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Analytic properties of the vertex function in gauge theories. I
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The analytic properties of the vertex functions for massless scalar and massless and massive, spinor electrodynamics
are investigated. First, a general tensor form for the vertex consistent with the Ward identities and free of kinematic
singularities is constructed. All of the scalar functions that appear are then calculated to one-loop order in
perturbation theory. It is found that in both massive and massless theories the infrared singularities appear in the
longitudinal parts of the vertex. The massless theories have additional photon mass-shell singularities which appear
in the transverse terms. Complete expressions for each vertex are obtained which contain only one nonelementary
function.

I. INTRODUCTION

The idea that the infrared (IR) singularities of
quantum chromodynamics (QCD) provide the mech-
anism for quark and color confinement is, by now,
widely accepted, in spite of the somewhat limited
understanding of these singularities. In compar-
ing the IR behavior of QCD with that of QED,
which is well understood, we observe that QCD
has two essential complications. First, the field
quanta carry a charge (color in QCD) and hence
are self-coupled; and second, the quanta are
coupled to massless particles (quarks and gluons).
Both of these features are required in QCD al-
though the quarks can, of course, be massive, In
an attempt to make a two-step transition from
massive QED to QCD, where both new features
appear, we have investigated, as an intermediate
theory, QED for massless particles where the
photon is not self-coupled.

In this work we have studied, via perturbation
theory, the analytic properties of the off-shell ver-
tex function in gauge theories ranging from mas-
sive spinor electrodynamics to QCD in the pure
gluon sector (in the Feynman gauge). The reasons
for our special interest in the vertex function are
the following. (1) In massless theories, functions
of a single momentum such as the propagator have
singularities in the dimensionless variable q'/A'
where A' is the UV cutoff. Thus, the IR singulari-
ties at the one-loop level are trivially related to
the UV behavior, which is known from the renor-
malization requirements. In contrast, the off-
shell vertex depends on three scalar variables:
p', p", and q'. Hence, even in the one-loop re-
sult, logarithmic singularities in p'/p" or q'/p"
can occur which are not coupled to the UV behav-
ior. (2) The vertex function in a gauge theory sat-
isfies a Ward identity, which relates the longitu-
dinal components of the vertex to simpler fune-

tions, the inverse electron propagator in the case
of QED. The fact that all of the IR singularities
in the vertex function for massive QED occur in
this longitudinal component allows a simple and
direct investigation-of the general IH properties.
It has been suggested' that a similar procedure
might be followed for QCD, provided the vertex
has the proper behavior. (3) An essential step in
the program described in Ref. 1 is the construc-
tion of a vertex function which automatically satis-
fies the Ward identity. The longitudinal part of
the vertex can be represented explicitly in terms
of the simpler scalar functions that appear in the
Ward identity. The crucial assumption which leads
to a unique form for the longitudinal vertex is that
the vertex be free of kinematic singularities.
While this assumption is certainly reasonable, we
feel that this question requires some further study.
Most kinematic singularities obviously violate the
general analyticity requirements of the vertex,
however, there are certain types which might na-
turally occur. For example, consider the two
tensors 5„„and q„q„/q'. The second tensor has
a kinematic singularity at q'=0, but because of
the gauge invariance of QED, this tensor can ap-
pear in the photon propagator. Perhaps kinematic
singularities of the vertex at q'= 0 of the type that
are obtained by multiplying an analytic vertex I"„
by q„q /q' are also allowed because of gauge in-
variance.

In this paper we will study the analytic proper-
ties of the vertex functions in massless scalar
electrodynamics, and massless and massive spin-
or electrodynamics. The more complicated case
of QCD in the Feynman gauge is treated in the fol-
lowing paper. First, we will construct a general
form for the vertex which automatically satisfies
the Ward identity, is free' of kinematic singulari-

. ties, and in which the scalar functions that appear
are free of any constraints. The one-loop pertur-
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bation-theory result is calculated in each case,
verifying that the conjectured form is, in fact,
produced indicating that no kinematic singularities
are present. Then the nature of the singularities
for various momentum limits is examined. A
complete expression for each ver'tex is given so
that the reader can examine any desired limit in
addition to those which we have considered.

