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SU(2) Yang-Mills Coulomb Green's functions in the presence of a generalized Wu-Yang
configuration
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The Coulomb propagator in a generalized Wu-Yang configuration A is considered and its dependence on zero
modes is investigated. It is found that for (i) A equal to a pure Wu-Yang monopole there are no zero modes and (ii)
A equal to a pure gauge one zero mode appears. Pure-gauge boundary conditions at the origin lead to an ambiguity
which must be resolved by introducing a new parameter 8 (0 & 8 & m ). For those cases without zero modes an exact
multipole expansion is constructed.

INTRODUCTION

It was Gribov' who f irst pointed out that the
SU(2) Coulomb-gauge Yang-Mills Green's function
D'„' defined by'

-[V„'„+g&„Q~(x)]V+ ~(x, x') = 5"5'(x —,x') (1)

does not in general exist for arbitrary configura-
tions A~(x, f) [V A~~(x, t) = 0] since the differential
operator appearing in Eq. (1) can have zero modes.
'This fact renders the quantization procedure of
Ref. 2 incomplete since its formal solution in-
volves a functional integral over all configurations
A~ (subject to V'A~~= 0), including those for which
D„ is ill defined. Subsequent analyses') have ex-
posed additional technical features of the Coulomb
gauge and there have been various proposals on
how to solve the "Gribov zero-mode problem" in
the fundamental formulation of the theory. " In
this note we examine. solutions to Eq. (1) for the
conf igurations

l

A,'(x) = ——a'" —, (r), x=
~

x~,

with a(r) a real-valued function. This choice is
motivated by the growing suspicion, based on
general arguments' and from recent developments
in lattice gauge theories' that the confinement
phenomenon is to be associated with a kind of
magnetic degeneracy of the ground state. For
were we to calculate the magnetic energy. R„as-
sociated with A, we would find'

1 [a(r)' —2n(r)]' 2 dn(r)

}'r'. dr

THE MULTIPOLE EXPANSION

Substituting Eq. (2) in Eq. (1) we find

(4)

with the orbital angular momentum L' = -f,z'~'x~V'

and T,'... the spin-1 representation of SU(2). Our
strategy now becomes clear. The differential op-
erator in (4) may be thought of as the Hamiltonian
of a nonrelativistic particle of spin T = 1 moving
in the spin-orbit potential

(6)

Define

(6)H = -V'1+ L ~ T2

where the matrices 1 and T act on the intrinsic
spin indices. Because of the spin-orbit coupling
neither L nor T are constants of the motion, but
the total angular momentum J, =L;+ T; is, i.e. ,

recalling that in spherical coordinates

the case & = constant and to display the zero-mode
phenomenon as an explicit function of n. It will
turn out that for the case a = 1 (infinite-energy
Wu-Yang monopole) D~ is well defined, while for
the case n =2 (zero-energy pure gauge) D„de-
velops a single zero mode.

Our second objective is a brief discussion of
zero modes for the o(x)'s having R„(~.

Choosing o. (r) so that the integral exists implies
"almost degeneracy" at least for large coupling.
Choosing n(x) = 2 (A,' a pure gauges) implies
"complete degeneracy, " since X = 0 for all values
of the couPling

Our first objective will be to investigate D„ for

+2=

H can be written

(6)
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The operators O', L', T' commute among them-
selves and with H, so maximum use will be made
of the symmetry of the problem if we expand D„
in eigenfunctions of J, L, and T . To this end,
we define vector spherical harmonics' as

with F» the usual spherical harmonics, e'„or-
thonormal eigenvectors obeying T', e'„=ne'„, T'e'

a Clebsch-Gordan coefficient. Since the intrinsic
spin 7' has T' = t(t+ 1)= 2, i.e. , t = 1, Y~i „=0, un-
less L =J or J + 1 with the exception of J= 0 for
which L must equal 1.

