I = 5 x10' m, which would correspond to deep-
mine events about 10' below the horizontal direc-
tion.

Some of these results are illustrated in Fig. 1,
showing the ratio 5M /&I (describing the cor-
rection to the oscillation wavelength) and sin'2n'
(describing the oscillation amplitude) versus
E/)5m

I
. This illustration is based on n =22.5'

and N, =2K„.As expected, there is little rnatter
correction for E (MeV) &10'I5m' (eV')I. The
mixing becomes maximal in one channel (v or v)

at one energy. At sufficiently large energy
where 3~» l'„the mixing is damped out. %hen
5m' changes sign, v and v exchange roles. The
transition probabilities are given simply by

P(v. - v, ) =P(v, —v,) =1-P(v, —v, )

= 1 —P( v —v ) = sin'(2o.")sin'( —,'5M'l. /E) .

(20)

Figure 2 compares vacuum- and matter-oscilla-
tion results for P(e —e) in the two-neutrino case
at a, fixed distance I = 5 x10 m.
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FIG. 1. Matter-to-vacuum eigenmass-squared differ-

ence ratio and matter amplitude sin 20." for oscillations
of two neutrinos with vacuum amplitude sin 2G = 0.5 (G
=22.5 ).
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probability P(e —8) for two neutrinos at fixed L, =-5 alp'
m for density N, =21V&.
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FIG. 3. Dependence of P(e e) on distance I with
N, =2N& for two neutrinos.

FIG. 4. Dependence of P(e e) on N~ at distance
L =5 x10 m for two neutrinos.

Figure 3 compa, res matter results at distances
up to the earth's diameter. As L increases, the
oscillation pattern moves to higher E, as might
be expected, and the oscillation amplitude also
changes. Figure 4 shows results with different
electron densities N, at fixed L=5&&10 m. Mat-
ter damping [point (ii) above] is clearly seen at
the higher energies in Figs. 3 and 4 when either
the distance L or the density A, is sufficiently
large, ' in general, significant damping of vacuum
oscillations occurs for energies at which L &l~

C. Three-neutrino ease

For constant density N„we have algebraically
performed the diagonalization of Eq. (5) in the
three-neutrino case. After tedious but straight-
forward algebra, the "modified mass" para-
meters M,

' which are the eigenvalues of the ma-
trix II, , are found to be

~&P + 27'Y
M' 3 (& —3P) cos —,arc cos~

(21)+ rn, '- a/3,
with

o.' = 2v 2EGN', + 5m')2+ 5m, 3,

P = 5m'„5m'»+ 2WZZGN. [5m'„(1—j U„(')
(22)+5~'„(1-~U„~')],

~=2v 2«N. &~'&~&m'(3
~
U, (

~

'.
Here Gnat',

&

——rn,.'- m&' and the three separate M, '
values (i =1,2, 3) are provided by the three dis-
tinct roots of cos( —,

' arc cos). Notice that only
mass difference 5m',.

&
enter the relations deter-

mining 5M,
&

-—M, -M; &pe, itself does not.
Equations (10), (11), (21), and (22) define the

complete three-neutrino oscillation solution in a
uniform medium. Unfortunately, the algebra is
rather impenetrable. It is therefore interesting
to construct also the approximate solutions to
first order in GN, or first order in 5m, &.

D. First-order solution in GN, , any number of neutrinos

The approximate solution of Eq. (5) to first order in GN, has theform, for any number of neutrinos,

g;(t) =exp(-~im, t/E)(1+iv 2GN t~ U„~ )g, (0)+ +exp[--,'i(m, +mz )t/E), '
2

' iv 2GN, U, &U~&,r/iz(0) .
B1

(23)

This implies the propagation amplitude
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A(v -vq) =+exp(- —'fm, . L/E)(l+i&2GNL
~

U t ~
)U„(U(q

+ +exp[- —,'i(m( + m) )L/E], '
p iv 2GN, U, ;U&()Uay )e ~

sin(«5m iyL/E). t Ut

«$$ -„'5m;) E

For antineutrinos, reverse the sign of t" and sub-
stitute U* for U.

The following remarks should be made:
(i) The matter correction is of order GN, t

=GN, L; the perturbative solutions, Eqs. (23) and
(24), are only valid when this is small compared
to unity.

