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A model that resembles the time-continuum XYmodel is solved. The nature of the phase transition of the soluble

model is discussed and shown to be analogous to the phase transition of the XY model. A second model, which
describes a mixed XY- and Ising-spin interaction, is also discussed.

I. A SOLUBLE MODEL OF THE PHASE TRANSITION
OF THE XYMODEL

The classical XY model describes the statistical
mechanics of classical two-component spins s(x)
on a two-dimensional lattice, x=(x„x,). The
spins have unit length s' = sy + s,' = 1 and the par-
tition function is

e-W[s (x)&
y

where the action A[s(x)] is

the phase transition at P, is that for P) P, the vor-
tices only contribute to Z bound in pairs and the
vortex pairs do not disorder the spins as effec-
tively as free vortices. The critical value of P
is e'stimated to be P, = 2.24/tt.

In recent papers the XY model has been used to
illustrate ideas about gauge field theories. ' In
these papers the XY model is viewed as a Eucli-
dean field theory, with the variables x, and x,
identified as Euclidean time and space variables.
To make the connection between the XY model and
field theory it is useful to consider the quantity
P[o(x)] defined by

A[s(x) ] = —g [P,s(x) ~ s(x + ee, )

+P,s(x) ~ s(x+e, )] (1.2)
P[o(x)] g t Q e-Ats(x)]

(8(X)&

and e„e, are unit vectors in the xy X2 directions.
The symmetric XY model has P, =P, and e = 1.

The symmetric XY model has an interesting
phase structure. " For small P the spins are dis-
ordered; the spin-spin correlation function
(s(x) s(x+r)) tends to zero exponentially as ~r

~

The absence of long-range order persists to
arbitrarily large P, but for P sufficiently large
the spins are critically ordered in the sense that
the correlation function decreases to zero only
as a power of ~r ~, i.e., (s(x) ~ s(x+r))- ~r~

s as
~
r ~- ~ where P) 0. The correlation length is

finite in the disordered phase and infinite in the
critically ordered phase. There is a critical
value P, of P that separates the disordered phase
from the critically ordered phase.

Kosterlitz and Thouless' explained the nature
of the phase transition at P, in the following terms.
For J9» p, the partition function sum in Etl. (1)
is dominated by small spin-wave fluctuations of
the spins. The spin waves create enough disorder
to prevent long-range order of s(x) (Ref. 3) but not
enough to produce a finite correlation length. On
the other hand, for P ~ p, there is another impor-
tant contribution to Z from special topological
configurations; these are vortices in the spin
field. The disorder created by the vortices pr o-
duces a finite correlation length. The origin of

&& 6[v(x) —s(x, 0)] . (1.3)

In statistical mechanics P[5(x)] is just the reduced
probability distribution of the spin field along the
xy axis . The corresponding q uantity in f ield theory
is the square of the Schrodinger wave functional
of the vacuum state. ' The functional P[o(x)] is
the distribution of vacuum fluctuations of the field.

There is a striking analogy between the vortices
in the XY model and the meron field configuration'
in a non-Abelian gauge theory. ' The contribution
of vortex configurations to the vacuum functional
P[&y(x)] produces long-range topological kinks in
the spin field along the x, axis; a kink is a spin
field cr(x) for which the spins rotate through 2tt

over some range of x. Similarly, the contribution
of merons to the vacuum functional of a non-Abel-
ian gauge theory produces long-range topological
configurations that are related to magnetic mono-
pole fields. It has been suggested that the vacuum
state of quantum chromodynamics is a condensate
of such monopoles and that this explains quark
confinement. ' Similarly, the disorded phase of
the XY model resembles a condensate of kinks.

In a different context, the phase transition of the
XY model has also been proposed as a model of
the expected phase transition in Abelian lattice
gauge theories between confining and nonconfining
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phases. '8
Fradkin and Susskind provided a simplification

of the model~ by considering the x, -continuum
limit

e-0, p, =Le, p, = I/e. (1.4)

In this limit the model can be reduced to a kind
of quantum-mechanics problem with the Hamilton-
ian

P= —' L'x —X E xE x+5
X %1

(1.5)

e' '=-,'g([z(~)+~],))) p~ („)~ („„,))

where x labels points of a one-dimensional lattice
and the operators L(x) and E, (x) obey the commu-
tation relation