From E(I. (10) it follows that

and

~& u ~I- III «'
a

+ J'

Q Y~i„(II)Y~is(A') = 5' 5(Q -0'),
Z=o I= -i SS=-~

D~'(x, x') = Q Y~i„(Q)gi~(r, r')Y~~i „(It') (13)

and using E(I. (11), it follows from E(I. (9) that

(12)

with the proviso that for J= 0, L = 1. Expanding

-i ——r + —,L(L+1)+ [J(J+1)-L(L+1)-2]ig~(r, r')=(1 c)
' 1 a(r) &(r r')-

(x et' 2 (14)

For arbitrary c((r), E(I. (14) cannot be solved in
general, so to get a feel for what is going on we

specialize o'(r) = & = const and provisionally define

where

(19)

N(N+ 1)= L(L+ 1)+——[J(J+ 1)—L(L+ 1) —2] .
2

(15)

with

P'(x, t) =SA'.~.,A&c+ wrier'X . (20)

In terms of N, formal particular solutions to the
homogeneous version of E(I. (14) are r", r '""';
so provided P/ is real a standard argument" gives

1 (r )N«") 2N+I (.,)" (16)

with r indicating the larger (smaller) of r and r',
respectively. Hence a formal solution for D„ is

This charge density p is Hermitian (real) so the
physical requirement that Ei be real means that
D~ must be real. It follows from the properties
of the Y~i„ that this can only be the case if N in
E(I. (gS) is real. But is it'? Solving Eg. (15) for
N we find

f a
= + 1+ 4i L(L+ 1)+—[J(J+1)—L(L+ 1) —2] i

(17)

with N given by 15. This can be compared with
the "free" Coulomb potential

(r )'
4-

i

-,
i

—5 Yl, (0) 1 )i„Yi (0'),

(18)

to which E(I. (17) reduces as o.'- 0. The entire
influence of the "monopole" is isolated in the
distinction between N and L.

Now the Coulomb Green's function D~ was or-
iginally introduced' to enable one to express the .

longitudinal electric field via Gauss's law as an
explicit function of the transverse degrees of free-
dom A,", E~r, (&~E~r, = 0) and the charge density k,'
contributed by other (for example, spinor) degrees
of freedom. Formally one has Ei~ = -V 4', (x, t),

so the reality of N is the condition that

(21)

1+ 4i L(L+ 1)+—[J(J+ 1) -L(L+ 1) —2] i
- 0 ~ (22)

( e

Q ~(~.g

Case 2: J~ 1; I =J+ 1. Again from (22),

1+ 4(J+ 1)(J+2)
4(J+ 2)

(23)

(24)

One notices that if the left-hand side in (22) is
zero, 2N+ 1= 0 and Eq. (17) is no longer a well-
defined solution to (4). To find the constraints
on & that guarantee N be real, we distinguish
four cases.

Case I: J= 0; L= T=1. From (22) it follows
that
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Case 3: J~1 L=J.
c» ~ 1+ 4J(J+ 1) .

Case 4: J~ 1; L=J -1.
0~ 1+ 4(J -1}(o»+J) .

(25)

(26)

Thus N in Eq. (15) is guaranteed to be real pro-
vided that + belongs to the interval

9 g~(9 ~

The upper bound is already visible in (23), while
the lower bound follows from (26) for J= 2. It
has been noted in Ref. 4 that for u ~

—,', zero modes
of the differential operator in Eq. (4) appear.
What we have derived here is a more stringent
condition that does not implicitly assume that
J=0 as is the case in Ref. 4. For n sufficiently
negative, zero modes appear, showing up for the
first time in the J = 2, L = 1 partial wave.

ZERO MODES

To see the connection of the restrictions (25) and

(27) with the appearance of zero modes, consider
the eigenvalue problem for the operator H[Eq. (9)],

,+ —,h(r) = Eh(r) .dr2 r2 (33c)

r dr J„(kr)J„(k'r) = 5(k —k')

0
(34a)

From (33c) it follows that our problem is equiva-
lent to the one-dimensional Schrodinger problem
on the half line [0,~) for the singular potential
X/r' From (33b), which is recognized as the
generic form of Bessel's equation, it is clear that
a general solution must be linear combinations Qf

the particular solutions J,&„,«»(WE r). It is,
however, well known'"" that owing to the strong
singularity at r = 0 the eigenvalue problem defined
by (33c) is underdetermined for sufficiently nega-
tive (attractive)»». This is the quantum-mechani-
cal version of the familiar "spiraling into the cen-
ter" phenomenon characteristic of the attractive
1/r' potential in classical mechanics. Following
Ref. 11 we must distinguish three cases.

