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Variational principle for perfect and imperfect fluids in general relativity
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The Einstein equations and the relativistic Navier-Stokes equations for a simple fluid characterized by an

arbitrary flux tensor are obtained by an action principle to which the equation for the entropy production is

added as a constraint. The procedure is a generalization of the classical Herivel variational principle to
relativistic and dissipative systems. The inclusion of dissipative processes requires a reformulation of the
action integral to refer to a proper-time slice (r„r2) in the limit r2~r„otherwise their nonconservative
nature gives rise to non-Markoffian effects. Such a procedure is called a differential variational principle

(DVP). The principle of least dissipation of energy can be incorporated into the DVP so that a linear form
for the flux tensor can be produced as well as the above-mentioned equations.

I. INTRODUCTION

(nu'), = 0, (1.2)

where n is the number of particles per volume,
and u' is the four-velocity, and zero entropy pro-
duction,

(ns, u'), = 0, (1.3)

where s, is the entropy per particle (the subscript

Variational principles (VP's) for hydrodynamical
systems have been used for a long time. A non-
relativistic theory was given by Herivel" in 1955
for perfect fluids. It is the generalization of his
method to relativistic and dissipative systems that
is the subject of this paper.

Herivel's VP was of the Eulerian kind, that is,
the action was formulated as an integral over the
arbitrary space and time points x' and not the
initial ones X'. 'The procedure was to make the
action integral an extremal with the constraints
that mass was conserved and that the entropy
production was zero. Such a VP led to the Navier-
Stokes equation (equation of motion) for a perfect
fluid.

However, the Navier-Stokes equation produced
this way was not completely general; it did pot
accommodate rotational flow. C.C. Lin' showed
that the general equation of motion could be pro-
duced if an additional constraint was used, namely
that the initial space coordinates [treated as func-
tions of x'(&), x'(r), x'(&), and of r] were inde-
pendent of &

dX'/d7' = 0, 0 dX'/d7'= 0, i = 1, 2, 3. (1.1)

Here w is the proper time, and d/d& = S/St+ u V.

The combined theory, known as the Herivel-Lin
VP, then produced the desired equations.

The original constraints of Herivel were con-
servation of mass, which we shall write as con-
servation of particle number,

a is used to denote "per particle" ) and ns, is the
entropy per volume.

A year before Herivel's paper, Taub' produced
a relativistic VP for a perfect fluid. Taub's VP
was stated in an Eulerian manner, but the actual
computations were made for the most part in terms
of the comoving (e.g. , initial) coordinates. The
basic dynamical variables were the world lines x'
of the fluid elements, the mass density, the temp-
erature T, and the metric tensor gz. (gz varied
both as a result of variations in the paths &x' and
variations in its own form. ) The action was taken
to be f (R- 2~f) (- )g' 'td'x, where R is the curva-
ture invariant, v is Einstein s constant, and f is the
free energy density & —&n+„where & is the intern-
al energy density. There was no entropy con-
straint. In fact, zero entropy production seemed
to emerge as a consequence of the VP. There
was, however, a constraint on the four-velocity:

(1.4)

This was an ingenious way to bring the kinetic en-
ergy into the principle, the action containing ref-
erence only to the internal energy. This VP pro-
duced the Einstein equations and the equations of
motion independently.

'There was no explicit use of a Lin condition in
this VP, which preceded Lin's work. However,
the use of comoving coordinates suggests that per-
haps indirectly such a condition helped the argu-
ment. In fact, after Taub integrates Eq. (1.2) in
comoving coordinates by Gauss's law to a three-
dimensional surface integral bounding a tube
oriented along u', he neglects the contribution from
the lateral sides of the tube, i.e., the sides paral-
lel to u'. In comoving coordinates the integral

f dS, (dX'/d7')n. ( g)'t' is z-ero since dS, is ortho-
gonal to dX'/dw on the lateral surface. However,
a variation of this, for fixed dS, is not zero unless
dS& MX'/dv is zero. But this implies Eq. (1.1),
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since the possible dS,. comprise all the local space
directions. Thus implicit in the use of. comoving
coordinates is also the use of a form of the Lin
condition.

In 1955, Fock published the Theory of Spacetims
and Gravitation, ' in which he includes a VP for a
perfect fluid with electromagnetic effects as well.
The details are somewhat similar to those of
Taub. [The variation of Fock's (47.12) is essen-
tially Taub's Eq. (3.2).] Fock did not use (1.4)
above, but rather normalized the velocity vector.

A significant difference between the Taub and
Herivel principles is that the entropy is contained
in the Taub action integral, and conservation of
entropy emerges from the VP, whereas in Heri-
vel's approach entropy conservation is a side
condition, and entropy does not appear in the ac-
tion. The latter approach seems to be the natural
generalization of the classical principles of
thermodynamics: Maximization of entropy subj ect
to constant energy, and minimization of energy

.subject to constant entropy. '
All this was for perfect fluids, that is, fluids

without dissipative processes such as viscosity
or heat conduction. When it comes to imperfect
fluids variational principles run into difficulties.
In the simple problem of an oscillator of mass m,
force constant k, in a viscous medium with coef-
ficient b, it is impossibl, e to construct an action
principle &fLdt = 0 that will give the equation of
motion

mx+ bi +Ox= 0, (1.5)

and treating both x and z* as dynamical variables,
Eq, (1.5) emerged, but also

m*&*-b~*+k~*=0. (I.V)

The starred functions represented a' dual sys-
tern" whose nature it was to absorb heat in a fric-
tional process (i.e., an antifriction universe). The
heat produced in the physical system was in a
sense balanced by the heat absorbed in the dual
system. However, the VP had to contemplate both
systems to work. Extensions of this method to the
diffusion and other such equations have been made. '
And, of course, the same formal structure exists
in the quantum-mechanical VP in which the wave
functions and their complex conjugates appear. By
making enough constraints, one can probably
formulate a VP to represent any set of differential
equations. ' However, such flexibility occurs at
the expense of physical motivation.

Another VP is that of the least dissipation of

where an overdot denotes d/dt, and nothing else."
Bateman showed, however, that by choosing

L =mxx*- —'b(x*x-xx*) -Zxx*,

energy. This was developed by Onsager in the
course of his investigations into nonequilibrium
thermodynamics. "" It is not, however, an action
principle and -it was not designed to provide the
Navier-Stokes type of equation of motion, but rath-
er the linear rel.ation in which heat flow is pro-
portional to temperature gradient. It will turn out
that inclusion of this VP into a general action
principle is possible, and indeed necessary, to tie
up a loose end of the latter. (See Sec. V. )

Finally, Moiler" has reformulated the relativist-
ic theory of thermodynamics, and has shown in
this terminology that the equations of motion for an
ideal fluid imply a VP in which the Lagrangian is
the relativistic Gibbs function, and the independent
variable is X, where dA. = Td& and where v is the
proper time following the motion. This VP has a
Lagrangian not unlike that of Taub (a free energy
with no entropy constraint). Moiler's X turns
out to be just one of the Lagrange multipliers we
use. However, Moiler's approach lies outside the
scope of this paper, and we shall not have occa-
sion to refer to it again. Some other treatments
of the perfect-fluid VP are listed in Refs. 14-16.

