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The analytic properties of the three-gluon vertex function for quantum chromodynamics in covariant gauges are
investigated. First, a general tensor form for the vertex consistent with the Ward identity and free of kinematic
singularities is constructed. The vertex is then calculated to one-loop order in the Feynman gauge. The complete
expression for the off-shell one-loop vertex is expressed in terms of elementary functions plus one 'nonelementary

function, the dilogarithm. Various kinematic limits of the vertex are considered. The most interesting results are the
following. {1)Gluon mass-shell singularities occur in the transverse terms as well as the longitudinal terms. (2}The
leading IR singularity is in the longitudinal part of the vertex, as is the case for QED; however, it is a pole
singularity rather than the usual logarithmic singularity.

I. INTRODUCTION

The idea that the infrared (IR) singularities of
quantum chromodynamics (QCD) provide the mech-
anism for color confinement is by now widely ac-
cepted, in spite of the somewhat limited under-
standing of these singularities. In this paper we
investigate, via perturbation theory, the singu-
larities of the triple-gluon vertex. In addition to
providing a complete expression for the one-loop
off-shell vertex, which could be of use in other
calculations, we hope to shed some light on the
following questions. (1) How do the singularities
of this non-Abelian gauge theory differ from those
of massless scalar and spinor QED discussed in
the preceding paper? (2) Are the IR singularities
of the vertex confined to the longitudinal vertex
terms which are related to the propagator and the
ghost terms by the Ward identities? (3) Is a uni-
que form for the vertex obtained when one re-
quires that the vertex be free of kinematic sin-
gularities '?

The outline of the paper is as follows. In Sec.
II we construct the most general form for the
triple-gluon vertex, which is free of kinematic
singularities and automatically satisfies the Ward
identity. Section III contains the perturbation
results which are compared with other results
for special kinematic limits. Section IV deals
with the small-momentum limit of the vertex.
Finally, in Sec. V we summarize our results on
the infrared behavior of QCD and massless QED
and discuss what differences exist.

fer ent notation was obtained earlier by Baker and
Kim. I et us begin this discussion by stating that
the color dependence of the vertex is given by the
structure constant of the color group under con-
sideration [SU(3) for QCD]. The momentum and
color variables are as shown in Fig. 1:

(2.1)
Since the color dependence is factorable, we will
simply discuss the I" that appears on the right-
hand side of Eq. (2.1). Our task then is construct-
ing the most general tensor forms consistent with
Bose symmetry out of three Lorentz indices and
two linearly independent four-vectors. Since f
changes sign under the exchange of any two color
indices, Bose symmetry requires that I" change
sign under the interchange of any two p, 's and the
respective P's. This can be most easily achieved
by constructing tensors which are odd under the
interchange of Pj, p, q

—P2, LU2 and then making
I' invariant under cyclic permutation. Since I"

must satisfy the Ward identity, it is convenient to
construct basic tensors which are transverse,

orthogonal to Pg„j,P2~2) and P3 ~. In terms
of these quantities, the transverse part of the
vertex is given in terms of 4 tensors as follows:

i

II. GENERAL FORM OF THE THREE-GLUON
VERTEX

As in the preceding paper, we will construct
from first principles the general form of the
three-gluon vertex in covariant gauges which
satisfies the Ward identity. This result in a dif-

(b, p.q)

FIG. 1. The three-gluon vertex. a, b, and c are color
indices. p~, p2, and p3 are Lorentz indices.
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I'u"
u u (Pz, Pz, Pz) =F(Pz, Pz, Pz )( gu u Pz ' Pz —Pz~ Pz ~ )B„

+ If[ guzuzBu + 3(P»z PzuzPzuz Pzu, pzu Pzuz) j + cyclic permutations,

where

B„=(pzuPz 'Pz —Pzu Pz 'Pz).

