
PH YSICAL REVIEW 0 VOLUME 22, NUMBER 2 15 JU L Y 1980

Qualitative analysis of homogeneous universes
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We investigate the qualitative behavior of cosmological models in the case of spatially homogeneous and

isotropic universes containing viscous fluids in a Stokesian nonlinear regime.

I. INTRODUCTION

Recently the method of investigating qualita-
tively systems of differential equations which de-
scribe certain special configurations of the gravi-
tational field has attracted the attention of many
authors. ' ' The interest of such a method is two-
fold: First, it gives a very good picture of the
general behavior of distinct solutions of a given
set of differential equations, and second, it helps
us in pointing in the direction in which the search
for specific solutions should be undertaken.

It seems worthwhile to call attention to the fact
that such a qualitative analysis can be effectively
made only in some restricted and very special
circumstances, e.g. , in the case where the sys-
tem of differential equations is reducible to an
autonomous form of the type

x =I"(x, y),

y=G(x, y),

where a dot represents a derivative with respect
to a parameter, say the time t. The right-hand
functions' I" and G are not explicit functions of the
time coordinate but may be any linear or non-
linear function of the variables x and y. Aston-
ishingly enough, Einstein's set of gravity equations
can be reduced to such a planar autonomous sys-
tem in some cases of real interest, for instance,
for spatially homogeneous universes. ,

In the present work we will use such a method
to investigate the configuration of homogeneous
and isotropic universes filled with a nonlinear
Stokesian fluid.

The influence of viscous phenomena in cosmo-
logy has been examined by many authors""
as a model of the cosmological fluid at the drastic
regions near the singularity. Hitherto such a
viscous fluid has been treated only in the Cauchy
linear case. One adds to the isotropic pressure
P a term proportional to the expansion factor
(bulk viscosity) or one introduces an anisotropic
stress m;,- linearly related to the shear o;, . The

main reason for considering, as we do in the
present work, a more general nonlinear depen-
dence of thy pressure on the expansion rests on
quantum effects.

Indeed, it has been suggested by many authors
that the introduction of viscosity in the cosmo-
logical fluid is nothing but a pheg. omenological
description of the effect of creation of particles
by the nonstationary i ravitational field of the ex-
panding cosmos. In Ref. 10 it is shown that the
quantum corrections of the macroscopic stress-
energy tensor can be described by a polynomial
function of the expansion factor 8.

The presence of viscosity, through such a
polynomial dependence on 0, changes radically
the features of the Universe. For instance,
Murphy" has recently given a simple analytical
model in which viscosity is even used to prevent
a singularity region from occurring. We remark
that this is in no way in contradiction with the
singularity theorems once the hypotheses re-
quired by these theorems are not fulfilled by the
viscous fluid.

In Sec. II we present the main equations of the
gravitational field for a viscous fluid in a non-
linear Stokesian regime in an isotropic and
homogeneous expanding universe. Thus the modi-
fication introduced by viscosity can appear only
as a change in the isotropic pressure P top =P
+polynomial in 8. We analyze the specific case
of a quadratic regime P =p+ a8+ p8'. In Sec. II
we limit n and P to be constants. We associate
such a situation to the stationary case of a con-
stant injection of new particles in the universe
inducing the viscous phenomena in a steady-state
regime. We then make some remarks in the gen--
eral case of a more complicated polynomial de-
pendence of pressure on 0.

In Sec. III we investigate the nonstationary re-
gime and allow for a nonconstant quadratic co-
efficient P. Actually such a P can depend only
on the energy, and we analyze a specific power-
law dependence. We compare our results with
the linear case which has been examined pre-
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viously. We end with Sec. IV in which some gen-
eral comments are made.

II. STEADY-STATE REGIME OF VISCOUS FLUID

We start by considering a homogeneous and
isotropic cosmological model. The fundamental
length, in a comoving system of coordinates in
which the field velocity is

yCX gC,
0

assumes the form

ds' = dt' -A'(t) [dx'+o'(y) (de'+ sin'8 dQ')] (1)

in which o'(X) may be X, sing, or sinhx, depending
on whether the value of the three-curvature K
is 0, +1, or -1, respectively.

Raychaudhuri's equation of the evolution of the
expansion factor

The main consequence of the reduction of Ein-
stein's equations to an autonomous planar sys-
tem is the possibility of submitting such a system
to a qualitative investigation of the behavior of the
whole set of solutions without a complete knowledge
of the analytical expression of a particular solu-
tion. This introduces a great simplification and
allows an investigation of properties such as the
behavior of solutions near singular points and the
stability, which could hardly be done by other
means.

Belinski and Khalatnikov' examined qualitatively
such a system in the case where the viscous term
is a linear function of the expansion. For the quad-
ratic dependence, which will be the case discussed
here, there are modifications of the phase plane
(8, p) corresponding to the behavior of the uni-
verse which is not allowed to occur in the linear
case.