'The purpose of this paper is to produce a VP which
is relativistic, and can also include dissipative
effects. In doing so we follow basically the Herivel
approach. " We do not use the position coordinate
z' of the fluid element as the basic dynamical
variable. Rather, the xyzt coordinates are just a
field over which the dynamical variables play.
There are the number density n(xyzt), the velocity
vector u'(xyzt), the entropy per particle s, (xyzt),
and the metric tensor g&~(xyzt). Variations with
respect to these are taken in a straightforward
manner, with no subtleties. The Lin constraint
is not needed nor encountered. 'The theory for the
perfect fluid is in Sec. III.

In Sec. IV we show that if the entropy production
is not zero, but of the form

(ns, u'+ u'Q, '/T) ,= (u'/T). ,Q.,',
where Q," is unspecified and treated as a fixed
function, not a dynamical variable, then the VP
yields the Einstein equations and the Navier-Stokes
equations, with Q,» entering just as the viscosity
and heat conduction parts of the energy-momentum
tensor should. The procedure leads to a number
of unwanted terms also, and these must be argued
away. In the latter part of Sec. IV a reformulation
of the VP is discussed which accomplishes this.

The VP so far does not lead to expressions for
Q," in terms of gradients of velocity or tempera-
ture. To get such equations one must consider
the Onsager type of minimum principle. It is
shown in Sec. V how such a principle can be ab-
sorbed into that of Sec. IV. Electromagnetism is
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added on in the usual way in Sec. VI. Section II
contains a review of Eckart's formulation of ir-
reversible thermodynamics, "the basic ideas and
notation of which are needed in the subsequent sec-
tions.

II»k = II»k+ IId'k,

11 ~, = 11~, —Ii .~,'/3, 11=11 ./3.
(2.11)

(2.12)

The expansion in Eq. (2.3) is general, but if T'"
represents the energy-momentum tensor, it satis-
fies the Einstein equation

II. IRREVERSIBLE THERMODYNAMICS G»k = ~T»k (2.13)

= g» —u»H /c (2.1)

projects out the part orthogonal to &' when operat-
ing on a vector Vk. Any vector Vk can then be ex-
panded, i.e.,

V'= (u»V»/c')u' +&' V".

Similarly, any second-rank tensor can be ex-
panded, i.e.,

(2.2)

We shall review here the basic ideas of irre-
versible thermodynamics so as to assemble the
notation and basic equations needed in the VP. The
basic paper is that of Eckart, " in which the laws
of thermodynamics were correlated with the ener-
gy-momentum tensor relativistically.

Eckart's analysis relied on the projection of
tensors parallel and orthogonal to a given direc-
tion, say u». The operator

where G»k is the Einstein tensor. From this it
follows that

T»k 0 (2, 14)

which is the relativistic equation of motion.
Eckart noticed that the projection of (2.14)

parallel to u»,

u»T". k
= 0, (2.i5)

resembles the first law of thermodynamics, with
E being the internal energy density, q» the heat
flux vector, P the hydrostatic pressure, and T7'

the viscosity tensor. The formal mathematical
expansion in (2.3) corresponds to a physically
meaningful separation when applied to the energy-
momentum tensor. The perfect-fluid part of T'k

1s

T» = eu u»/c + q»u +u»q + II» + (II —P)+»
7' (perf) =nb, u'u /c' Pg'— (2.i8)

(2.3)

where each of the two indices i and k is projected
parallel and orthogonal to u, with the "parallel-
parallel" part being

(2.17}

where h, is the enthalpy per particle (nh, the en-
thalpy per volume)

nh, =&+P.
Thus, the total T' may be written as

u' eu/»'=cu' uu'u»c T, =P, (P~)T,',— (2.4)
TA —TA(perf) + Qf »

which defines the projection operator Po onto the
parallel-parallel domain. The other terms in

(2.3) have corresponding definitions and corres-
ponding projection operators:

u q'=u &' u'c-'T. '=P (")T.',k k b c 1 kb

11 ' = (n '»~ ' —» ~»'~»'}T ' = P2("»)T '
(II —P)~ '=-,'n, ,'~;T '=P, (,",)T '

(2.5)

(2.6}

(2.7)

(2.8)

Here both (2.7) and (2.8) refer to the perpendicul-
ar-perpendicular" part, but they are separated
into a traceless term (2.7) and a term with trace
(2.8).

The operators P (o. = 0, 1, 1', 2, 3) satisfy

P (»",)P, (",,)=P (»'„)8 (2.9)

and form the completeness relation

(2.10)

where

Q.»=u.q'+u"q. + 11.»
» 5 5

(2. 19)

d&= &ds+ P,dn,

~+p =n(u, , + Ts, ) =nh, .

(2.20}

(2.21)

Eckart's proof did not include the terms in p„ the
chemical potential per particle, nor did he write
down (2.21). We shall need both of these addi. -
tions, which go beyond Eckart's discussion. For
their inclusion, see below Eq. (2.44). For refer-
ence we include an expression for dp which can be
derived from Eqs. (2.20), (2.21), and (2.17):

contains the dissipative processes, heat conduction
and viscosity.

Eckart went further and showed that the functions
~ and p imply the existence of two other functions,
entropy per volume s, and temperature T accord-
ing to

The quantities in (2.7) and (2.8} form the parts
of a general tensor Hk»,

dp =n(dh, —Tds, ) . (2.22)

Next, Eckart went on to the entropy-production
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equation. This can be derived by rewriting (2.15),
using (2.20) and (2.21}. The»», terms drop out,
using Eq. (1.2). Then

X,'(o.) =R(n) Q, '(o.),
where

(2. 35)

Ss (up/ T) Q (2.23) &(»r) =1/L(~) . (2. 35)

where

S~=ns, u'+ u'Q, '/T. (2.24}

X*',= (u'/T), , (2. aS)

Then (2.23), the entropy-production equation, be-
comes

S''a =X'aQ»'. (2.25)

It is customary to break up the right-hand side
into the terms for heat conduction, viscosity, etc.
This can be done easily with the help of the com-
pleteness relation (2.10):

Slh Xi 5s5aQ r g Xa (n)Q 5(o)

44 tP

where the so-called fluxes are

(2.27}

is the entropy flux vector. We have placed a bar
on Q,.~ when Q appears in S' to distinguish its
presence here from its contribution to the entxopy-
pxoduction rate, which is the right-hand side of
(2.23}. It is this right-hand side only that is taken
to be necessarily positive, not all the terms con-
taining heat conduction and viscosity. This dis-
tinction becomes important in Sec. V.