(2.2)

and the scalar function E is symmetric in its first two arguments and & is totally symmetric in &,', g~',
and &,'. The longitudinal part which contains the remaining 10 tensors can be written as

u u u (P&i Zi Z) = ( Z i PZ tPS )guZu (PZu -PZu )+B(P1 iPZ ipZ )gu (P» +PZ„)
+C(PZ, PZ ipZ )(PZuZPZuZ —g„uPZ 'PZ)(PZ-PZ)u

S+
3 (P»zPzuzPzu +PzuzPzu Pzuz) + cyclic permutations. (2.2)

Here the scalar functions A and C are symmetric in their first two arguments, while & is anitsymmetric,
and S is antisymmetric under exchange of any pair of arguments. The complete vertex has now been ex-
pressed in terms of six independent 8calar functions, four of which appear in the longitudinal vertex and
hence can be determined via the Ward identity.

The Ward identity for the triple-gluon vertex in the covariant gauge is

pzzl„u „(pz,pz, Pz) =-J(pz )G(pz )(g"„zPz -Pzzpz„)I' „(Pz,pz,'Pz)

+g(pz )G(pz )(guzzpz —Pzuzpz z) I uzuz(pz, Pz,'Pz), (2.4)

~(P) =z. G(P') (2.&)

Before actually "solving" the Ward identity, let
us examine the number of linear equations which

l

where J and G are scalar functions appearing in
the gluon and ghost propagators and the I s with

two indices are related to the ghost-ghost-gluon
vertices as shown in Fig. 2. The gluon propaga-
tor is the following. '

z ( P+„ I Pup„~zu„( -~p I guv — pz J(pz) 0 pz

(2.5)

where &0 is the gauge parameter. The ghost
propagator is simply

I

this relation represents. The single Eq. (2.4) is
a tensor equation with 2 Lorentz indices and two

linearly independent four-vectors and hence is 5

linear equ'ations for the coefficients of the inde-
pendent tensor components. These equations plus
cyclic permutations yield &5 linear equations.
The left-hand side contains &0 scalar functions,
the 3 independent orderings of the arguments for
A, B, and C plus S. However, note that if the
tensor indices on the right-hand side of Eq. (2.4)
are contracted with J'~» and Ps„,the result is
zero, yielding o'ne (actually 2 of the l5 total as
this equation is invariant under cyclic permuta-
tion) equation relating the l0 scalars appearing in
the longitudinal three-gluon vertex. To proceed
further we must decompose the ghost-ghost-gluon
vertex into its basic tensor forms as follows:

I'„z„z(pz,Pz,'Pz) =g„&„&g(pz,Pz, Pz) Pz„&Pz„zg(Pz,Pz, Pz)

+P»,pz„,c(p„pz,P,) +P» P,„d(P„P„P,)+P,„P,„e(P„pz,P,) (2.7)

With these definitions only the functions a, b, and
d will contribute to the Ward identity.

Of the 12 remaining equations, 9 determine the
9 independent scalars of the three-gluon vertex
and 3 are equations of constraint on the scalars
in the ghost-ghost-gluon vertex. Before present-
ing the resulting expression it will be convenient
to streamline our notation somewhat as follows:

„,=G(p, ')J(P') (P,', P, ', P.') .
~,» =G(p, ')~(~,') I (P,', P,', P, '),
d,» G(pq )J(pz )d(P, , P—q, pz ) .

(2.S)

In terms of these functions we obtain the following
expression for the scalars in the three-gluon ver-
tex:
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(0, p()

p'I'„(p~,pz, p, )

zg' +, p

After obtaining the one-loop expression for the
three-gluon vertex, we calculate the one-loop
ghost-ghost-gluon vertex and the necessary self-
energy functions to allow us explicitly to verify
the relations. given in Eqs. (2.9) and (2.10). This
will provide a check on the longitudinal part of the
three-gluon vertex.

III. PERTURBATION RESULTS

(a)

(b)

(c, pp)
In these calculations, we will consider only the

pure gluon theory, leaving out the contribution
from quark loops. A further simplification is ob-
tained by using the Feynman gauge. The Feyn-
man diagrams that contribute to one-loop order
are shown in Fig. 3. Our procedure, described
in detail in the Appendix, is to reduce all tensor
integrals to elementary functions and a single
scalar integral

2 4 1
b'(u —P,)'(a+P,)' '

FIG. 2. The ghost-ghost-gluon vertex. The color
dependence is given by f ~.