While it is clear that many of our perturbation
results are contained in other papers, we found
that the tensor structure dictated by the Ward
identity can easily be hidden, and repeating the
calculations with our goal in mind proves easier
that transforming other results to the necessary
form. Furthermore, the use of the Feynman pa-
rameter technique in other calculations to perform
the momentum integrations produces a number of
apparently unrelated integrals which cannot be ex-
pressed in terms of elementary functions. While
this is not a problem when a numerical result is
desired, it is a serious complication when one is
investigating the analytic properties of the vertex.
To avoid this problem, we employ a tensor method
which allows each vertex to be expressed in terms
of a single scalar integral plus elementary func-
tions. We believe our final form to be simpler
than previous results, and the reduction to a single
integral could possibly be of use in higher-order
calculations where the identification of the number
of independent integrals becomes a major prob-
lem.

II. SCALAR ELECTRODYNAMICS

I'„=Ap„+ Bp'„, (2. I)

where q=p'-p and A and B are scalar functions
of p p p y

and g p
the "masses" associated with

each particle in the vertex. The Ward identity is

1(pt2) D 1(p2) (2.2)

where D is the complete propagator of the scalar
meson and hence a function of a single scalar var-
iable. Equation (2.2) gives the following equation
for A and B:

The simplest example of a gauge theory is scalar
electrodynamics. While the most general form of
the off-shell vertex consistent with the Ward iden-
tity is well known, we will, to illustrate the gen-
eral approach, derive it from general require-
ments and verify that it is, in fact, consistent with
the perturbation results.

The vertex must be a vector quantity and hence
must have the form

I =tD'(P")-D'(P')l P"
p& oq

+A, p„—, p'p~. ~ vj (2.4)

We have now produced a kinematical singularity
in the first term at p' 'q = 0 which must be can-
celed by the second term, meaning that A cannot
be an arbitrary function but must satisfy the fol-
lowing constraint:

11m (p q)A=D-'(p") -D '(p').
pC oqmQ

As p' '0 0, p 0 (p" -p'), so

D '(p") -D '(p')
+ p' qA'

p -p (2. 6)

will provide the necessary cancellation without
introducing any new kinematic singularities. The
new scalar function A' is now unconstrained. Sub-
stituting into Eq. (2.4) we obtain the final form

D '(p") —D '(p')

+A'(p™ep„pep„')- (2.6)

We now calculate these quantities in perturbation
theory to see which form of the vertex is produced,
how a, scala. r function. A' with dimension p

' is
generated, and whether the resulting A' has any
poles or zeros which might indicate some other
choice for the transverse vector in Eqs. (2. 6) and
(2. 7).

From the Feynman graphs shown in Fig. 1 for
massless scalar mesons, we find exactly the form
given in Eq. (2. 6) with

Here, the first term is the longitudinal part of the
vertex and the second term is transverse as it is
orthogonal to q„.

If we relax our requirement that the vertex be
free of kinematic singularities there are many
possible forms fox'the vertex. For example, the .

vertex given below satisfies the Ward identity but
contains kinematic singularities in both the longi-
tudinal and, transverse parts:

[D-1(pa) D-1(p2)]» +A p» p»
p'e p 'a'

(2.7)

p 'qA+p' 'qB=D '(p' ) D'(p'), —

which can be used to eliminate B,

(2.3) D '(p') = ——p'i 6+4ln (2.8)
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(a) (b)

A'=„,. (P'+P" 4P P')-P P'f. +»

(PR+PI2)q2 6P2PI2 P2+-
pI2 p2 . pi2ln (2.9)

where A' is the UV cutoff, 4' is the triangle func-
tion

FIG. 1. One-particle irreducible scalar-photon vertex
at one-loop order.

and

ln —ln—2 p
0 P

I2 P2 p12 p
p'2 (2. 14)

where the dilogarithm f is the following integral:

lnt
f(x) =—, df = I.i,(x) .

At this point, the symmetry of I, in p', p", and q'
is no longer obvious. The fact that the derivative
of f is an elementary function makes it relatively
simple to expand I, in a power series about dP = 0.

The quantity within the square brackets i.n Eq.
(2. 9) is proportional to b,' for small b. and hence
A' is well behaved as 6' goes to zero.

'The simplest limit of interest is q'-0, the
mass-shell limit for the photon, for arbitrary p'
and P". In this limit b'-(p" —P')'/4 and p p'
—

—,'(P'+P"). For these values the dilogarithm is
well behaved and only the lnq' term in I, is impor-
tant. Assuming p" &p' we obtain

= (P'q)' -P "q'

= (P 'q)' P'q'-
= —,'(q'+P'+P" —2P'P" —2P'q' —2P "q') (2. 10)

and I„which is a symmetric function of p', p",
and q' is the following integral:

(2. iS)

Thus, we see that the q' —0 limit for p'4p" A'
is logarithmically infinite. The q -0 limit of the
-transverse vector which is the coefficient of A' in
the vertex becomes

u'(I P)'(n -P')' -' (2. ii) p/2 p2

2

1A' =—„x(function of x and y) .p" (2. 12)

Clearly, the longitudinal vertex we have obtained
in the Feynman gauge is free of kinematic singu-
larities and, as expected, does not depend on the
variable q'. By using the photon propagator in a
general covariant gauge, we find the form remains
the same although D ' will change as it is gauge
dependent.