[L(x),E,(x')] =+E, (x)a(x, x')

and E,(x)E (x) =1. These operators can be rep-
resented as E, (x) =e"~" and L(x) = i 5/—5p(x)
acting on functionals of y(x) that are invariant
under the transformation y(x)- y(x}+2m. In terms
of the original spin system, y(x) is the angle be-
tween s(x) and a fixed axis. The connection be-
tween the Hamiltonian H and the model in Eq. (1)
is that H is the generator of translations in the x,
direction of the x, -continuum model. It follows
that the probability distribution P[a(x)] is the
square of the Schrodinger wave function of the
ground state of H in the representation with 5(x)
=(cosy(x), sing(x)). The phase transition of the
original model shows up in the Hamiltonian H as a
special value of X at which a qualitative change
occurs in the nature of the vacuum state and spec-
trum of excited states. Critical properties of the
original model and the Hamiltonian version are
expected to be similar. "

The Hamiltonian H has not been solved. ' A
simplified Hamiltonian, which might be interesting
as a model of H, can be constructed from the
following cons ide rations.

The eigenfunctions of L{x}are eI "()'~"~ where m
is an integer which can be thought of as an angular
momentum quantum number. In this language
E,(x) and E (x) are raising and lowering operators
that change m by one unit. Since m ranges from
-~ to +~ the corresponding total angular momen-
tum is infinite. This suggests that a simplified
Hamiltonian might be introduced as a model of H

by replacing L{x) and E,(x) by angular momentum
operators with finite total angular momentum. Let

((~)= g I&,(~')+-')
x &x

and d(x) and dt(x) by

d(x) =e"Nb& J (x),
dt(x) e-&))K(x)J (x)

(1.9)

(1.10)

Here J, =m„where o, are the Pauli matrices.
Note that J, (x) commutes with $(x) since $(x) de-
pends only on spins at x & x. It can be shown that
dt(x} and d(x) are fermion creation and annihila-
tion operators that obey the anticommutation rela-
tions

{d(x),d(x')}=0,

{d(x),dt(x')} = 5(x, x') .
The occupation number operator is

n(x) =dt(x)d(x) =J',(x) +-,'. (1.12)

Written in terms of these operators the Hamil-
tonian H""' is

H'"'=-,'Q dt(x)d(x) ), Qd t(x}d(x+g)

tor with J' =j(j+ 1) and

J,(x) =J,(x)+iJ,(x). (1.8)

The operators J(x) and J(x') commute if x Wx.
The parameter tc is 0 if j is an integer and —, if j
is a half-integer; it is introduced so that II ~ has
a unique ground state for X =0. The eigenvalues
of J3+~ are integers and J, are raising and lower-
ing operators for eigenvectors of J,. The com-
mutation relation (1.6) holds with L{x) identified
with J,(x) and E, (x) with J, (x).

One difference between the operators H ~ and
H is that E,E =1 whereas J',J =j(j+1)—J,(J, —1).
However, in the limit j-~ with A. =—j A.

~ fixed,
H ~ approaches H. Thus H ' can be examined as
a model of H.

The model described by H~~ with j= —,
' is soluble.

The remainder of this section is devoted to a dis-
cussion of the solution. Some of the interesting
features of the XY model are present also in the
simpler model H '" . In particular, there is a
transition in X that separates a disordered phase
from a critically ordered phase. In this sense
H ' ' may be called a model of the phase transition
of the XY model.

The solution of H '" is obtained with the help of
a transformation due to Jordan and Wigner. ' Let
the operator $(x) be defined by

(l.7) (1.13)

where J=(J„J„J,) is an angular momentum opera- Thus H ' ' can be diagonalized by Fourier trans-



2492 DANIEL R. STUMP

formation of d(x). Let d(8) be defined for
-q&g &gaby

d(8) =Q e'" d(x);

the inverse transformation is

(1.14)

principle that follows from the noncommutativity
of JandJ, ,

The nature of the vacuum state in the high-X
phase can first be discussed in terms of the ex-
pectation value of J,(x). It can be shown that

(JB(x)) = -—,
' for X & -,',

fm' dg
d(x) = J~ 2

e ""d(8).
(J',(x)) = ——,'+—' for X & —,'.

m

(1.21)

Now d(8) is a momentum-space fermion operator,
with anticommutation relation (d(8), dt(8') j=

=2v5(8 —8 ). The Hamiltonian H '" is

t "dg-H~'I" =-,' I d'(8}—d(8)F.(8),2r (1.16)

where

Z(8) =1 —2X cos8. (1.17)

P[o (x)] =
i (o(x) in) i' . (1.20)

The state in) is maximally disordered because
P[v(x)] is independent of o(x). The operator J,
plays the role of a disorder parameter in this dis-
cussion. In an eigenstate of J3, the components Jy
and J2 are disordered because of the uncertainty

Thus H '" describes noninteracting fermions in

a band of energy levels E(8) labeled by lattice
momentum g.