It is convenient to define

By comparing (2. 34) with the usual expressions
for the fluxes,

q»=XTa"(-T, ,/7+u, u /c'),
11"=»I a»,S' [u"'+u"'- (-,')a "u . J,e

11=(t/3) ",

(2. 37)

(2. 38)

(2. 39)

L(1 ) =L(1)= —2}lT ~ 0,
L (2) =2' ~ 0

L(3)=Tr. ~ 0.

(2.40}

(2. 41)

(2.42)

Equations (2.34)-(2.42) constitute the linear ap-
proximation.

The results so far have been obtained from pro-
jecting Ti~. „along u,. as in (2.15). One can pro-
ject along b, , also, and this will lead to the Wav-

ier-Stokes equation. Eckart discussed the heat
terms of this equation. The full equation comes
from

TN@ O (2.43)

where X is the coefficient of heat conductivity, p
the coefficient of shear viscosity, and g the coef-
ficient of bulk viscosity (all positive), we caniden-
tify the L's as follows:

Q.'(n) =&.(.'„')Q,",
and the "forces" are

(2.ae)
and is

(e+p}u'u', , /c' —~"p, + a'~Q, ; „=0, (2.44}

X~,(3)= (3T) 'u~. „@',.
(2. 32)

(2. 33)

In getting these equations we used the symmetrized
form of X'~, that is, —,'(X»~+X~').

All this is general. If we now require that the
components of Q,.~ be linear in the gradients of
velocity and temperature and, for arbitrary val-
ues of these, that the right side of (2.27) be posi-
tive, then the Q's must have the form

Q, (n) =L(»».}X, (o»), n =1,1',2, 3

or, inversely

(2.34)

x,(n) =x*,z.(~;) . (2.29)

The fluxes of (2. 28) have already been listed in

Eqs. (2.5)-(2.8), and the forces, using (2.25),
turn out to be

X'~(1)= v.u'&&"(-T JT'+ u; u"/c'T), (2. 30)

X'~(1 ) = mud&' ( T/T-+u„,„-u"/c'T), (2.31}

X' (2)=(2T} '&'"& ~(u„, +u„,„——,'u' & },

T =n 'ae/as, ,

I», = ae/an,

(2.45)

(2.46)

as consequences of a fundamental and independent

which is the desired equation.
All this was formulated or implied in Eckart's

article. Another point of view was developed

by Prigogine and co-workers. " Whereas Eckart
purported to have derived Eq. (2.20) (without the

»», term) from an analysis of (2. 15), this other
view regarded Eqs. (2. 20} and (2.21), and similar
thermodynamic equations, as the fundamental as-
sumptions of nonequilibrium thermodynamics,
namely that the equilibrium equations of Gibbs
are valid also when systems are out of equilib-
rium in a first-order approximation. This was
argued in terms of a kinetic-theory derivation that
showed that the Gibbs equation is valid to within
first-order terms in the deviation of the distribu-
tion function f rom the equilibrium distribution.

In the subsequent discussion in this paper we
shall adopt this point of view, treating Eqs. (2.20)
and (2.21), and related equations such as
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postulate that is valid to first order in the gradi-
ents of velocity, temperature, and density.

Now how does a variational principle relate to
this basic description~ The discussion above
(a) assumed the Einstein equations (2.13) and
(2.14), (b) assumed the nonequilibrium postulates
(2.20) and (2.21), then (c) derived the entropy-pro-
duction equation (2.23), and (d) derivedthe gen-
eralized Navier-Stokes equation (2.44).

The variational principle we use will (a) assume
the action principle in Eq. (3.1) below (and others
in subsequent sections), (b) assume the nonequi-
librium postulates (2.20) and (2.21), then will (c)
derive the Einstein equations (2.13) and (2.14), and
(d) derive independently the generalized Navier-
Stokes equation (2.44). Further, in Sec. V shall
show that a modified VP will also yield the lin-
earized equations (2.34).

I= 8 —2'& -g 'I'd (3.1)

is to be an extremal

(3.2)

(nu'). , = 0,

g,~
u' u/c'-1=0, -an),

(nu s, ), ~=0, -2K'.

(3.3)

(3.4)

(3.5)

(In the VP, u~ is defined as the direction along
which there is zero entropy production. ) Thus, we
have

with respect to variations in the dynamical vari-
ables n, u', s„and g,~ that vanish on the boundary
of 0, subject to the constraints (1.2}-(1.4), which
are repeated here with their Lagrange multipliers:

III. THE VARIATIONAL PRINCIPLE FOR A SIMPLE
PERFECT FLUID

I'= A(- g)'
'Idx, 6I'=0,

where

(3 6)

This is the prototype of all the VP's to follow.
For a system near equilibrium whose thermody-
namic variables satisfy (2.20) and (2.21), and also
satisfy an equation of state p =p(n, s, ), the action
integral over an arbitrary volume 0,

A =R —2ve —(t)(nu'},
&

—xng(gou'u /c'-1)- 2&Xnu"s, ~. (3.7)

This is the basic VP. To impiement this we have
(G(" is the Einstein tensor)

R -g '~'d'x= G' &g -g '~'d'x, (3.8}

-2~& -g ' 'd'x=-2' 4 &n &n+ ~c ~s, &s, + —,'eg' 6g„-g ' 'd'x, (3.9)

I

~ ] —g cf x= ~ ]n —g x = ]Q ~n+ ]n~g + nQ gg ~g~, —g xy 3.10

II Jl ( )Kll(t(g~ u El /c 1)'( g) d x K f 'n( (2ggc 5u +M II 0 llg~ )( ) ) d x (3.11)

-62& ~ nunks, ~ -g d x=2&~ X ~nu s -g d x

= 2/c
&

[6n(A. „u's, )+ &u" (X,,ns, )+ &s, (n&,,u')+ ,'6g, ~"nu-s,A]( g)' '.d'x-.

(3.12)

In working out these equations, use of the four-
dimensional Gauss's theorem and the assumption
that all variations vanish on the (arbitrary) surface
of the four-volume integrated over were made.
Also, after the variations were taken, the con-
straints in Eqs. (3.3)-(3.5) were used to simplify
the expressions.

We now put Eqs. (3.8)-(3.12) into (3.6). We get

5I'= Jt (A' 6g.~+86n+ C,6u'+D6s, )(-g)' 'd'x= 0,
(3.13)

A'' —= G'' —wag'~ ——,'ng '(t),

—an(ltu'u'/c'+ Kg'~nu X s, = 0, (3,14)

& =—-u [Q ~
—2x(sa/sn)u~/c'+ 2x&,s,) = 0, (3.15)

C, =—n[(t), —2K~,/c'+ 2x'J(. ,s, ]= 0,
D -=2xsa/ss, -+ 2xnk ~u'= 0.