We write equations (2) and (4) in the form

ls

8= (v'-g V")i„1
v'-g

e+-,'0'+&p+-', p = 0. (2)

8=&(e, p),

p=L(8, p),

(2')

(4')

p+ (p+p)8 = 0. (4)

Equations (2) and (4) together with definition (3)
constitute precisely a planar autonomous system.
This very simple fact seems to have been noted
for the first time only recently by Belinski and
Khalatnikov. ' In order for this system to become
equivalent to Einstein's equations we have to add
the constraint condition

8 3K
p ———

3 R
=0.

The total pressure p accounts for the isotropic
pressure P plus viscous terms, which we will
represent as a polynomial in 0:

N

k=1

In this section we will limit the a's to be con-
stants. This should be interpreted as a steady-
state regime of permanent injection of new parti-
cles in the universe, following the suggestion of
some authors who try to link viscosity to the
mechanism of particle creation. Indeed, it has
been shown by Vereslikov et al. ' that all quanti-
ties which appear in the expression of the energy-
momentum tensor of the particles created by the
nonstationary gravitational field have a geo-
metrical origin, that is, can be expanded in a
series on some geometrical parameter, for in-
stance, the expansion factor.

From the conservation of energy we obtain

and set P P —ae —Pe'. We obtain

z(e, p)=-&p-~p-&8'+ ', ~e+ ', pe', -—
L(8, p) = —(p+p)8+ ~8 +pe (6b)

The singular points of the system are given by
those values of 8, and p„ in the phase plane,
which annihilate simultaneously the right-hand
sides of Eqs. (2') and (4'). We see immediately
that there are only two singular points: (i) the
origin 0 (0, 0) and (ii) the point

BP
ae

eL
80

BP
Qp

(at the singular point) .
ap

At the pointB, we have

in which we have assumed the equation of state
p = (y —1)p with 1 & y ~ 2. Then we examine the
behavior of the functions P(8, p) and L(8, p) in the
neighborhood of the singular points.

The important elements of the analysis (see the
book by Andronov e~ a&."for a systematic treat-
ment of the qualitative analysis) are given by the
value of the determinant of the linear part of the
expansion 6 and the trace 0 of the matrix b:
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3Q
B

3P

o = (2+ —'y ——'P) .8 3P y
2 2

Following Andronov et al."we conclude that B
is a saddle point for the system if y &3P, and it
is a two-tangent node if y & 3P. If P = y/3 ——',
then B is a one-tangent node. The stability of
the solution near the node can be determined by
simple inspection of the sign of the trace. For
8O&0, that is, y&3P, the node is stable; for
8, &0, the node is unstable. (We assume n and P
to be positive constants. )

The characteristic roots, which are the eigen-
values of matrix 6&, take the values ~,
= &8,(3P —y) and A.,= ——',8O. The investigation of
the behavior of the solution for t-+ ~ can be easily
made in both cases (see Figs. 1-4).

The examination of the integral curves near the
origin 0 is somewhat more complicated due to the
fact that 0 is a nonelementary singular point (that
is, the corresponding determinant 60 vanishes
identically at the origin). We will not give here all
the long and tedious calculations that constitute
the analysis of the system at this point. Instead,
we will present only the final results (see Figs.
1-4).

Although it is not our purpose here to extend
the analysis to higher than the quadratic depen-
dence of the pressure on the expansion factor, let
us make some comments for the case of a higher
power. We set

FIG. 2. n and P are constants. Point B is a one-tan-
4

gent node. P = &/3 -y.

for n & 0 and g c 0. The singular point of the sys-
tem, besides the origin, is given by the simul-
taneous solution of the equations

0 n
0 0

0 n 2
0

Jh

The determinant of the linearized matrix 6

FIG. 1. Case in which e and p are constants. Point B
4is a two-tangent node. The curve is drawn for p/3-y

& p& y/3.
FIG. 3. n and P are constants. For the case in which

P =p/3 there is only one singular point at the origin 0.
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FIG. 4. 0.' and p are constants. Point 8 is a saddle
point. This case occurs for p&p/3.

near the point B(8„p,) reduces to

a„=y8, '&(2 n) . -
Vfe conclude that for any n &2 point B is a saddle
point for the autonomous system. For n=2, there
is no singularity other than the origin, unless
the coefficients of viscosity ( and y are related
by the expression y = 3g. Finally, for n = I, B
is a node. For the analysis of the origin all the
features are very similar to the quadratic case.