The only possible kinematic singularity in A'
wouM be at the zeros of 4'. 'Co investigate the
behavior near this point, and for other limits, it
is convenient to express I0 in terms of a special
function, the dilogarithm, '

(~ u'-~) (~ ~'~~)

(2. 13)

Since A' is a function of only P', P", and q' (no
A' dependence) with dimension P

' it can be written
as a function of two dimensionless variables di-
vided by momentum squared. For example, if we
define x=P'/P" and y =q'/P" then,

and

,t + (P +P ) 2+P +P I P
g 4s qp (Pt2 P2) Pt2 P2 P&2 q

(2. 16)

If we now' take the limit P'-P', the coefficient of
lnq' is finite, though not zero, and A' diverges for
q'- 0 as before. However, the transverse vertex
now vanishes as p'-p" because of the p" —p' in
the vector, leaving only the longitudinal vertex,
which is finite. If the order of the limits is re-
versed, the same result is obtained. This com-
bination of limits is what one conventionally calls
the infrared limit, i.e., q„-0 which requires both
q'-0 and p'-p", and, of course, is the q —0
limit in Euclidean space. The actual divergences
associated with the infrared limit occur when one
takes the scalar mesons to the mass-shell limit
(in this case P"-0), and these singularities oc-
cur in the longitudinal terms. This behavior is
essentially the same as that of a massive theory.

Before proceeding to the spinor case, we will
summarize our scalar results. In the mass-shell
limit for the photon the vertex is singular for the
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scalar mesons being unequally off shell (p"ep')
and this singularity occurs in the transverse ver-
tex. It is in this photon mass-shell limit that
massless @ED has unusual behavior not present
in massive theories. This could be an indication
in perturbation theory of some basic disease of
massless scalar electrodynamics.

The IR limit behaves like that of massive elec-
trodynamics with divergences occurring only in
the longitudinal vertex as the mesons approach the
mass shell. Finally, we note:that in Euclidean
space the only singularities that occur are the
usual IB singularities in the longitudinal vertex.

HI. SPINOR ELECTRODYNAMICS

The additional degrees of freedom introduced by
having two spin--', particles coupled to the photon
considerably complicate the tensor decomposition
of the vertex. In this case there are three four-
vectors: y„, p„, and p„', and four types. of scalars
proportional to 1: p', p", and p"p'"o„„. The result-
ing 12 spin amplitudes have been enumerated else-
where', however, since our goal is producing a
vertex which is free of kinematic singularities
and which automatically satisfies the Ward identi-
ty, we will introduce eight tensors that give no
contribution to the Ward identity [the generaliza-
tion of the second term in Eq. (2.6)]. The re-
maining four tensors will be completely deter-
mined by the Ward identity.

The Ward identity for spinor electrodynamics is

q„r"=s -'(p") -s, -'(p'),

=&(P")P"-&(P')P'+ G(P") G(P'), (3.1)-

where E and 6 are the scalar functions that deter-
mine the electron propagator. Note that one of
the twelve amplitudes will be identically zero due
to the fact that the scalar p'p O„„does not occur
on the right side of Eq. (3.1). The portion of the
vertex which "solves' Eq. (3.1) and is free of
kinematic singularities is

„(p'+p"),, „I(p") ~(p')-

Note that the straightforward generalization of the
scalar result

sz '(p") -sp '(p') (,)„0 p12 p2 (3.3)

T,"=q y" -q"g,
T:= Q "P"P'"a.,

g P)Lq

T."= y"(P" p') —(P+-p')"q',
(3.4)

I2 2

[y"(P+P') -P" —p'"]

+ (P+P')"P"P'"o,~,

T"= y"P"P'"& +P-"P' P"P-
The complete vertex can then be written

8

I""= I"," + Q g(T
j= 1

(3.5)

Other than simplicity, the only criteria we have
for choosing this set of T's rather than some lin-
ear combinations of these is the perturbation re-
sult. It was found that, if instead of T, given
above, we used Q"g, which is a linear combina-
tion of T„T„and T„akinematical singularity
appeared in A„while for the set above, all of the
A's are separately analytic. Since A4, A„and
A, are zero to second order in perturbation theory,
we cannot be sure that higher-order calculations
might not require particular linear combinations
of T4, T„and T, rather than the forms given
above. The results of the second-order calcula-
tions are

has kinematic singularities and is therefore unac-
ceptable.