(3.16)

Equation (3.14) will give us the Einstein equa-

where for arbitrary variations of the dynamical
variables at every point x' of the integrand,
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G"= «(nh. u'u»/c' pg"), — (3.21)

where the P terms were eliminated by (3.15).
Equation (3.21) is the desired Einstein equation
for a perfect fluid. [See Eqs. (2.13) and (2.16).]

Equation (3.19) may be regarded as an indirect
use of the constraint (3.4) to evaluate a multiplier.
The other constraints, (3.3) and (3.5), involve
derivatives of u' or s,. To substitute the varia-
tional equations into these constraints requires,
therefore, that derivatives be taken of the varia-
tional equations. It turns out that by use of"

B,. u(C,./n). =-0, (3.22)

all reference to &P and X disappears. We shall in-
terpret (3.22) as the appropriate procedure for
substituting the variational equations into the con-
straints to eliminate reference to the multipliers.

Substitution of (3.15) and (3.16) into (3.22), and
using (3.16) again to eliminate Q „ leads after a
tedious calculation to

nI», u ul /c' && (nlg,—„—nTs, )+nTu&u s, /c'=0.

(3.23)

tions, and Eqs. (3.15) and (3.16) will give us the
Navier-Stokes equation. The mathematical prob-
lem is to eliminate the three Lagrange multipliers
$, &, and Q. The usual way to do this is to sub-
stitute the solutions back into the constraints.
Equation (3.17) gives us, however, directly using
Eq. (2.44),

X,u'= T, (3.18)

which turns out to be all we shall ever know about
X.

As for g, we notice that the quantities in square
brackets in Eqs. (3.15) and (3.16) are almost iden-
tical. By forming C,.u'/n we bring (3.16) into the

same form as (3.15). Thus from

C,u'/n —B= 0, (3.19)

we find

(3.20)

using (2.46). This much information enables us
to write (3.14) as

IV. THE VP FOR A FLUID WITH VISCOSITY AND HEAT
CONDUCTION. REFORMULATION OF THE VP

To take into account dissipative processes in the
VP, we modify the entropy-production equation
(3.5) to the form in (2.23):

(ns.u»+ u'Q, »/T) ,.„—(u. '/T)-. ,Q,' = 0, -2«X (4.1)

where the barred Q contributes to the entropy flux
vector S" [see Eq. (2.24)], and the unbarred one
contributes to the entropy production. They are
the same quantity, of course. In this Section we
are interested in the VP for the Einstein and Nav-
ier-Stokes equations and have no need of the Q', s,
so we set their variations to zero:

6Q» 0 (4.2)

6Q» 0
$ (4.3)

In Sec.V we shall relax (4.2). It should be remarked
that in order to get the desired equations, it must
be Q,» that has zero variation and not, say, Q»,
Q,.», or Q', . With any of these other choices the
variational equations do not contain the correct
terms. There seems to be no obvious reason why
it turns out this way, unless it is that Q,. is what
naturally enters the expressions in Eq. (4.1).

We now return to the plan of Sec. III. After Eqs.
(3.8)-(3.11), which remain unaltered, Eq. (3.12)
must be replaced by

The last term is zero by (3.5) with (3.3), and the
quantity in parentheses is just P by (2.22). Thus
(3.23) reduces to the perfect-fluid part of (2.44),
i.e., the part not containing Q» . Thus, we have
arrived at the Navier-Stokes equation for a per-
fect fluid. Note that the derivations of the Ein-
stein equations and equations of motion were in-
dependent, since the former came from (3.14) and
the latter from (3.15) and (3.16). Note also that al-
though (3.5) defined u», the results in (3.21) and
(3.23) tell us that u» is also the direction of motion.

-2m& X nu's. +u'q, ' T, , —u' T, ,
' -g"'de

= 2«( 5(nX»us. ) &+s,(Xn )»+u~»u'(X, ns. —XQ,»,.»/T)

+ 5g,»[-,
'

g(& "u/),T, „Q" —,'(Xu Q "/T), + ,' g—"X u ns, ]+ X(u-' /)T, Q»6, »X+»(u'/T)5Q, »)( g)'~'d'x. -
(4.4)

In order to get this result we had to use
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( ', „)=( ');,+l "g' [(g „);,+(g, )„,—(g,.);.],
which follows from writing u'. „ in terms of Christoffel symbols I'z~ and using

6I'kg=kg™[(~g«) i+(~g i) k-(6gki) ],
along with the symmetry of Q'". Many of the terms had to be integrated by parts.

Instead of (3.13) we now have

(4.5)

(4.6)

6I'= A'"~g +B~n+C 6u'+DDT +E' ~ '+E' ~ ' g'~'d x. (4.7)

Here

Ai =G' —iiegi +kg nu g'k —iinQ'u /c'+iiX „u"g'«Q "/T —iiA u Q'k/T+iigikg

+ iiX(u Q "/T)„„g"-iiX(u-Q "/T), iiXg"—u"q„/T =.0, (4.8)

D = -2x&k/es, + 2 iiknk"u= 0,
E'» = X(u'/T).

Z'„= ~,{u'/T) .
Equation (4.11) is the same as (3.17) whence

~u =&.

(4.10)

(4.11)

(4.i2)

(4.i3)

(4.14)

We can therefore expand X „ in the Eckart manner
in a term parallel and a term orthogonal to u~:

X k
——Tuk/c +A. +

k ~ (4.15)

Following the argument of Sec. III we now form
(3.19), obtaining with (4.9) and (4.10),

ili = h, —Xu'Q, ".
, k/nT . (4.16)

We substitute (4.15) and (4.16) into (4.8) to get the
Einstein equation

haik

&(nh uiuk/ck Pgik+qik+ Zik) (4.i7)

where all the unwanted terms are lumped in Z'",
l.e.~

Zik ~[urq m u«uk/C«T gik(„mq r/T)

(umqik/T) gikurq m /T]

where we separated off all terms containing de-
rivatives of X from those simply multiplied by &.

Also,

B= 2x&E/-&n+iP u +2'&«u s, =0, (4.9)

&,. = n(iP, —2x~,./c'+ 2a'X,.s, —2&XQ, , „/nT)

In fact, we could define a new energy density & as

e'=e —u u„Q "/T, (4.20)

since only this combination appears directly, and
Be'/en= &&/&n, since the second term of Eq. (4.20)
contains only independent dynamical variables or
functions of position.

We expect the second term of (4.20) to be zero,
since Q

" is defined in Eq. (2.18) not to have a
parallel-parallel part. However, the VP does not
know this; in the entropy-production constraint
equation (4.1), Q,

' appears as a function with no
restrictions. 'The VP is supposed, in fact, to lead
to the expression for T", as it does in (4.17), and
it cannot utilize the answer beforehand. Thus, the
argument of the present section in no way can sug-
gest what Q,.