Let us make some comments on Figs. 1-4. We
start by noting that we have drawn the integral
curves in the whole domain of p, even for p&0,
although a universe filled with negative total en-
ergy is devoid of physical meaning, at least clas-
sically. We remark that the parabola BOS in
Fig. 1 (and the corresponding parabolas in the
subsequent figures) divides the positive sector
(p & 0) into three regions, each of which is char-
acterized by the corresponding value of the con-
stant K of Eq. (5): Within this parabola we have
K= 1 which corresponds to the closed models;
outside it we have the open models for K= -1.

The character of the singular point B (node or
saddle) depends on the sign of 8. Such a situation
does not occur in the linear case, since in that
case the singularity can be located only in the
first quadrant (8 &0). Further, in the steady-state
linear case, the singular pointB can be only a
node. This makes a great difference between the
linear case and the quadratic one.

Let us comment on Fig. 1. For the constant
K= —1 we can distinguish two general behavior
patterns. I

(i) The universe starts at t = —~ with an infinite
radius and negative 8. The universe contracts
from this dilute phase with zero matter energy.
Then as the universe contracts a negative energy
starts to appear. Its absolute value increases
until the contraction attains a minimum. Then
the contraction begins decelerating and after a
while it changes its sign and 8 becomes positive.
The energy remains negative. Now the universe
expands and after a certain (finite) time enters a
region of positive energy which increases with
the expansion. Finally, after a maximum of 8 is
attained a deceleration of 8 occurs (although the
sign of 8 does not change) until the solution en-
ters the singularity B, in which once again the
radius of the universe becomes infinity.

For an observer who sees only the classical
positive region, the universe starts with'positive
expansion q„q„.. . , or q„and zero energy. Then
it follows the path from q, to B in Fig. 1.

In all these models, which represent only part
of the integral curves limited by the requirement
of positivity of the energy, the universe starts
abruptly with an arbitrary expansion 8; and zero
energy and ends at B.

(ii) The universe starts in the same condition
as in case (i). However, after a certain (finite)
time the negative energy decreases until it at-
tains once again the value zero, after which it
becomes positive. The energy increases and the
contraction of the universe accelerates. After a
certain finite time the energy attains a maximum
and begins to decrease until it vanishes. The
curve enters a region of negative energy, after
which the behavior of such a universe follows the
same lines as in the previous case (i). The uni-
verse has a classical meaning (p &0) in the region
MM, NN, and so on. In a typical behavior: it
starts at (8, p) = (M, 0) and ends after a finite lapse
of time, at (M, 0). During this period of time it
experiences no singularity at all.

Let us turn now to the case in which the constant
K=+1, that is, the region inside the parabola
BOS in Fig. 1. The separatrix OR divides into two
regions. The region ROB contains solutions in
which the universe starts with an infinite expan-
sion and infinite density. Then the expansion 8
decreases, the energy decreases until a minimum,
after which it increases again and finally ends at
the singularity B. The region ROS contains solu-
tions with the same behavior as the closed Fried-
mann model.

Finally, for K= 0 we can have three solutions
corresponding to the regions OB, BL, and OS, the
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interpretations of which are evident.
Figure 2 does not present any new features.

Figure 3 has a similar behavior at negative values
of 0, but a different feature for 0 &0. This is due

to the absence of the singular point B. Thus, all
curves which end at B in graphs 1 and 2 now go
to infinity. There is a region ('BOR) with a saddle-
point behavior (actually, the origin is a saddle
node). This region represents universes which
start with (8, p) = (~, ~), the expansion decreases
together with the density, attains a minimum, and
starts increasing again without limit.

Finally, Fig. 4 contains a combination of these
previous models. Point B, which appears in the
contracting region (8 &0) is a saddle point. Two
particular classes of models, which seem worthy
of mention, are described below.

(a) A model which starts with an infinite density
and infinite contraction (p= —8=~). As time goes
on the density diminishes, attains a minimum,
and then starts again increasing without limit.
During this entire period the universe keeps con-
tracting.

(b) A model which starts with p=+~ and 8 = —~.
The density diminishes (and also the contraction
diminishes) until it arrives at the value p = 0. If
we continue to follow this curve, we enter the
region of negative energy (with negative 8). Be-
yond this region the universe emerges, for posi-
tive values of 0, with positive energy. Classically
these two regions are disconnected, the model
ends at p = 0 for negative 0, and it starts with
p=0 and positive 0. However, if we allow for
negative values of the energy we see that there
is a continuation from the model which goes from
(8 = —~, p=~), passes a negative-energy region,
and ends at (8=+~, p=+~).

Developing P(8, p) and L(8, p) in the neighborhood
of these points we obtain

P(8, p) =,'8, +y8, 1+—', y(p -1) '8

L(8, p) .'y8-. ' y8, (p —1)

+higher powers of 8, p.