(ii) If 5m, &L/E i.s of order unity or less, the
off-diagonal (j 0i) terms in the summation in Eq.
(24) are of full strength &2GN, L. If 5m, ,L/E is
large, however, the j4i terms are only of order
v"2GN, E/5m', &, i.e. , they are suppressed by a
factor of order E/(5», ,L). Depending on the
numerical values involved, these off-diagonal
terms may then be negligible.

(iii) If all 5m „arelarge enough for all off-
diagonal terms to be ignored, Eq. (5) can be
solved to all orders in GN, to give (for t «E/
5»', )

q,.(f) = exp(--,'fm, 't/E+ tW2GN.
~
U„~'f)y, (0}, (25)

«4( v(M v())

= +exp(--', tm, 'L/E+ t/2GN, L
~
U., ~") U. ,U'„.

(as)

In other words, when the vacuum oscillations are
sufficiently fast, they suppress off-diagonal mat-
ter corrections, in the mass-eigenstate basis,
and the effect is simply to introduce effective
mass parameters,

m, '-», '- WaGN, E.
~

U„.~',

5m'„.-5»'„-2&2GN~() U„)'-
)
U„)').

However, the off-diagonal terms that we have
assumed negligible are themselves of order GN, E/
6m „,' the corrections to 5m ', , are of the same

relative order and hence are equally negligible,
(iv) To summarize, the solution to first order

in GN, shows that the matter correction is poten-
tially of order WRGN, L. However, if the vacuum
oscillations have sufficiently short wavelength
(such that 5m', &»av 2GNQ for all i,j) the matter
corrections are always negligible. These general
properties have already been seen in the two-
neutrino case above.

~(j)(t)) =g )j) (t)
~

v ), (as)

the propagation equation can be cast in the form

id(j, (t)/dt = m „'/(2E)(j),(t)

«g U,. ii,.( &&
}Il'(i) ~

f8

Here we have adopted the convenient shorthand
m =m(' (o.'t(:e), m, =m, —av 2GNP. The solu-
tion to first order in 5m',.

&

——m,
' —m&' is very

similar to Eq. (23):

E. First-order solution in 5m,&, any number of neutrinos

If 5»;, «2~2GNP, the region L ~f„where vac-
uum oscillations develop is beyond the range of
applicability of Eq. (23). However, on general
physical grounds we can surmise that amplitudes
relating v, to other CC states will not buiM up,
because the, matter effect gives v, a relatively
fast-changing phase. In this regime, the matter
correction simply decouples v, while the other
CC eigenstates have normal vacuum oscillations
to one another. This can be seen explicitly by
constructing a solution in which the matter effect
is treated exactly and the mass-squared differ-
ences are treated perturbatively instead. Writ-
ing an arbitrary neutrino state vector in terms
of the charge-current eigenstates as

2

i, (i)=«x)«( ,'i««„'i/Rl(1-(«Z ~ii-;~-2E' i, (0)

2

88fz R4 ~~, ~g/ E (3O)

For all & ae, P Oe this simply gives the lowest-
order terms in the normal vacuum-oscillation
amplitude Eq. (2). For o(=e, however, the off-
diagonal couplings are strongly suppressed by

the relative factor sin( —'5m2 „t/E)/( '5» ()t/E) and-
the v, made is essentially decoupled.

Thus our perturbative solutions show how the
general properties of oscillations. in matter ex-
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trapolate from two neutrinos to the n-neutrino
case.

III. ILLUSTRATIONS GF MATTER EFFECTS

We illustrate matter effects in the three-neu-
trino system using a representative vacuum-
oscillation solution from Ref. 11 (solution A) and

taking N, = 2N„cm as before. The leading
mass-square difference 5m 3& =0.9 eV was chos-2 2

en to correspond to indications from reactors. "
The mixing matrix U was chosen in accordance
with accelerator limits on P(v„-v,) and the reac-
tor data on P(v, -p, ) and to give an average value

(P(v, - v,)) = —,
' for solar neutrinos. The signs

of the 5m,.&= m; -rn, .' were essentially undeter-
mined; hence, there is a fourfold sign ambiguity.
In the notation of Refs. 5 and 11, the parameters
for the solution that we illustrate are

6, (deg) e, (deg) 8, (deg) ~5m I, ~

~5m'2I
~

50 20 30 0.9 0.05 or 10

Here the 5m', j are in eV'. The CP-violating
phase 5 is set equal to zero for simplicity. In
Ref. 11 the secondary mass difference of solu-
tion A was chosen to be

~

5m'„~=0.05 eV'.
Since matter effects are most sensitive to the
smallest 5m, &, we consider the alternative pos-
sibilities in Eq. (31).