The vacuum state, i.e. , the ground state of H '~',
is the state in which all of the fermion levels with

negative energy are occupied. For X& —,
' there are

no negative-energy levels so the ground state is
the fermion vacuum state. For X& —,

' all levels
with

i
8 i& 8, have negative energy where

cosH, = I/2X.

Thus there are two phases separated by a phase
transition at the critical value X, = —,'. In the low-X

phase (X &-,'} there is a gap between the energies
of the vacuum state and the first excited state;
in the high-X phase (X ~ —,') there is no energy gap.

The low-X phase is analogous to the disordered
phase of the XF model in Eq. (1). For X &-,' the
vacuum state in) is an eigenstate of J,(x) for all x:

j,(x) in) =--,'in). (1.19)

Therefore, the (1,2) components of the spins J(x)
are maximally disordered: Each spin is equally
likely to be in the eigenstate of z J with eigenvalue
+-,' as in that with eigenvalue ——,

' where z is any
unit vector in the (1,2) plane. This statement can
be expressed most exactly in terms of a probabil-
ity distribution P[o(x)]. Consider the set of states
in which each spin is in an eigenstate of either J,
or J„denote these states by io»(x)) where o,(x)
or u, (x) is the eigenvalue of j,(x) or j,(x). Then the
vacuum probability distribution P[o(x)] is

1 2

}, sm n8, . (1.22)

Even for the limit A. -~ there remains a correla-
tion between the values of J, at different sites,
so there is no long-range alignment of spins in
the'(J„J, ) plane.

It is also instructive to consider the action of a
rotation operator on the vacuum state of each
phase. Let U(o. , x) be

U(o. , x) = e"~3'"' (1.23)

which rotates the spin at x by the angle z in the
(J„J,) plane. The square of the expectation value
of U(o. , x) is

l(U(~, x)) I'=I «» &-. ,

i(U(o.', x))i'=1-2 —' 1-—' (1 —cosn) for x~-2.
7T ir

(1,24)

The first equation means that the low-X vacuum is
invariant under U(a, x); the spins are totally dis-
ordered so rotating the spin at x does not change
the state. The second equation measures the
degree of order in the high-X vacuum. The over-
lap of the vacuum state iQ) with the state U(o. , x) in)
decreases as the coupling constant ) increases
but is nonzero unless o. and X are equal to m and

This demonstrates that there is some kind of
partial order of the (1,2) components of the spins.

The Hamiltonian H ' ' is invariant under the
global rotation of all spins by any angle n in the
(J„J,) plane. This transformation is produced by
the operator U(n) =Q,U(o. , x). The transforma-
tions U(a) form a continuous group with 0 & o, & 2g.
It is the invariance of the theory under this group
that is distinctive of the XY model. It can be

In the high-X phase the vacuum is not an eigen-
state of J,(x) so some kind of partial ordering of
the (1, 2) spin components is possible. However,
the fact that (J,) is nonzero shows that the spins
are not simply aligned in some direction in the

(j„j,) plane. The expectation value (J,(x)) does
tend to zero in the limit A. —~. More can be learned
by considering the correlation function

r, (n) -=(j,(x)j,(x+n})—(J,(x))'
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r(n) =(J,(x)J (x+n)). (1.25)

argued that if
~ 0) is not invariant under the action

of U(o. ) then there must be massless excitations.
The former possibility is realized in the low-X
phase, and the latter is realized in the high-A.

phase since there is no energy gap in that phase.
The massless excitations are analogs of the spin
waves of the critically ordered phase of the clas-
sical XY model.

The operator that creates topological kinks of
the spins is a product over spin sites of U(a(x), x}.
The low-X vacuum is invariant under this opera-
tor. Thus the low-X phase might be described as
a kink condensate.

So far the discussion has dealt with the disorder
parameter J,(x). The natural way to discuss the
spin order is directly in terms of correlation
functions of the operator J, (x). First note that
the expectation value (J,(x)) vanishes for either
phase; there is no long-range order. Now define
the correlation function I'(n) by

(s(x) ~ s(x+r)) in the critically ordered phase of
the XY model.