Thus, the determinant 6 of the linear part is
given by

and its trace o by

o=8.(yp --.')
Thus, we obtain the following results: If p &0
then points B~,~

are saddle points; if p & 0 and
4~ -cr2& 0, points B~,~

are two-tangent nodes;
and if p = —2j3y, points B~,~

are one-tangent
nodes. Furthermore, if ~0&0 the node is stable
and if 0, &0 the node is unstable.

Let us make some comments on Figs. 5-8. For
E= —1, there are models which start atB ' and
end at Q;. They represent universes which start
with infinite radius and finite energy. These
models contract until the matter energy becomes
zero at Q, .

III. QUADRATIC REGIME OF VISCOUS FLUID

Nonstationary case

Let us discuss a more realistic model of the
viscous fluid by allowing the coefficients a and P
to become functions of the total energy p. In order
to examine the effects of the quadratic dependence
without contamination of the linear factor, we set
u = 0. Assuming a power-law dependence p =Mp"
(M and p are constants) as in Ref. 1, we write

P(8, p) = p —&8'+&Mp" 8' —&yp,

L(8, p) =M8'p" —yp8.

The singular points now (besides the origin) are
doubled, appearing symmetrically with respect
to an inversion of 6t. We will call these symmetric
singular points B&,&

(for 8&0) and B& &
(for 8&0).

They are given by the conditions

FIG. 5. p=p —Mp" 8; M and p are constants. The
figure is drawn for the case in which —2/3&& p & 0. B~~)
are two-tangent nodes.
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A'

FIG. 6. p=p-Mp" 8; M and p are constants. The
figure shows the case in which p( —2/Sy. B&~& are two-
tangent nodes.

If we follow these integral curves into the nega-
tive-energy region p &0, then we see that the
model runs into the singular point at the origin
with zero expansion and zero energy. A sym-
metric situation occurs for curves going into
B(,) with K= —1.

In Fig. 8 the elliptic sector characterizes the
integral curves of our system for p&0. These
curves represent unphysical configurations of
universes which start at t= -~ with zero ex-
pansion and zero matter energy. The universe
has at its beginning an infinite radius and enters
a decelerating era until it attains the epoch of

FIG. 7. p=p-Mp" 8; M and p, are constants. The
figure shows the case p= —2/3p. B~~& are one-tangent
nodes.

FIG. 8. Case p=p -Mp" 8; M and p, are constants,
with p&1. Points B&~& are saddle points.

maximum contraction, after which the expansion
becomes, positive. By the middle of its life, it
enters a region of expansion and keeps expanding
(with increasing 8) until it arrives at a maximum
value 8 . After that, its expansion starts de-
celerating until it comes back to the original state
(8= p=0).

Let us now turn to the physical region (p & 0).
The behavior of the integral curves for expanding
universes in the quadratic viscous regime has
almost the same features as in the linear case.
The singular point B~,) is a saddle point which
distinguishes four regions of distinct behavior:

region I, from (8, p) =(+~, 0) to (0, 0);

region II, from (+~, 0) to (+~, +~);
region III, from (0, +~) to (+~, +~);
region IV, from (0, +~) to values of negative 8.

All these regions are equally presented in the
linear case and have been discussed previously
by Belinski and Khalatnikov. '

Let us turn to the case of negative 8. Here the
situation changes drastically. The existence of a
new singular point B~ ) which turns out to be a
saddle point (Fig. 8) introduces an infinite barrier
represented by the separatrix AB~ )M. Thus,
contrary to the linear case in which any curve
which passes through points near the origin of the
p axis goes to (-~, +~), in the quadratic case,
due to the existence of the boundary AB& )M, these
curves can only end with an infinite contraction
and vanishing total energy. This represents uni-
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verses which start with zero expansion, zero en-
ergy, and infinite radius (R-~). After that, the
energy increases, attains a maximum (near the
saddle point B& &), and diminishes indefinitely.
The curves from region IV, crossing the p axis,
go-just near B~ &

and then are repelled by the
saddle point. Such models represent a cosmos
that starts from a highly condensed phase (B,- 0)
with an infinite energy. Then as the universe ex-
pands (slowly) the energy decreases, until a
minimum value p~ (different for each model).
Beyond that point the sign of the functions changes:
The universe enters a contracting era and keeps
contracting forever, increasing indefinitely the
value of the matter energy.

autonomous systems of differential equations, in
order to investigate some spatially homogeneous
cosmological models. We have discussed in Secs.
II and III the case of the homogeneous and iso-
tropic cosmos filled with a Stokesian fluid in a
quadratic regime.

We have shown how the quadratic term can cause
deviations from the usual models, in some cases
very drastically. We have presented these new
features in a self-explanatory series of graphs.
There are some unusual behaviors which seem
to demand an interpretation in the light of quan-
tum theory. The investigation of these models
should be a very interesting matter of research.

V. CONCLUSION

The purpose of the present paper is to make use
of the method of qualitative analysis of planar
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