" is, and cannot get rid of the second
term in Eq. (4.20). In the next section, however,
we consider varying the Q's also. When that is
done, we get expressions for them and in particu-
lar it will be possible to argue that there is no
parallel-parallel component so that E' reduces to

In anticipation of this result we shall use the
notation & rather than e in our discussion.

To get the equations of motion we again use Eq.
(3.22), but now with Eqs. (4.9) and (4.10). A very
tedious but straightforward calculation [in which
we eliminate iti „by (4.10) and utilize (4.15)] leads
to

nh, u u, , /c' —&, (nh, —nTs, )+&,. q k,k+Z,. =O,

(4.21)
&' g'ku Q "/T. (4.18)

In (4.17), p is not as in Eq. (2.17) but rather

p = nh, —(e —u"u„Q "/T) . (4.19)

where the quantity in parentheses is p by (2.22),
and where all the unwanted terms [those that de-
viate from (2.43)] are lumped in Z, :

Z, = ~, (~ „u q. ,/T —~[u,.u u'q, ', „/c'T -»",„q.', ,/T -nu (q„';,/nT);. l). (4.22)
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Two consistency conditions must be satisfied.
Since G'», »= 0 identically, the divergence of (4.17)
times &~ j will be zero. However, the first three
terms in this result are the first three terms of

(4.21). Thus,

&j Z .~
—~j-0. (4.23)

Secondly, if G~», »u, is subtracted from (4.1), we

get

(4.24)

T

Tdr' = T(t —ro),
7'0

where T is an average temperature defined by
(4.25), and r, must be independent of &:

(4.25)

(4.26)

but is otherwise arbitrary. The integral in (4.25)
follows the motion from the "initial" time &o to

(r, has nothing to do with solving the equations
of motion. )

The right-hand side of (4.25) can be made as
small as desired by making & —&p small. Thus, an
argument based on order could be upheld if the
domain of integration is such and &p is such that

+p is sm all eve rywhe re in the domain. If the
domain is over all four-space, then clearly the

Any approximation involving Zj~ and Z, must satis-
fy Eqs. (4.23) and (4.24).

. We now turn to a discussion of the basic results
of this section, Eqs. (4.1V) and (4.21). For these
to reduce to the standard equations, Z@ and Z,
must drop out. Each term in the Z's depends lin-
early on Q and is proportional either to X itself
or its space gradient. We cannot of course set Q

equal to zero and still contemplate the dissipative
processes. However, Q is linear at least in the
gradients of uj, n, or T, and the first question we

might ask is whether or not the Z's are of higher
order in these gradients than the desired terms in

Eqs. (4.1V) and (4.21). Secondly, we could ask
whether & and its space gradient could be zero,
It is, in fact, easy to see that if X is regarded as
of zeroth order in the gradients, then Zj~ is of
second order in (4.17}—one order higher than Q'»—
and &, is of third order in (4.21)—one order higher
than Q»„,.». (In this argument a gradient is re-
garded as increasing the order by 1 so that Q'„,
is of second order, A»&»" is of first order, etc. )
Thus, one could conclude that the Z terms can be
neglected on the basis of being of higher order, .

This argument rests on the assumption that X is
of zeroth order. However, X from (4.14) is an
integral of T, and hence might be considered to be
of order minus 1. The general solution to (4.14)
may be written as

ng =np, + [ns, + (T/T)(ns, u»);»(& —&,)]. (4.27)

The square brackets contain the normal expres-
sion ns, for the entropy density in the first term
and, in the second term an average increase of

argument fails. One must choose a narrow proper-
time slice (&„w,) for the domain, and place &, be-
tween 7, and &,. There is nothing preventing us
f rom choosing such a domain and such a 7o. Since
the results are then independent of what the time
slice and &p actually are, the results are general-
ly valid for any time &.

This discussion has led us to the point of consid-
ering the second possibility mentioned in the

paragraph below Eq. (4.24). That is, since
each term in the Z's is proportional either to ~ or
its space gradient, could we make X equal to zero'?
From Eq. (4.25), this would require setting w, =v,
which contradicts Eq. (4.26). And further, if X

were zero in any finite time slice (as described in
the previous paragraph), its time derivative would

be zero, not T as (4.14) requires.
Both these objections could be overcome, how-

ever, if we consider the time slice (&„&,), men-
tioned two paragraphs above, in the limit &, -&»
with of course both & and &p required to be trapped
between &, and &,. The VP would then be designed
to give information only about a particular (but
arbitrary) constant & surface. Since the results
would be independent of whichever surface was
involved, the results would be general. It should
be kept in mind that taking the limit is the last
thing that is done; integration by parts timewise
must precede this limit taking, otherwise we
would not have obtained the normal terms in Eq.
(4.1V} and (4.21}. We shall describe this proce-
dure as a differentia/ VI', DVP, since the limit
taking here is reminiscent of taking a derivative.

The motivation so far for such a DVP has been
mathematical; this is what is required to get the
desired equations, independent of order. How-

ever, there is a compelling physical reason for
setting X to zero also. The terms in ~, if allowed
to, appear in the equations, bring with them a
dependence on the history of the system from +p

to & (in the equations themselves, not just the
solutions) where &, is arbitrary. The equations
would not just be relations among the dynamical
variables and their derivatives, but would depend
on the time at which the system is considered, and
on its historical development. Such a system wouM

be non-Markoffian in the language of irreversible
thermodynamics. " Thus, to eliminate any hint of
non-Markoffian effects, we must set X and its
space gradients equal to zero.

As an illustration, consider Eq. (4.16). Using
(2.21) we get
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entropy density caused by the dissipative pro-
cesses from &, to &. It is this second term that
exhibits (in the equations themselves) an explicit
development Of the system from &0 to &. In fact,
it is possible to identify all the terms in Z'~ as
history-dependent supplements to the normal terms
in (4.17). We shall call such supplements accumu-
lation te~ms. In the present case we would wish
that the normal term ns, would contain the entire
entropy density instantaneously as the system
evolves.

The problem with X has an analogy with P in
Eq. (3.3). From (3.15) and (3.26),

f 2K' dT (4.28)
Tp

which is analogous to (4.25), with &,' independent
of 7' but otherwise arbitrary. Equation (3.3) con-
cerns the pa~ticle production. No .trouble arises
in this paper with &f since the particle production
is zero. (Just as no trouble arose with X in Sec.
III.) If the particle production were not zero,
terms proportional to Q and its space gradient
would appear in the equations of motion, repre-
senting the effects of the accumulation of particles
from 7,' to r. However, use of a time slice (&„v,),
with &, -&„sweeps away all such accumulation
terms along with those proportional to ~ and its
space gradient.