0& X. The potential in (33c) is repulsive; the
spectrum consists of a continuum beginning at
E = k'= 0 and extending to +~ with eigenfunction
J„(kr), where k =+&'E and v=+(X+ 1/4)'/'. The
Bessel functions obey continuum normalization

&e.(x)=Ed (x) (28)

Assuming that the Qs's form a complete set one
has formally"

4's(x) fs(~')
D~ x, x')= ~ E(g)

with the Z over the entire spectrum (E}—bound
state plus continuum of H. Equation (29) clearly
exhibits the zero-mode problem as the potential
divergence of Z» s» depending on the density of
eigenvalues near E = 0. As before, it is useful to
seek solutions corresponding to definite J and L,
so

(29)

4's(&) = F'gz „(~)f~ (r)

and introducing two auxiliary functions Uzz(r) and
h~~(r) by

(30)

U(r) h(r)
(31)

where we will not write the J and L dependence
any more to save space. Defining X by

A, 't
+ —,If(r) = Ef(r),rdr r]

»». + I/4),+ ——+ E—,
i

U(r)-0,.dr' r dr r' (33b)

»1 =N(N+ 1)=L(L+ 1)+—[J(J+ 1) —L(L+ 1) —2],

(32)

the functions f, U, and h satisfy

and are complete" in the sense

5(r r')-
kdk J„(kr)J„(kr'') =

/ (34b)

By analogy with (28) and (29) we can use (34b) to
solve (14). If we call

then

(

( e)1/ 2 (35)

" dk J„(kr) J„(kr')
g(r, r') = (37)

This discontinuous integral may be evaluated ex-
plicitly" to yield

(r )& 1/2
g(r, r') =

2v r&~
(38)

which agrees with (16) provided v=N+ —,', which
also follows from v'=X+-,' =N(N+1)+-,'. So every-
thing is consistent. In particular the spectral in-
tegral in (37}exists near k = 0 because for && 0,
v& —,', J,(kr) (kr)" for -small kr. In fact, the
spectral integral is seen to exist as long as v& 0,
which is the clue to a correct treatment of the
eigenvalue problem defined by (33c) in the region.

/' d' 1 d &+ I/4}, ,5(r r')—
r dr+ r& ~lg(r1r } (r i)1/2 ' (36}

So expressing the right-hand side of (36) accord-
ing to (34b) and comparing with (33b) yields
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U(r) ~ (const)cos(i &+ —,
i

'/' lnr+ 8), (39)

where the multiplicative constant varies from so-
lution to solution but the r dependence is as given.
8 is a phase which removes the continuation am-
biguity mentioned above. To construct an explicit
orthonormal system of eigenfunctions, we first
define.=+ i~+-.'i "2,

r(1+iv) =
i
r(l+ iv)

i
exp(iy„),

(40a}

(40b)

=, & X& 0. Since X is negative in (33c) it is at
least conceivable that some kind of bound state
could appear. 'The existence of a bound state
stands or falls with the choice of boundary condi-
tion at r = 0. It is shown in Ref. 12 that the natural
boundary condition at r = 0 involves simply analy-
tically continuing from X& 0 into the region ——,

' & X

(0. Nothing stands in the way of this continua-
tion, so the spectrum consists of the positive real
axis E& 0 as before with g(r, r') given by (38) with,
however, 0& v&-,'.

Thus no zero-mode problem has been encounter-
ed as long as -4 & X, which is easily seen to be
equivalent to Eq. (22) and hence Eqs. (23)-(26).

As the potentiai in (33c}becomes even
more attractive so that X(=,', an essentially new

phenomenon appears; v becomes pure imaginary
and the two independent solutions to (33b) become

J„(i„„/gi)1/2(EE r). The point ——,
' is a branch point

in the & plane so that the analytic continuation re-
cipe for extending the boundary condition informa-
tion at r=0 is ambiguous. Case" has shown that
a well-defined orthonormal system of eigenfunc-
tions is obtained by specifying the relative phase
between J, '(ig, /, [)j/2(KEr) as r-0. This is ac-
complished by demanding that all solutions of
(33b) behave as

E„(8)= -exp -[8+ v ln2+ y„-n'(n+ 2)]
2 1 (43)

is invariant to the substitutions 8- 8+NT/ (N being
an arbitrary integer) in the sense that

E„(8+Nv) =E„„(8)
and that (42) implies

(44)

U„„,(»„(8+Nv)r)=( I)"U-,(»„„(8) r},
while

U,.„,(kr) = (-1)"U,(kr)

(45)

(46)

follows from (41). Thus, adding NY/ to 8 merely
reshuff les the eigenvalues and eigenfunctions
among themselves, i.e. , a trivial renaming and
hence may be ignored. In all that follows we as-
sume that 0& 8& m.