Figure 5 shows the results for 5M,
&

versus E;
the four possible choices of sign for 5m „and
the two choices of magnitude for ~5m'2~

~

are
distinguished. At low E, 5M',

&
——5m', &,

' as E
increases, a given 5M,.

&
begins to change when

E (MeV) &10'
~

5m,
&

(eV )
~

. Results for anti-
neutrinos are the same as those for neutrinos
with the signs of the 5m',.

&
reversed.

We do not attempt to illustrate the behavior of
all the individual mixing matrix elements, but
concentrate instead on the final observable result,
namely, the transition probabilities for v„-v„,
v~ vol, p v~, v~p v~ v~, and v„-v, . Figure 6

shows transition probabilities at the distance I
= 5 x 10' m (approximately one earth's radius)
for %,=2K„cm'. For other L values, the cal-
culations cannot be simply scaled with L/E since
the matter-oscillation length is energy-indepen-
dent. Quantitative comparisons with deep-mine
data will require a numerical solution of Eq. (5)
at each L, taking into account the variation of N,
with distance.

We make the following observations about the
results in Fig. 6:

(i) The onset of matter effects occurs in general
in two different E regions, in association with the

two vacuum mass-squared differences [see, e.g. ,
P(e - e) in Fig. 6(c)].

(ii) The secondary mass difference 5m I, con-
trols the energy above which matter effects are
present. For E (MeV) &10 ~5m'„(eV')

~

the
probabilities are governed by vacuum oscilla-
tions.

(iii) The leading mass difference 5m» controls
the energy above which all oscillation effects
become small. For E (MeV) ~ 5x10 ~5m && (eV ) ~,

P(e-e) and P(p- p) approach unity and all off-
diagonal transitions go to zero, as also is the
case for vacuum oscillations.

(iv) In channels that are effectively decoupled
from the leading mass-squared difference 5m'3&

by the choice of vacuum mixing matrix, there is
only the E region and the probabilities diagon-
alize for E (MeV) ~ 5 x10

~

5m '2& (eV ) (
. In the

illustration this decoupling occurs for the p, chan-
nels.

(v) For the intermediate energy range 10'
~
5m, ~

(eV ) ~

&E (MeV) & 5 x 10'
~

5m '„(eV) ~, oscillations
exist with mixing angles and transition prob-
abilities which may differ from the vacuum val-

I I I
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FIG. 5. Kigenmass-squared differences 5M in matter
for the three-neutrino vacuum-oscillation parameters
of Eq. (31). &he signs of (6m 2f 6m 3~) label the fourfold
ambiguity of solutions.
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ues.
(vi) Diagonal probabilities may approach zero

and off-diagonal probabilities unity at certain
energies. See P(e- e) in Fig. 6(c) and P(e-&)
in Fig, 6(d). This is the analog to the maximal
matter mixing of the two-neutrino case in Fi 1
T

1g.
he energies of these extrema are correlated

with the leading mass scale, E,„„,, (MeV)
=3-4x10 ~6m „(eV')~.

Qualitatively, three-neutrino matter oscilla-
tions display all the features of the two-neutrino
case with the added complication of two 5m
scales. For particular energy and length values,
dramatic matter corrections can be expected.
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FIG. 6. Transition robabilitiep s in vacuum and matter for the parameters of E .
(a) P(p-p); (b) P{e p); (c)P(e —e) (d)

s o q. (3i) at L = 5 x 10 m for N, = 2N& cm

essentially independent of the signs of th 6 Th
e —e; P(e v.); (e) P(p —v). The signs denote gm 6mm 2~, m 3~); unlabeled cases are

solid lines are the averaged values
signs o e m . The shaded areas are the reTh egions of rapid oscillations; the central
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