Getting rid of accumulation terms has its analog
in the Bateman VP discussed briefly in Sec. I.
There, two systems had to be considered simul-
taneously: The physical system, in which f riction
emits heat, and a dual system, in which friction
absorbs heat. The VP is designed so that no ac-
cumulation of heat (in the physical system) or va-
cancy of heat (in the dual system) occurs. In ef-
fect, the heat that would have accumulated is de-
livered from the physical ta the dual system. The
scheme is quite different from ours, but the issue
is the same.

The crux of the matter, as emphasized by
Gyarmati, " is that action principles involving an
integral over time are global VP's, whereas
problems involving dissipative processes lead to
constant time VP's. When both effects are present
we cannot on the one hand keep the time interval
finite, for then the dissipative processes give rise
to non-Markoffian effects, and we cannot on the
other hand go at once to a constant & surface, for
then the kinetic terms cannot be integrated by
parts over time intervals and develop time deriva-
tives.

The differential VI' takes an intermediate route:
. It works the problem first over a small proper-

time slice (v„&,) and then takes the limit &,-&,.
We then suggest: For a system whose thermo-

dynamic variables satisfy Eqs. (2.20)„and (2.21),
whence (2.45) and (2.46), and an equation of state
p =p(n, s, ), the action integral over the time slice

1 i 2)t

T2

I(~„r,) = (R —2aa)(-g)'~'d'x,
Tg

(4.29)

is to be an extremal in the sense that

5 I= lim&—I(v„,r, ) =0,
2

(4.30)

V. THE PRINCIPLE OF LEAST DISSIPATION OF ENERGY

The pioneering work of Onsager in irreversible
thermodynamics" found expression in the VP
known by the title of this section. A rather full

with respect to variations in the dynamical varia-
bles n, u', s„and g,~ that vanish on the boundary
surface of the slice, subject to the constraints
(3.3), (3.4), and (4.1). The limit sign means that
after the variational equations are obtained and
substituted back into the constraints, as in Eqs.
(3.19) and (3.22), the limit is to be taken. It is
implied here that all parameters appearing direct-
ly in the equations refer to the time slice (w„v, ) in
question.

The principle here might be called a differential
VP of first order, in the sense that first deriva-
tives of the variational equations are taken before
the limit is taken. This is related to the fact that
the constraint equations involve only first deriva-
tives. It might happen in other circumstances
that the constraint equations contain higher-order
derivatives, and that higher-order derivatives of
the variational equations would have to be taken
before the limit was taken. In that case, it would
be a differential VP of higher order.

The VP was worked out in a general-relativistic
formalism. The special- relativistic version can
be obtained directly by setting gz ——(1, -1, -1, -1),
~g,~=0, and 8=0. As such it differs from the
usual particle VP by having the kinetic term
nsoc'(1- v'/c')'~' replaced by the constraint (3.4).
Nevertheless, the argument goes through with no al-
terations. The inclusion of dissipative processes in a
VP is, of course, a classical problem as well. The
formalism here, however, does not reduce directly to
a classical limit since the constraint (3.4) has no
classical analog. Presumably, one must return
to the Herivel-Lin VP, modify the entropy con-
straint appropriately, and then invoke the same
limit procedure. However, we have not worked
this out.
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development can be found in Gyarmati" and in
Lavenda. " In this section we shall formulate the
principle in relativistic terms, and discuss what
it takes to incorporate it into the action principle
of the previous section. With it, the form of the

Q,» can be determined.
The entropy production in Eq. (2.23) or (2.26) can

be written, using Eq. (2.10), as

o(Q, X)-=(M'/T), » QP (~i»)P (",„) Q,"

=gQ, (a)X'„(a). (5.1)

We shall, in what follows, use a', Z' (i.e.,
primes) to mean a and 5~ without the a =0 term.
In addition, we need to define the dissipation func-
tions

1

e'(X, X)=-,'X', g P. ("„)I(a)P. (."„)X",

which is in fact obtained by multiplying (2.34) by
R(a)Q'»(a) and summing over the a. If Eq. (5.8)
is handled with a Lagrange multiplier, then this
principle leads to the unconstrained principle
(5.4).

Although the above discussion constitutes a rel-
ativistic version of the VP, it would be preferable
if it could be incorporated into the action principle
of the previous sections to produce a unified VP.
With this in mind we notice that the Lavenda form
is fairly close to that of our action principle, but
it has in (5.7) a different quantity that is made an
extremal, and the side condition is not the same
as (4.1), although it is closely related.

In order to obtain the unification, we go back to
Eq. (5.3) and define a transPort oPerator R (the
caret is used to distinguish it from the curvature
scalar R) whose projections onto the P are the
R(a). We define the tensor components of R to be

X'»(a)L (a)X', (a), (5.2)

A(»,.'„)=QP (»;)R(a)P (»'„)

and the inverse is

R (a) = d(a) 'P. ("»)R('„')P (",,),

(5.9a)

(5,9b)

= » g Q;(a)R(a)Q. '(a), (5.3)
where the d(a) are numbers needed because of
normalization:

5q[&'(Q, X) —@'(Q, Q)] = o, (5.4)

where variations are taken with respect to the Q's
but not the X's or

& [o'(Q, X)-e'(X,X)]=0, (5.5}

where variations are taken with respect to the X's
but not the Q's. This VP yields the linear equa-
tions (2.34) and (2.35). This can be seen by vary
ing the Q, '(a) directly [or the X'»(a)' s]. Thus,
using the last forms in Eqs. (5.1) and (5.3), we get
from (5.4)

g [X;( )-R( )Q;( )]6Q.'(a) =0 (5.6)

Since the &Q are arbitrary, the quantity in square
brackets must be zero for each n and we obtain
Eq. (2.35).

Lavenda24 has shown that Eq. (5.4) can be re-
garded as the result of a VP in which

C '(Q, Q) = min (5.7)

is the minimum principle, but subject to the con-
straint

using the notation of Eqs. (2.28)-(2.33). The quan-
tity in square brackets might be called resistance
dyadics, or transport dyadics.

The local form of the VP can be stated' as

d(0) = 1 = d(3), d(2) = 8, d(1) = 3 . (5.9c)

It should be noted that the at 0 terms in Eq. (5.9a)
are what appear in Eq. (5.3), but that there is also
in general an a=0 term. The form in Eq. (5.9a)
is similar to that of the completeness relation in
Eq. (2.10), and in fact is typical of the expansion
of any operator in terms of projectors. " The
diagonality of Eq. (5.9) is not essential to the theo-
ry. In terms of R we define a generalized dissipa-
tion function

C =-'Q'R(")Q " (5.10a,)

which can be symbolized in a quantum-mechanical
notation

(5.10b)

In sum, there are three objects in the theory:
X, Q, and R. The projections of X onto the P
give the forces X(a), the projections of Q onto
the P give the fluxes Q(a), and the projections
of A onto the P give the transport coefficients
R(a). The dissipation function, Eq. (5.10), has a
form in which the Q's appear as wave functions and

the R as an operator.
Naw, just as in the quantum-mechanical VP,

when we come to take variations of 4 we shall vary
the wave functions Q, but not the operator R:

a'(Q, X) -24'(Q, Q) =o, (5.8) ~@ = »(~Q)RQ+»Q~~Q. (5.11)
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Equation (5.11) is the fundamental postulate that
allows the unification of the VP's to take place,
and establishes R as an independent geometrical
operator in the theory.