X(P,', P,';P,')
=-,[2(a„2+a,21) +P3 (b123+ b213)

1 P~ P3+ gl P2+ —ln '
~ln (3.2)

This integral can be expressed in terms of the
dilogarithm as follows:

Pl P3+nl . Pl P3 —
nl~

0 12 P 2 — 12 —
P 2

3 J 3

B(P1,P2, P3 )

+ 2Pg 'P3d32) + 2P2 P3d3$2

+ (Pi —P2 )(b231 + b312 —bl32 —b321) ] q

2 2

(2.9a)
(c, pq)

pz

(c, pq)

p~

= «[2(+21 —s312) + 2P1 P3d322 —2P2 P3d312

+ P3 (b321 —b312 + bl32 —b231)
2

(Pl P2 )(b123+ b213)] ) (2.9b) (b, pg)

C(P1,P2,'P3 )

and

1
2 2 (431 s132 +P2 'P3dl32 Pl 'P3d231)

Pj -P2
(2.9c)

I+—-2

(b, pp)

I

2

(c p&) (c ~z) (a, p) )

S(P2, P2, P3 ) = 3(bl23+ b2-31+ b312

b132 b213+ b321) (2 9d)

The equations of constraint on the ghost-ghost-
gluon vertex are the following equation and cyclic
permutations of this equation:

(c, p )

Ii P

(c, pq)

~ k

/
I 'q ~

(~

/
~ I

0123 —+13 —Pl ' P2 (b12 3 —b213)
(a, p)) (a, pl) (b pp) (a, p j) (b, p, p)

+Pl 'P3d123 —P2 'P3d213 ——0. (2.10)
FIG. 3. The Feynman diagrams contributing to one-

loop order of the three-gluon vertex.



22 ANALYTIC PROPERTIES OF THE VERTEX FUNCTION IN. . . . II 2553

where b, is the triangle function

6 =(P1 P3) -P1 P3 =(P1 P3) —P1 P3

=(P3 P3) —P3 P3

and

Li, (x)=- J dt
lnt

g —1

is the dilogarithm.
The calcuLation of the triple-gluon vertex was

very tedious, in spite of extensive use of HEDUC&

for the .algebraic manipulations. In this calcula-
tion dimensional regularization has been employed.
Dimensional regularization proves superior to the
ultraviolet-cutoff method in that gauge invariance
is automatically preserved. Our procedure was

the following. All algebraic manipulations and
integrals were evaluated in n dimensions using the
convention

Different conventions for going to n dimensions
such as (2w) -(21)')" can produce differing results
for constant terms, but only in the function A

which contains all of .the UV-divergent terms.
These constants are usually removed in the pro-
cess of defining the renormalized quantities. This
is not always the case when the minimal subtrac-
tion prescription is employed. %e will note any
remaining ambiguities as they appear.

The one-loop expressions for the scalar ampli-
tudes of the three-gluon vertex are as follows:

(3.3a)

+(P1 P2 jp3)=1- ~ 3]
—+in 1 +C +- I- —» . -»1 P2lp

2 3 3
'

g3 C„S~—2 P ll 10 P, P3
64 3& e -Ps 6) 3

2 2 2P 2

2 2 ~ 2 8'P Gg 266 2 2 2 P2 2 2 2 Pl P2
~

2 2 2 2 2

s(p„p,;s)=„,, +(I, ~) )... +s(J, ~) ). .. +I, s I +.(p, ~)lI,2 2 2

128 L 3 8

(s.sh)

c(pi, p~,'p~ )=-;;;+ —(p~ —pq ) In; + ) )n, +pi p&l&)I,
goC~ 266, 3 2 2 P2 3P3 )~ PlP2

2 2 2 2 2

P(P3 P3 P3) g3C„(63 P3P P) P3, I + 16 16P1P1 20P3P1 P3

(3.3c)

(2P +9P1 +QP3 ) 5P1 P1 P (1 P1 P1
3 3 z

+ 13(P —2P -2P )+ (P3 -P
7P +4P +4P 3+ 5P1P3 P3 ln(P3 / 1)

l 2 z 3 + 1 + 2 n3 3(p3 P3)