A function that is simpler to compute than I"(n)
is I'(n) defined by

1'(n) = (d (x)d(x+n)) (1.30)

whose value is

I'(n) =0 for X ~-,',
(1.31)

I'(T) =(e"rd(x)e "ddt(x)); (1.32)

the generator of translation in (Euclidean} time is
H~"'~. The function I'(T) can be shown to be

The slow decrease of f'(n) as n- ~ shows that
there are long-range correlations between the ex-
citations created by d and dt.

Up to now only spatial correlations of the spins
have been described. Temporal correlations can
also be considered, for example, the function

In the low-X phase I'(n) is equal to zero for all n
since J' (x), like d(x), annihilates the vacuum.
This lack of correlation indicates again the com-
plete disorder of the vacuum state for X ~ —,'.

In the high-X phase the value of I'(n) for nearest-
neighbor sites is

I (T) e rs(&)-
7T

and in the limit g- ~ it approaches

f'(T)-e ' '"l(4mAT) '" for X~-,',
1(T)-[v(e.'- I)'"T1-' for ~

(1.33)

(1.34a)

(1.34b)
(I'(1) =- sin8 =- ~1— (1.26)

r(n)--(~ ——,')'~2 as X--,'
7r

(1.27)

for all n. In the limit X- ~ the first few values of
I'(n} are

I'(n; X = ~) =(2/v)"c„, (1.28)

where

1 1 2
C1 2, C2 2, C3 —3

8 512 32768
5 VP) & 6 18225 '

(1.29)

The function I'(n) approaches zero as n- ~ since
(J,(x)) =0. The interesting question is how fast it
approaches zero. Equations (1.27)-(1.29) sug-
gest that 1'{n) does not decrease particularly
rapidly in the high-X phase. This would be ana-
logous to the behavior of the correlation function

The correlation is nonzero but small; for compari-
son the expectation value of J,(x)J (x+1) is equal
to 1 in a state with all spins aligned in the (J„J,)
plane [i.e., a state in which each spin is in an
eigenstate of n ~ J(x), n in the (1,2) plane].

The formula for I'(n) with arbitrary n and X is
not known to me. It can be shown that in the limit
X- —,'+, I"(n) is asymptotically

Thus I'(T) is exponentially decreasing as T -~ if
there is an eriergy gap between the ground state
and first excited state, as in the disordered phase;
and decreases as 7 ' in the high-X phase where
there is no energy gap.

Power-law decrease of a correlation function is
associated with critical phenomena. For this rea-
son, points for which the Hamiltonian has mass-
less excitations are identified with critical points
of the system. In the two-dimensional Ising model
there is only one isolated critical point, as will
be discussed in Sec. II. But in the XY model II "',
all X & 2 correspond to critical points. Thus, the
point X = —,

' separates a disordered phase from a
critically ordered phase, like the transition of the
XY model. This is the basis for the statement
that H ' ' is a model of the phase transition of the
XY model (1.1).

The phase transition at X = —,
' can be studied fur-

ther by analyzing the response of the spin system
to external fields as a function of X. For instance,
ihe magnetic susceptability to a constant magnetic
field in the (J„J',) plane diverges at X = —,'.

It should also be remarked that the model des-
cribed by H~'" can be viewed in a different way
as a one-dimensional array of spins that interact
with an external magnetic field in the J, direction.
If the parameter A. is factored out of H ' ' the
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magnitude of the external field is.identified as
1/X. Such one-dimensional models are interesting
in their own right and have been studied for arbi-
trary values of j."

The x, -continuum version of the two-dimension-
al Ising model presents an interesting contrast to
the model considered here. The Ising Hamiltonian
is a one-dimensional array of Ising variables in
a transverse magnetic field4 given by

H = -,'Q o,(x) —«Q o,(x)a,(x+ I), (1.35)

where again g„o, are Pauli. matrices. This
model is also soluble. " There is a phase transi-
tion at K = —,

' between an ordered phase and a dis-
ordered phase. The energy gap vanishes only at
the transition point ~ =-,', which is therefore iden-
tified as a critical point. This transition is a
model of the phase transition of the two-dimen-
sional Ising model.

In Sec. II a mixed Ising- and XY-spin model
will be described to study the'difference between
the two transitions.