The multiplicative factors in (41) and (42) have
been chosen so that U~(kr) and U~(»p) are real
and orthonormaE in the sense

r dr U, (»g)U, (»„.r) = 6„„.,
0

(47a)

where f, „(»p) is the Bessel function of pure im-
aginary index and pure imaginary argument. "
The continuous sPectrum runs from E=k'= 0 to
E=k'=+~. The k appearing in (41) then may be
an arbitrary positive real number.

The discrete spectrum E„=-x„' is a sequence
of real values beginning at E= 0 (accumulation
point) (n=+~} and extending to E= -~ (n= -~).
These numbers are determined by the require-
ment that as r-~, the bound-state wave function
U(»r) behaves as exp(-»r), »& 0. Thus the spec-
trum is not bounded below, this being the quantum-
mechanical counterpart of the "classical spiraling
into the center" phenomenon already mentioned. "
Note also that the discrete spectrum

P„(k)=y„- v ln-+ 8,k

P„(n)=w(n+-,') -y„, n=0, +I,+2, . . .
8+ v ln2+ y„-v(n+ ~ )e„=exp

(40c)

(40d)

(40e)

t 6(k-k )

0

r dr U~(kr)Ue(»p) = 0 .
0

The analog of (34b) (completeness) reads

(47b)

(47c)

where I'(1+iv) denotes the usual I' function and

y„ its real phase. We find"" the continuum and
bound-state eigenfunctions U, (kr) and (Up») to be

6'(r r)-
,),/,

= Q U~(»p)U~(»„r')

J (kr)e'~"' '+ J (kr)e '8~'~'
U, (kr)= '" MP

(2[cos2P„(k)+ c os' v]j'/' (41) + kdk Uz kr U kr'
0

(48)

and

U~(»p) = " [I'(1+iv)l;„(»~)e'~&'"'

+ r(1-iv)t„„(»g)e "'"'], (42)

where the 8 on 6 is to remind us that the right-
hand side acts like a 5 function on the space of
functions obeying (39). To obtain a formal expres-
sion for g(r, r') we proceed as in (35), (36), and
(37) and use (48) to )ind
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, ),/, ) g Ue(v~)Ue(w„r')

tl =~ ~n

+ —U, (kr)U, (kr ),
" dk

„u (49)

v(r)
--'- ~ -0 continuum

/I//////////////////////////////////////////////////////////~,

where the notation -~ and 00 is to remind us that
contributions from the zero "energy" region are
potentially divergent and may have to be cut off.
To estimate the degrees of divergence, note that

Ue(vp) = M2~cos[v lnr+ 8]
0

(50a) FIG. 2. V(y) for the case —4 & A, & 0.

dk 2t'(r, r )=
1, k coshvv+ cos2P„(k)

x cos[v lnr+ 8] cos[v Inr'+ 8].

For v& 0(&& --, ) coshwv&
~

cos2p„(k)
~

so that
n. '(r, r') is logarithmically divergent.

This logarithmic divergence persists to the
point k = 0 since

dk 2 cos'8
1+ cos28 '

(51)

(52)

we conclude that the generic degree of diver-
gence in (rr')'~'g(r, r') from the small kregions-
of the continuum is logarithmic.

Case 2. The contribution 6 (r, r') to (rr')'~'
g(r, r') from the small-E„region of the discrete
spectrum is

~00

(r, r') = ——,g cos[v lnr+ 8] cos[v lnr'+ 8),
n=m

(53)

v(r)

2
U~(kr) = —,&, cos[v lnr+ 8],, [cos2P„(k)+ coshwv]'i'

(50b)

where cos ~ ~ is as recluired by (39) and the re-
spective constants have been determined by the
normalization constraints (47a) and (47b). This
means the following.