(3.3d)

g3 C„(5P1P3 P3 7 P1 P3 P3 + P1
643' ~ 3n' 2 n' n' 3

»P2 P3 30P1 P2 P3 P2 P3 +p 2P .p IP1 +21P2 +21P3 +2(5P 2 SP 2 SP 2)
n3 1 3 3((, tl

+ — 3
3

3 3 + cyclic permutations (3.3e)

S=o, (s.sf)

where & =n —4, p is an arbitrary mass scale introduced so that the renormalized coupling constant re-
mains dimensionless for all n, C = -y —in') (y =Euler' s constant), and C& is the Casimir eigenvalue for the
adjoint representation of the color group [C„=Nfor SU(N)]. The constant C is regularization dependent
and will be different for other possible continuations from 4 to n dimensions.

The corresponding one-loop expressions for J and G are

Z(p )=1 "— —+ini ., i+C +-g,'C„5 2 ( (((') ' 1
16 3 E (p j 9
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and

8 2C 2

32'll

To obtain the ghost-ghost-gluon vertex to one-loop order, we
in Fig. 4. The resulting values of the scalar amplitudes are

L

gp Cz 2 I P
a(p zp zp )3=14 1 —

4
—2 ——+ln' 4 +C +in z64m ~ & -P2 P3

~gp C~6 2 2

b(pz, pz, ps)=-, , Ps Pl'PzIp+(Pz —Pz )ln z +Ps
64m 6 P2

must evaluate the Feynman diagrams shown

2P,'-P, ' ~

Pl P22 2~

Ps' -'
gpCAJ 2 2

2 2

c(pz, Pz, Ps) =- z z (Pz —Ps )Pz 'PsIp +(3pz —Pz +Pz ) ln + 2(Pz —P ) ln
128m ~ . P3 3 P

( ) 4 ~ gpC~P Pz ' Ps(2Pz +Pz —Ps. ) (4pz —Pz ) Ps

P3 —Pl —2 2 Pg Pa t

+ ln-

A C~j"2 6 P, P, -P, -P)2 2 2 2'lI 2 I

e(pz, Pz, Ps) =- z z —(Pz Pz Ps)Is+Ps ln z + — )ln64m a .
The fact that these quantities, which are calculated
independently, are consistent with the Ward iden-
tity Eqs. (2.8) and (2.9) provides a check on our
expressions for the longitudinal part of the triple-
gluon vertex.

At this time the most general published result
on the one-loop three-gluon vertex is that of Cel-
master and Gonsalves. They obtained the equal
leg limit (Pz'=Pz'=P, ') of the triple-gluon vertex
for a general covariant gauge. When compared
with the results of Celmaster and Gonsalves spec-
ialized to the Feynman gauge, we find our r esults
are in complete agreement provided we change the
value of C, as they used (2v)" in their dimensional
regularization.

The other check on our results is the compari-
son with the work of Baker and Kim. They used

the Ward identity to obtain an expression for the
longitudinal vertex from the one-loop calculations
of the ghost-ghost-gluon vertex, and the gluon and
ghost self-energies. The last term in their ex-
pressions Eq. (4.22) is in apparent disagreement
with our results. However, this term actually
vanishes when the cyclic permutations are inclu-
ded, due to the symmetry of their function l~.
When corrections are made for their use of a UV
cutoff rather than dimensional regularization we
find that we are in complete agreement.

The renormalization of the various quantities
which we have calculated can now be easily per-
formed. The results for various renormalization
prescriptions and the resulting relationship be-
tween coupling constants and renormalization con-
stants will be the subject of a forthcoming paper.

IV. THE SMALI MOMENTUM LIMIT OF THE
THREE-GLUON VERTEX

The explicit expression for the one-loop vertex can now be used to investigate what singularities occur
for various kinematical limits. Proceeding as in the previous paper, we will first consider the limit where
one gluon goes to the mass shell, for example P2 -0. In this limit, both the transverse vertex and the
longitudinal vertex are logarithmically divergent. In this limit the divergent parts of the functions + and &
are

z 4 inpz 8Pz Ps ln(P1 /Ps ) 4s'p(J' s'V "u' s') s~''p (4.la)

and

p(p pz. p )-3 & z t 2 (pz pz)4~ P4 pz ps~a

8 lnP2 2 2 2Pg P3
(P 4 —P 4)4 pz +ps —P z — 4 ln P 4

(4.ib)

(4.lc)
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In spite of the Pg -P~ denominators in the above expression, the limit Pg -P~ (P2 fixed) is finite and
the vertex remains logarithmically singular as P2 -0.