H. A MIXED XYAND ISING MODEL

H =-,' o, (x)

0'+ xv x+1 +0 xo+ /+1

The transition point of the gY model separates
a disordered phase from a critically ordered phase.
This aspect of the transition can be illustrated
further with the Hamiltonian model. of Sec. I by
considering a mixed XY and Ising model. I.et
the Hamiltonian be

This is brought to diagonal form by introducing
new fermion operators b(0) and bt(0) defined by

b(0) = cosf (0)d(0) —i sinf(0gt(-0),

5t(0) = cosf (0)d t(0) +i sinf (0)d(-0), (2.3)

where f(0) is given by

2a' sin|9

([1—2(X+«) cos0]'+(2«sin0)'j'" '

1 —2(X + «) cos 0

([I—2(X+«) cos0]'+(2«sin0)'j'" '

(2 4)

If A. =0 this is just the transformation that diagon-
alizes the Ising Hamiltonian (1.35).' "

It can be shown that H is

(2.5)

where

F(0) =([1—2(X+«) cos0]'+(2«sin0)')'". (2.6)

The c-number constant term E„which depends on
X and «but not on the operators b(0) and bt(0), is
a vacuum energy and can be dropped.

So again H reduces to noninteracting fermions
in a band of energy levels F(0) with -m (8 ( e.
Here F(0) is positive for all X, «. In contrast the
energy E(0) in Eq. (1.17) is negative for i 0

i
(80.

The reason for this difference is that bt(0), which
is defined in such a way that it creates positive-
energy states, creates hole states in the filled
negative-energy sea; the ground state iQ) obeys
5(0) ini =O.

Critical points of the model, points where cor-
relation functions do not decrease exponentially
with separation, are identified as points at which
there is a zero-energy excitation, as discussed

(Ti X 0'g X+ ~ (2. 1)

where 0; are Pauli matrices and 0, =0,+ia, . The
parameters X and & will be taken to be positive.
If z =0 the Hamiltonian reduces to H""' of Sec. I;
if X =0 it becomes the t-continuum Ising model
equation (1.35).

The critically ordered phase of the XY model
gives rise to a line of critical points in the mixed
theory.

The Hamiltonian P is again solved by the Jordan-
Wigner transformation (1.10). In terms of the
momentum-space fermion operators d(0) the
Hamiltonian is

H = —f [I -2(X+«) cos0]dt(0)d(0)
—.21

—i«sin0[ j(0)d(—0) +dt(0)dt( 0)]). -
(2.2)

FIG. 1. Phase diagram of the mixed XY- and Ising-
spin model. The A. axis is the pure XY model and the
x axis is the pure Ising model. -Regions I and II are the
disordered and ordered phases, respectively. The dark
line is the line of critical points on which the energy gap
is zero.
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following Eq. (1.34). In this model there are two
critical line segments in the (X, «) plane:

X- —,
' and ~= —,

' —X,
X& —,

' and v =0.
(2. 1a)

(2.Vb)

The lattice momentum of the zero-energy excita-
tion is at 8 =0 for the line X+K = z and is at
cos8 = I/2X for the line X & -'„x = 0; for these values
of X, . x, and 8, the energy F(8) vanishes.

Figure 1 is a (X, x) phase diagram of the system
described by II. The critical lines are indicated.
Regions I and II are disordered and ordered pha-
ses, respectively.

The t-continuum Ising model corresponds to the
K axis. There is a transition point at K = —, separat-
ing a disordered phase (x& —,') from an ordered
phase (x& 2). The energy gap vanishes only at the
critical point ~ =-,'.

The XY model of Sec. I corresponds to the X

axis. The transition at A. =-,' is of a different na-
ture than the Ising transition in that it separates
a disordered phase (X& —,') from a phase with
critical order (A. & —,').

The qualitative distinction between these models
is the existence of a continuous symmetry in the
XF model, namely, rotation of all spins by any
angle a, that is not present if &WO. The origin
of the line of critical points along the X axis with
~ ~ —,

' is the restoration of this symmetry as ~- 0.

This symmetry under a group of continuous
transformations is the distinctive feature of the
XY model. It is present in both the t-continuum
XY Hamiltonian in Eq. (1.5) and the simplified
spin- —,

' model H~'"~ in Eq. (1.7). This accounts
for the similarity of the phase transitions in these
two models. ,

The model considered here is soluble in the
sense that the Hamiltonian can be diagonalized.
However, certain important quantities are not
easily comput;ed. In particular, the order param-
eter (v,(x)) cannot be computed because the opera-
tor v, (x) is a complicated nonlocal function of the
fermion operators b(8). It would be interesting to
study. this model interms of the original spin vari-
ables v, (x) using approximate methods that have
been applied previously to similar t-continuum
models, for example, strong-coupling expansions"
or renormalization-group techniques. '4 The aim
would be to reproduce the known critical lines in
Fig. 1.
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