Case 2. The contributions n'(r, r') to (rr')' '
g(r, r') from the small-k region of the continuum

f for fixed finite r, r' is

d
, + V(r) h(r) =Eh(r), (54)

which is one-particle quantum mechanics on
[0,~). Up until now we have concentrated on po-
tentials V(r) =r 'A(r), with X(r) given in (32). For
X= const two essentially different situations pre-
sent themselves. The case 0&X possesses as ex-
pected a continuum beginning at E = 0' = 0 and ex-
tending to ~ (Fig. 1). For ——,

' & X& 0, the poten-
tial V(r) is attractive, but not strong enough to
produce a bound state (Fig. 2). For X& -4, all
resistance to bound-state formation is broken and
one obtains the usual continuum plus an infinite
sequence of negative eigenvalues extending to -~
and having a point of accumulation at 0 (Fig. 3).

v(r) continuum

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/„

point of accumulation

r2

discrete
sequence]

where X is a large positive integer and for all
n ~ X we have replaced U, (~„r) by its small e„r
behavior (50a). The Z in (53) diverges linearly
as all dependence of the summand on n cancels
for n sufficiently large. Thus the accumulation of
di screte states at E= 0 implies a linear divergence
in (rr')'~'g(r, r') for fixed, finite r, r'.

Note also the relative minus sign between (53)
and (51). This intrinsic sign difference is already
visible in (49) as the eigenvalues of discrete
states are negative relative to the continuum.

Before discussing the physical relevance of the
above, let us summarize the results. Write (33c)
as

continuum

'="~~~P~~~~~~~~~lllllliili

FIG. 1. V(y) for the case 0& A, . FIG. 3. V(y) for the case A, &-4.



22 SU(2) YANG-MILLS COULOMB GREEN'S FUNCTIONS IN THE. . . 2515

demand u(0) = 0 (finite energy) and &&'(~) = 0 (no
monopole tail at large distances), and choose

2(2I + l)(2L+ 3)
(r'+r, ')' [J(J+ 1) L(L+-1) —2] '

(56)

so that

r 2V(r)=, —,' »(2L+1)(2L+ 3), (57)

where r, is an arbitrary length which is necessary
if the above &&&(r) is to lead to finite 5C„. V(r) is
depicted in Pig. 4. One verifies that the wave
function

h(r) = (const) r+ro) (58)

is a normalizable (square integrable) solution to
(54) with (r) given by (57) having eigenvalue E = 0.
In fact, V(r) [and hence &z(r)) is constructed by
using (58) as an Ansatz, demanding that E = 0 and

using (54) to "solve for the potential. " This ex-
ample" pxecludes the possibility that a monopole
tail [o&(~)W 0] is necessary if D„(x, x') is to re-
ceive (divergent) enhanced contributions from the
E =0 region of the spectrum in (29). Such discrete
zero modes imply (at least) as divergent contri-
butions as the accumulation point phenomenon in
the case &&& = const. Obvious generalizations to (56}

'The accumulation of discrete states at zero energy
is responsible for the leading (linear) divergence
in D(x, x'). However, X = const implies &&' = const
which implies that the magnetic configurational
energy (3) is ~ unless &&i = 0, 2. A necessary con-
dition for finite 3C„ is therefore o'. (0)= 0 [the &z(0)
= 2 case being subsumed in the cases already
treated]. As an illustration write

V(r)=, +
L(L+ 1) &&&(r) J(J+ 1)-L(L+1)-2

(55)

(56), (57), and (58) corresponding to n(~) 0 0 are
possible but do not bring anything new so we will
not discuss them here (see, however, Ref. 16).

g, , tx-x(;) (

(59a)

A,'(x) = —— z~' "', a(
~

x —x&, &
~ ) (59b)

with {x&,&] a set of N three-vectors —the positions
of the cores of A and &&& in (59b) are given by (56).
In both cases the magnetic energy is finite, the
contributions from the core regions converging
since A approaches a pure gauge (59a) near any
of the {x&,

.
&] and (59b) has &&&(

~

x - x&,. &
~

) = 0 there.
Furthermore, by taking the Min,.» ~

~&,. &

—z &»
~

larger and larger, we can make M from (59a) as
small as we please, in particular smaller than K~
from (59b). Thus from the point of view of ener-
getics, (59a) would seem to be preferred. One
must not forget, however, that the (relatively)
short-range character in (59b) [n(~) = 0] means
that we can pack the points {x&,&] closer together
at relatively little cost in energy while the X„
from (59a) grows dramatically as any z

&,
.