Ward identity in QED does not allow any photon mass-shell singularities in the longitudinal vertex. The
behavior of the QCD longitudinal three-gluon vertex is different, both because of the symmetry require-
ment and because the Ward identity is less of a constraint. As a result, the longitudinal QCD vertex has
gluon mass-shell singularities much like the meson mass-shell singularities in the massless scalar QED
vertex.

Both parts of the vertex remain logarithmically divergent even in the equal off-shell limit. Finally, if
we consider P2„-0,we find that the vertex is finite in this limit. The remaining singularities of the ver-
tex are all in the longitudinal vertex and take the following form.'

02C& ~ 2 p21„„„-p' (g„„2P&„&+g ~~P&„-2g„&„Pq„2)1 — +"}——+ ln, +—

go C&12 8P1g gP lg 2P& ~ 3)

6( a. i s "~+ "iE ~ g+ .' /. p, — p, l}. (4.2)

/

Pp g''
/

/

b

=Qf p 9

(G, p} )
(a)

p~ / ~

b

iO P

j»

I
~ II
/

b

(c)
FIG. 4. The Feynman diagrams contributing to one-

loop order of the ghost-ghost-gluon vertex.

The logarithmic singularity in the first term in
Eq. (4.3) is the usual IR singularity that appears
in QED when one takes the photon momentum to
zero and then the other legs to their respective
mass-shell value. The surprising behavior of this
limit is the pole singularity present in the last
term. This type of singular term is common in
vector particle propagators and is usually associa-
ted with the gauge freedom for these quantities.
Such terms do not appear in vertex functions for
QED, and hence are something peculiar to QCD.
We note that in Euclidean space, where many cal-
culations are actually performed, this particular
tensor form is not singular.

V. CONCLUSIONS

In comparing the vertex singularities of QCD
to those of massless QED, let us first consider
the q -0 limit, i. e. , the gluon or photon mass-
shell limit. In this limit, lnq singularities are
present in the transverse part of the vertex.
While there are some differences in detail, the
behavior of all these gauge theories is quite simi-
lar, with singularities that do not survive in the

q, -0 limit or in Euclidean space.
In the conventional IR limit the QCD vertex has

a pole singularity in the longitudinal part and
would appear to be a much stronger singularity
than the usual logarithmic behavior of QED. The
significance of these singularities, which are
present in Minkowski space but in fact disappear
in Euclidean space, is not clear. We have not
calculated a physical process to see how unitarity
is preserved.

Finally, our results provide some support for
the assumption that the q„-0singularities of the
three-gluon vertex are all in the longitudinal
terms. The fact that the transverse parts are
singular at q =0 casts some doubt on the assump-
tion that the longitudinal part is completely domi-
nant. In any case, this assumption is used in the
study of the IR behavior of the running coupling
constant in axial-gauge QCD and because of the
differences in the Ward identity and the absence
of the ghost field in the axial gauge it is certainly
not obvious that our covariant gauge results can
be generalized to this case. A clearer answer to
this question requires an analysis of the axial-
gauge vertex. While we have made some progress
on the one-loop triple-gluon vertex in the axial
gauge, no results other than the UV-divergent
terms have been obtained.
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APPENDIX

The calculation of the one-loop triple-gluon ver-
tex requires the integration over the loop momen-
tum. The resulting integrals can be classified by
whether they have two momentum denominators or
three.

Those with two are all UV divergent and can be
evaluated in terms of elementary functions with
the aid of dimensional regularization. The neces-
sary integrals of this type are

1 . , ( 2J(g'k;, , =n'in'~ ——+In; +C),k-P
(A 1)k„xi

(k )'(k ')'

terms of the integrals given in (Al), (A2), and
(A3) and the basic integral Io.