We now add C to the action integrand" in Eq.
(3.1) to obtain

5~J= lim & R-2aE
a j. x

gf &Q j R(its)q r]( g)1/2d4x

experimental quantities &, p, and f as in Eqs.
(2.40}-(2.42). The VP does not determine g, g,
and g of course, and from the point of view of the
VP we might as well absorb f into these undeter-
mined quantities.

There is, however, by our procedure an equa-
tion for o.'=0 as well, since the variations 5Q,", if
perfectly arbitrary, must have arbitrary contri-
butions projected along the parallel-parallel do-
main. This leads to an n =0 equation

(5.12) R(0)Q;(0) =X',(0). (5.17)

where 2ekf is a multiplier put in for generality,
f being an arbitrary function. Then the constraint
in (4.1) is written

This equation would seem to have no physical sig-
nificance. The right-hand side is not, however,
zero since if X'» is defined as in Eq. (2.25), there
is a parallel-parallel component

(ns, u" +u'Q, "/&), ~-X'„& (,~)& (,'„) Q,"=0. X',(0) = -T 'T „u'u'u, /c' ~ (5.16)

(5.13)

In the VP we vary the Q's but not the Q's. This
is necessary if we are to generate a VP analogous
to that of Onsager, for in that, what enters is the
entropy production [which is the second term of
(5;13)] containing the Q's. The entropy flux vector,
representing flux through the surface, does not
enter the Onsager VP. In adapting our side condi-
tion (5.13) to this problem, we must therefore dis-
tinguish between the physical significance of the
two terms and ask for the response of the entropy
volume production term to variations in the flux-
es, but not for the response of the entropy surface
flux term. In principle, there is nothing difficult
or inconsistent about keeping the Q's fixed as we

vary the Q
' s.

The VP is then (5.12), with (5.13) as a constraint.
To proceed, we form from the J of (5.12) a Z'

analogous to the I' of (3.6}, and then set V' = 0.
There are two new effects. First of all, the new
4 term in (5.12) makes a contribution to the A~~:

Qg'(0) = L(0)X'g(0), (5.19)

to give us an expression for Q~'(0) in terms of the
parameter L(0}, obtained from another theory.
The VP does not tell us the various L(a). The
resolution of the problem is therefore that L(0)
must be chosen equal to zero

We recall that in Sec. IV there was also a prob-
lein with the parallel-parallel part of Q,.~. In Eq.
(4.19) what appea, red was e', which contained the

Q contribution written in Eq. (4.20}. To regain the
usual equations we would have to force this part
of Q to be zero. However, in Sec. IV there was no
procedure for determining the Q's. In the present
section we -have such a procedure and in fact, the
n = 1, 1', 2, and 3 equations resulting from (5.15)
give the usual forms for the Q, '(n) in terms of the
L(n) or R(o.'). These parameters are determined
either by experiment or by a theory of the micro-
scopic structure of the material.

In the same vein we expect Eq. (5.17), or its in-
verse

nA i' = ,' g~'(2~zf)e—(Q,q) (5.14)
L(0) =0, (5.20)

And second, by having 6QO 0, we get an addition
to V' we shall call ~J':

&g' = limp J 2ahlfR(o. )Q;(o. ) —X',(n}]

x [P (,"„)5Q "](-g)'i'd'x. (5.15)

If now the 6Q, ' are completely arbitrary, then
so are the projections P 5Q. Then the quantity in
curly brackets of (5.15) must be zero for each n
For &=1,1', 2, 3 these equations will bring back
Eqs. (2.34) and (2.35) provided

f=1, (5.16)

or equivalently, provided we absorb f into the R(o.)
and allow L(o,) = [fR(o)]-' to be identified with the

when e' is the local four-velocity of the fluid under
consideration. We must go beyond the VP to make
this statement, just as we must go beyond the VP
to determine the L(o,'), o.'4 0. With it, however, we
get back what we know must be the case: The Q
must refer to dissipative processes only. And, of
course, it will eliminate the second term of Eq.
(4.20).

With Q,.» and f determined, we can return to Eq.
(5.14) and argue that since the right-hand side is
proportional to A., it will eventually drop out of the
equations by the procedure described at the end of
Sec. IV." It is interesting to note that the dissipa-
tion term in (5.12) is, in fact, just another ac-
cumulation term. However, it has an important
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effect in determining the Q's. In this way, with
the postulate in Eq. (5.11) and the "experimental"
determination of I (0) in Eq. (5.20), the Onsager
type of VP that produces the linear equations con-
necting fluxes and forces is incorporated into (at
the same time tying together a loose end of) the
action principle of the previous section.

VI. INCLUSION OF ELECTROMAGNETISM

The VP of the preceding sections can be gen-
eralized to include the equations for an em field,
and for the interaction between this field and the
fluid if it is charged. The manner for doing this
is standard. One adds to the I of (3.1) I, , where

I = 2g -F]~F&~ 16m+ J~A) c g ' d x,

6(l'+I, ) = Jt (A'~6g++ B6n+ C,.6u'+D&s,

ER6A )( g)1/2d4& (6 4)

where

A"=—(4.8) —(~/4v)(F' F' ,'g"F, F"")——

+(~/c)g"J A =0,

B—= (4.9)+ (2'/c)qA~u = 0,

C, -=(4.10)+ (2v/c)nqA, = 0,
D= (4.11)=�, —

0E~ =(v/2m)(F~, —(4v/c)P] = 0.

(6.5)

(6.6)

(6.V)

(6.8)

(6.9)

Equation (6.8) yields again Eqs. (4.14) and (4.15),
and Eq. (3.19) yields again (4.16), there being no
electromagnetic effect in this quantity. When (6.5)
is used to get the Einstein equations, it turns out
that the last term of (6.5) is canceled by a term
coming from the P u g'~ term of (4.8) [which of
course appears in (6.5}]when tP u is obtained
from Eq. (6.6). Thus, G'" ends up as what (4.17)
has pt.us the usual em term:

(6.1)

where A, is the electromagnetic four-potential,
F,.~ the field tensor,

(6.2)

and J' is the charge flow of the particles:

(6.3)

where q is the charge on the individual particle.
The VP is then thatI+I, is to be an extremal,

subject to the constraints (3.3), (3.4), and (4.1).
There is the new dynamical variable A~ which
gets varied, so (3.13) becomes

G"= ~ nh, u'u'/c'-pg" +Q"

+ (F& Fam &ggaF ~m~) (6.10)

Fkm (4./cglh = 0 (6.12)

Thus, all the electromagnetic effects are absorbed
into the VP in the usual way.