The remaining eight tensor forms must satisfy'

q Tuj 0~ g 1~2~ ~8

A set of independent T's which have this property
ls

Ti = Q" =P"(P'q) -P'"(P 'q)
T' = Q"(P'+P')

z(p") + z(p')
2

y"

,G(p") —G(p')
p/2 p2 (3.2)

3 m' &m' l m'-P'
ln —a+ + 3 +I 4

—1
I
lnj kp' i m

G= —™
I

—,—1 lln, +1+in
&P' i

A, =A, =A, =0, (3.7)

um m +p p' (p p'+p'~)J ' (p~+p p')I, .

(3.Sa)
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n '(m'+p p')
A,=, q'J, + Sq'S —(p'L + p

"L') +p p'(L + L')
~a

A 3(p p™)A+Q (q'-4m')Z 1 p p'm', 1„L
4 g 4gn2 8 0 2 2p2p'2 4 ~

(P'+ P P')(1+ m'/P')L (P"-+P 'P')(1+ m'/P")L'
s(p" p')-

p"-p' A„
2

3(m'+p. p') (, „),
32m'

( 2y l2 3 22 1J, —3( '+p p')s+P P L+ 1~
~

pl2

p2 /2 (m2, I + 2 r2)
+ (I —I ')+ (m'+P 'P')+ P (P"+P2p'p"

(s. 8b)

(3.8c)

(s. 8d)

(3.8e)

4 a) t/2 ( a) x/2

q3 &4m'i

( 4mB ) 1/2 1 y (1 4m2/ 2)1/2
ln q, (3.9a, )

(1 4m'/q')'/' '

L= 1-—,) ln, , 3.Sb

m ~m P"
P' ( m

(3.9c)

and

2'-", J
' 'u ((k —P)' —m'][(k-P')' —m']-

(3.9d)

where the functi. ons S, L, L', and J, are the fol-
lowing:

While the formulas for the A's appear to be quite
complicated, they are much simpler than any pre-
vious results in that they are all expressed in
terms of elementary functions and a single scalar
integral. We emphasize again that the fact that
only one integral appears is well disguised if
Feynman parameters are introduced to evaluate
the various vector and tensor integrals. How-
ever, if these same integrals are decomposed into
scalars, the existence of a single integral J, be-
comes obvious (see the Appendix).

The absence of kinematic singularities at 6'= 0
can again be shown, as all integrals. can be evalu-
ated analytically in this limit.

&he massless electron limit can now be obtained
by letting m 0 in Eqs. (3.6)-(3.9). The result-
ing scalar amplitudes in this case are

(3.10a)

6=0, A, =A, =A, =A, =O, (3. 10b)

~ f q'lP 'P'I. +»(q'/O'P")]+(P" P')»(P'/P"-)], (S. 11m)

3 P ep I + ~2 P
I2 +p2 + 2P,PI p2

2 4 g2 8 8+g2 4 o pl2 p2 p
f2

' 3 (P 'P')'(P" -P')' a 1
( ~,.). I

(3.11b)

3 (P P')(P'+P" +2P P')
2 Q2 J P"

e

(P P') 3 (P" P')' ' q' -P'+P" +sp P'+, —1ln-, „+
pp

p
/2 pQ

A, .
2

(3.11c)

(3.11d)
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As for the scalar case, the A's are divergent. in
the photon mass-shell limit q' 0. Employing
Eq. (2. 13) we find that

is the only divergent term. In this limit, T, be-
comes

72= -q'g. (3.13)

Finally, taking the p'= p" limit, we find that

n ln(q')
3 6+ p2 (3. 14)

Here, in contrast to the scalar case, the tensor
form does not vanish, and the transverse vertex
has a logarithmic divergence at q'= 0.

If we now consider the IH limit, the next step is
taking q„-0. In this limit T, vanishes and the
vertex has a finite limit. Finally, taking the
mass-shell limit p' 0, we find that the trans-
verse part is finite and that the longitudinal ver-
tex is, logarithmically divergent, just as in the
case of massive electrodynamics. It is clear that
this behavio~ is also obtained in Euclidean space
where the q'= 0 implies q„-0 and p'- p".