First, we mill consider I~„which must be a
symmetric function of P and P' hence

I„=I,(P, P'}P„+I,(P},P)P„. (A7)

If we now form P"Iq, and P'"Iq„we obtain two
equations for I,(P, P') and I&(P', P). The fact that

P k=-,'P'+k' —(P —k)]' (Aa)

Iq(P, P') =-T P' ln r ~

-P 'P'ln ~P'] P
P'P 'q

Ip (Ag)

The integral Iq„„is symmetric in p. and v as
mell as under P —P' and hence has the following
tensor decomposition. '

I~wv —a~vI~+ P~P. — "P Ia» P'
n

+ P„P„'+P„'P— ""P P' I,

and the corresponding expression for P' k allows
P I~ and P' 'Iq to be expressed in terms of the
integral in (Al) and Io. Hence, I, is now expres-
sible in terms of Ip.

2 p,—=+ln, +C, A2-q
+ P'P'- ""P'

II3 P', P, (A1P)

d4a u,u„
. (k-P)'(k-P')'

g„2P++2' '+P—+'+PP )
w'i , f q'

nn

2 px
~

—+ ln ., + C
I
—2 (q gk, —qAq. )-q j

(A3)

(A4)

4 kmkv

k'(k-P)'(k-P')' '

k~ k„k),
k'(k- )'(k- ')' (A6)

By using a tensor decomposition of these inte-
grals we can show that all can be expressed in

where q=P' —P and C=-z- inn.
The integrals with three denominators are Ip,

defined in Eq. (3.1) and those with one, two, and
three momentum factors in the numerator. The
necessary integrals are given below.

4
1}k kz(k }z(k })8

where I& and I& are symmetric under P—P'and
the n is the trace of g„„in n dimensions. The
trace of Iq,„,or I„,mhich contains all the UV di-
vergence is now given by the integral in Eq. (Al).
The remaining scalars can be obtained by noting
that P"Iq„„andP"Iq„„canbe expressed in terms
of Iq„and the integrals in (A1) and (A2). The sca-
lars in I~„„areas follows:

I„= }
——+}n,+C+2), (Alla}

ILL'g'g. ( 2 p.'
4 & & -q'

3P'P"'}
I, (P, P')= —~ P'P P'- ~i,{p,p')

) '
P 24 P2)

Ii(P', P) +P P'ln -p i

(A11b)

Ic = 2 [~p (P P') —P P' ]I((P P')

+P' I(p', P)-P P P in~„(PP')

(A11c)

Finally, the integral I»„&,which is completely
symmetric in pv&, has the following tensor de-
composition.
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p2Iz„„„—[T(P4„„+T{P')„„„1I~+[T(P)»„—T(P'4„„jIz+P„P„P„——T(P4„„iz(P, P'

P2
+ P„P„P„'+P„P~P„'+P+iP„'— T(P)„„i-—T(P')„„„Ig(P, P')

PI2
+ P„PP'„'+P)P„'P„'+PQ„'P„'— T(P')„„„—T(P)„„gig(P', P)

L %I

PIR
+ P„'P„'Pg— T(P)„„),I~(P' )P), .p (A12)

and

I@—P

I~ ——g' ——+ln +C+ g

m'i, 2

)

(A13a)

(A13b)

The remaining scalars can now be obtained by
forming P"I~„„~and comparing with (A3), (A10),
and(A11). This yields

where

T(P)".i =r"Ai+Si"P. +"8'p
Here the scalar function I~ is symmetric under
exchange of P and P' while I& is odd. If we form
g""Is„„„weobtain the integral given in Eq. (A2),
thus determining that

I„(P,P') = iZ —., (S, (P, P)
(P.P )'

+ z z Ia(P', P)2P' Z'

i~i 2P qi " P'P'q")
(A13c)

and

i P'P Pt4
Ig(P, P') = ., P Ig(P, P')- Ie(P', P)

+2P'P'qIc+&(P''q) . (A13d)
All the necessary integrals have now been ex-

pressed in terms of elementary functions and Io
which contains dilogarithms.
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