VII. REVIEW

In this paper, the variational principle for a
perfect fluid in general relativity is reformulated
in a way that constitutes the natural relativistic
generalization of the Herivel. classical hydrody-
namical principle. The explicit use of the Lin
auxiliary condition proves to be unnecessary in
this formulation. There is an entropy constraint
which is the generalization of the classical one
that energy is to be a minimum for no change in
entropy. The statement is that entropy production
is to be zero.

This VP for a perfect fluid is then extended to
include imperfect fluids exhibiting dissipative pro-
cesses by allowing the entropy production to have
the form in Eq. (4.1). When this is done, the
Einstein and Navier-Stokes equations containing
these processes are produced independently, as
was the case for a perfect fluid, but there are a
number of unwanted terms (Z" and Z, ) in both
equations. These unwanted terms may first of all
be of higher order in the gradients of velocity,
density, and temperature, and can perhaps be
neglected for this reason.

However, these terms have the physical signifi-
cance of representing directly the accumulation of
entropy, heat, etc. , via the dissipative processes
between an arbitrary initial time 7o and the time
7' of observation of the system. In this sense they
then introduce a non-Markoffian character into
the equations of motion and the Einstein equations.
If such a character is to be eliminated, then all
such "accumulation terms" must be eliminated.

The mechanism for doing this is to limit the
time interval during which the accumulation takes
place, in fact, to set it equal to zero. Thus, the

The equations of motion are obtained from (3.22)
using (6.6) and (6.V}. The result after a tedious
calculation is to give the usual em correction:

nh, u ua / &pp + &g"Q ';~+~'F'~/c =0.
(6.11}

The last term may be written in the same form
as the previous two &'„PF ~/c, since its projec-
tion onto u, is zero.

Finally Eq. (6.9) gives the Maxwell equation
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action integral is reformulated to refer to a nar-
row proper-time slice &y 'T2 and then, after the
variational equations have been substituted back
into the constraints to obtain all the desired equa-
tions, the two times are allowed to collapse to
some arbitrary time &'. The resulting equations
refer then to an arbitrary time, but the accumula-
tion terms have collapsed to zero by this mech-
anism. Thus by modifying the time range of the
action integral to be of differential size, we can
introduce dissipative processes into a modified
action principle.

By the same token, the Onsager type of VP which
produces the linear flow equations can be incor-
porated into the principle by defining a transport

operator or dyadic [Eq. (5.9}]which generalizes
all the transport coefficients into a single geo-
metrical object which does not undergo variations.
Then a generalized dissipation function [Eq.
(5.10}]is added to the action integrand with an
appropriate multiplier, and variations are taken
of the flux tensor Q,

" appearing in the entropy pro-
duction and dissipation terms. This is described
in Sec. V. The parameters in the transport dyadic
must be obtained from experiment or from a
microscopic theory outside of the VP. One of
them must be chosen to be zero in order to get
the correct equations of motion. Electromagnet-
ism can be taken into account in the standard way
as described in Sec. VI.

J. W. Herivel, Proc. Cambridge Philos. Soc. 51, 344
(1955).

2W. Yourgrau and S. Mandelstam, Variational Principles
in Dynamics and Quantum Theory, 3rd ed. (Saunders,
Philadelphia, 1968). See their discussion in Chap. 13.

Lin's result was known by private communication soon
aft'er Herivel's work. It is referred to, for example,
in Bef. 17 below.

4A. H. Taub, Phys. Rev. 94, 1468 (1954).
5V. Fock, The Theory of Spacetime and Gravitation,

English translation (Pergamon, London, 1959). The
first Russian edition appeared in 1955.

6H. Callen, Thermodynamics (Wiley, New York, 1960).
However, free energies can also be minimized subject
to their own constraints. The Helmholtz free energy is
a minimum if the temperature is constant, for exam-
ple, see Callen, p. 105.

~H. Bateman, Phys. Rev. 38, 815 (1931).
P. Norse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953), p. 298.

Reference 8, p. 313.
J. C. Slattery, Chem. Eng. Sci. 19, 801 (1964).
L. Onsager, Phys. Rev. 37, 405 (1931). For a review
of subsequent developments, see Ref. 12.
I. Gyarmati, Nonequilibrigm Thermodynamics (Spring-
er, New York, 1970), p. 93, etc.

3C. Moiler, in Symposia Mathematical XW (Academic,
London, 1973), p. 259.
D. E. Soper, Classical Field Theory (Wiley, New York,
1976).

~S. W. Hawking and G. F, R. Ellis, The Large Scale
Structure of Space-Time (Cambridge University Press,
Cambridge, England, 1973), p. 69.
I. Bailey, Ann. Phys. {N.Y. ) 119, 76 {1979).

~~That a modification to or addition of constraints on the
Herivel approach nonrelativistically might lead to a
way of taking into account viscosity was suggested by
J. Serrin, in Handbuch der PhysQ, edited by S. Flugge
(Springer, Berlin, 1959), Vol. VIII, Part 1, p. 149.
C. Eckart, Phys. Rev. 58, 919 (1940); 58, 267 (1940);
58, 269 (1940). Eckart also wrote a paper on the Her-
ivel-Lin VP in Phys. Fluids 3, 421 (1960).
I. Prigogine, Physica (Utrecht) 15, 272 (1949).
The argument here follows the discussion of Ref. 2,
p. 148 more or less, altered to suit the relativistic
formulation.
Reference 6, p. 288.
Reference 12, p. 165.

23B. H. Lavenda, Thermodynamics of Irreversible Pro-
cesses (Wiley, New York, 1978).

4Reference 23, p. 98. This style of VP is quite com-
mon. See, for example, M. Kohler, Ann. Phys.
(Leipzip) 124, 772 (1948), or A. H. Wilson, Theory of
Metals (Cambridge University Press, New York,
1953), p. 300.
For the quantum-mechanical version, see A. Messiah,
Quantum Mechanics {North-Holland, Amsterdam, 1961),
Vol. I; Eq. (VII. 52).

SIncorporating 4 into the action is not a new idea. See,
for example, M. Miche, J. de Math. 28, 151 {1949);
R. Gerber, Ann. Inst. Fourier 1, 157 {1950);J.Math
Pure Appl. 32, 79 (1950).
By the same token, one could conclude that every
term in the variational equations of (5.15) goes to zero
in the same limit. Thus, one could argue that there
are two branches of solutions in the limit: Eqs. (2.34)
and the equation 0= 0.