IV. CONCLUSIONS

It is clear that no kinematic singularities are
present in our one-loop perturbation calculations.
We would expect higher-order calculations of the
longitudinal vertex terms to satisfy the Ward
identity by the same mechanism as the first-order
terms, and hence to produce the same result as
would be obtained by using a higher-order propa-
gator in our general expressions Eqs. (2.6) and

(3.2).
The situation with regard to the small-q singu-

larities is more complicated, with the transverse
vertex terms having a logarithmic divergence at
q'=0. These singularities disappear for scalar
QED when the meson legs are equally off shell p'
= P" and for massless spinor QED when q„-0.
The conventional IR singularities of massive QED
are obtained by letting q„-0 and then taking the
remaining momenta to their mass-shell limit. In
this limit, all of the singularities are directly
related to those in the massive particle propagator
and no singularities appear in the photon propaga-
tor, which produces the following results: (1) the.

power of the logarithmic singularities of the propa-
gator builds up with each increasing order of e in
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APPENDIX

The integrals which appear in the lowest-order
meson-photon vertex are

I (0) d4~
k'(k -P)'(k -p')" (Al)

and

d4~
k'(k —p)'(k p') 2 ' (A2)

k(k )2(k )2
2v Inl~ 2 I

+ 1

Clearly, the vector integral I„'" can only have
components in the p„and p„' directions,

2

(A4)

By forming the scalar products I'" 'p and I'" 'p'
and solving for I„and I~ we obtain

just such a way that the leading logarithms can be
exponentiated, (2) there are no nonleading logari-
thms and (3) the logarithms in the vertex also ex-
ponentiate, as they are the same as those in the
propagator. When we investigate massless QED
in this limit the behavior is the same as in the
massive theory, and all of the magic described
above should work except for problems with the
photon propagator. In massless QED the one-
loop photon self-energy has a lnq' term; however,
because the transverse vertex also contains lnq'
terms, it seems likely that nonleading logarithms
will also appear. Because of these complications,
the photon wave-function renormalization cannot
be performed at q'= 0, but must be done at some
finite mass p2 and an o.(g2) must be introduced.
While we have no idea what the resulting meson or
photon self-energy might be, it is sufficiently
complicated that it might move the q'= 0 poles in
these propagators to some finite value. If this
speculation tur'ns out to be the case, then the sin-
gularities we observe might be the first indication
in perturbation theory that these theories have
spontaneous symmetry breaking as proposed by
Coleman and Weinberg. ' We are at present study-
ing the buildup of these singularities and hope to
have something more definite to say in the near
future.
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I„=——, p "ln —, +p 'p'ln

p
/2

——(p Q)IO

I, =I„(p-p'), (As)

where I, =(2/m'i)I'". Note that this reduction to
the integral I, and elementary functions is possible
because

p.a= —-'[(~-p)'-a'-p']

p'. u= --', [(u -p')' f'--p"].
Thus, only integrals of the form of (A3) and I, will
occur. Clearly, the reduction of second- and
third-rank tensor integrals can be carried out in
exactly the same manner, and only elemen'tary
functions and I, will be needed to express these
integrals in terms of the basic tensors formed
from p„, p', and g„„.

In the one-loop electron vertex the integrals that
occur are

u'[(a-p)'-m'][(f -p')'-m'] '

J' = d'k f'[(a-p)'-m'][(a-p')'-m'] '

d4y ~Q~v

u'[(u -p)'-m'][(a -p')'-m'] '

l [(u-p)'-m'][(u -p')'-m'] m'

= n'i ln —,

+f —2 1 —, sinh'

+1 —2$

(As)

(A9)

(Alo)

(A11)

Rnd
~A = —.f-'[P "(P 'e)+ m'(P' 'e)l~. + 2P' e~

4 1
u'[(u -p)'- m']

=m'i ln —,+ 1+ —,—1 ln

-P "L'+P P'L},

z, =z„(p-p'),

(Als)

(A17)

= m 'i[in(A'/m') + 1 L] . —(A12)

Again we decompose J„'" and J„'„"into all possible
components:

2 ~

~„' =',' [g.„~+(p,p„-g,„p'/4u,

12
——[3 i P

' -m')1„+ fP" —m')J, —2]I, .

2

(A18)

+ (P,'P. +P,P.' —', P 'P'a„.)~a-
+ (PZ.'- —.'P "g..)~.]. (A14)

3 p2 ~2 J + p
~2

ypg2 J

—p' (p" —m')J„—28

The scalar coefficients can be obtained by taking
the trace of J„'„", and by saturating the indices
with p and p' as before. The resulting expressions
are

— —,—1 I. + —, (A19)

a =.—,
' [in(A'/m') + 1-2S], (A15) ~, =z(p p') . (A2o)
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