&
ap-

proaches another x&; ). Thus one would expect
more configurations of type (59b} and this "density
of states" advantage may offset the pure energy
advantage of (59a). We suggest that both types of
configurations will be important for understand-
ing vacuum structure in the Coulomb gauge"" '
and that pure-gauge boundary conditions at small
distances should be reexamined. In fact,

DISCUSSIQN

We motivated this note by referring to the grow-
ing suspicion that quark confinement is caused
by a magnetic degeneracy of the ground state."
Configurations of the type given by Eq. (2) cost
relatively little magnetic energy if we take o'(r) = 2

(pure gauge) or the o&(r) given by (56). In fact,
we may generalize to the configurations

V(rl —.—
~

-2&~" -, ~=U(x}B~U'(x)
1 r' t' ~„xi }
i 2

&, [x~') (60)

r2

(.m x
(x ~2 )xt (61)

zero mode

FIG. 4. V(r) from Eq. (57).

showing that the case o&(r) = 2 is derived from a
singular gauge transformation since x/~ x

~

is not
defined at X = 0. One usually dismisses the be-
havior (61) at small x in order to secure a topo-
logically well-defined classification of pure
gauges. " However, the increased prominence
of such singular gauge transformations' in recent
years suggests this to be unwise. This would
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mean incidentally that the Coulomb propagator
D„(x,x') would be expected to show anomalous
small-distance behavior due to the presence of
the discrete spectrum for &(0) = 2. This anomaly is
above and beyond that associated with zero modes.
This small-distance behavior would depend on 8
introduced in (39), while those contributions aris-
ing from the 8=0 region in (29) are largely inde-
pendent of g.

Our last remark is that for x sufficiently far
away from all x&, &

in (59a) one has

x'
A:(x)---~"',ZX,

g t&I' (62)

indicating that configurations with arbitrarily high
n(~) are relevant. From (23)-(26) it follows that
higher and higher partial waves begin developing
accumulation points at E= 0. Any attempt to esti-
mate the vacuum expectation value of the longi-
tudinal-electric-field energy [see (19)] must take
into account these higher partial waves and not
just those corresponding to J= 0.'" We will re-
turn to this question elsewhere.

INTERPRETATION AND SUMMARY

We have investigated the Wu-Yang configurations
of Eq. (2). For the case n constant and -,'—& n &9,
there are no zero modes and an explicit Inultipole
expansion can be given. For && --,'or —,

' «zero
modes appear, and make formally divergent con-
tributions toD„(x, x). As ~&~ increases, more
and more partial waves of definite J and L de-
velop this pathology and the precise conditions
under which it happens are determined. 'The Wu-
Yang monopole (& = 1) has no zero modes while
the pure gauge (n = 2) has precisely one in the
J= 0, L = 1 = T channel. The small-distance bound-
ary conditions for, this last case are elucidated
and found to depend on an angle 19 with values be-
tween 0 and w. For physical applications one may
have to imagine averaging over 8 as there is no
obvious physical argument to determine it. 'This
remains an open question'.

We close this note by tentatively answering the
following question: How are the zero-mode diver-
gences in D'(x, x'), that we have gone through all
the trouble of isolating, to be interpreted?

The answer lies in the expression for the longi-
tudinal-electric-field energy'

2

X =g dx — dx+ g xx p x
ag0

(63)

with the total effective charge density

p (x f)=gAo' 'F' ++7& 2'X ~ (20)

If D„ in (63) has zero modes, Xs will be infinite
if p (x', f) is not orthogonal to those modes. Thus
we see the role of zero modes not to be that of
rendering the Coulomb-gauge formulation' incon-
sistent, ' but rather as specifying a set of condi-
tions which a given configuration A, E,X,X must
satisfy if it is to be represented in the vacuum
wave functional with nonvanishing probability. The
effective charge density p'„ formed in that config-
uration must obey

d'x Q', (x)p~(x, t)= 0 (64)
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with P'„, a zero mode belonging to A. Thus the
zero modes define a kind of projection operator
onto physically relevant configurations. Of
course, the practical utility of this notion remains
minimal until an efficient complete characteriza-
tion of the zero-mode subspace of all configura-
tions has been made and this analysis does not
lie before us (see, however, Ref. 20). But two
things are sure. (i) Adding a quark point charge
distribution fthe limit where gjy''7'X in (20) is re-
placed by n'(g/2)V(x), with n' a unit isovector]
into the vacuum is energetically impossible due to
the divergences coming from (63), as there is no
way that 6'(x) can be orthogonal to all zero modes.
(ii) Charge fluctuations originating in the terms
gA~E, ME~ are also suppressed indicating a strong
tendency for the transverse electric field fluctu-
ations to be parallel to A (in isospace). We shall
return to these intriguing questions elsewhere.
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