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Topological excitations and Monte Carlo simulation of Abelian gauge theory
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We study the phase structure of lattice electrodynamics in three and four dimensions using Monte Carlo
simulation, with special emphasis on the topological excitations of the theory. We formulate an operational definition

of a monopole and measure the density of monopoles as a function of coupling constant. In three dimensions and
for strong coupling in four dimensions monopoles screen external magnetic fields, Below a critical coupling in four
dimensions the external field penetrates into the bulk of the medium; this long-range correlation essentially shows
that the lattice theory in weak coupling is characterized by a massless photon.

I. INTRODUCTION

Lattice gauge theories provide an attractive way
of studying the strong-coupling behavior of gauge
theories. ' Even the simplest such theory, where
the internal symmetry group is U(1), is of theo-
retical interest. In three dimensions this theory
shows confinement for all values of the coupling.
This behavior can be understood as the result of
topological excitations in the theory. " In four di-
mensions the theory must have two phases. ' The
high-temperature phase, common to all lattice
gauge theories, is a confining phase. The low-
temperature phase provides the continuum limit of
the theory. If the continuum limit is to be free
electrodynamics, then the low-temperature phase
must be somewhat special; it must contain a mass-
less photon.

The recent work of Creutz, Jacobs, and Hebbi'
and of other authors' has shown that Monte Carlo
simulation is a valuable tool for investigating gauge
theories. In tPis paper we describe a Monte Carlo
study of Abelian lattice gauge theory from the point
of view of the topological excitations.

In three dimensions the topological excitations
are pointlike magnetic monopoles. Using an oper-
ational definition of a magnetic monopole, we find
that our Monte Carlo simulations do contain mono-
poles. We then impose boundary conditions corre-
sponding to immersing the system in an external
magnetic field and find that the monopoles move in
such a way as to screen the field. All this is ex-
actly as expected; the strong-coupling phase is like
a magnetic superconductor where electric flux is
confined to flux tubes, and magnetic fields are
screened.

In four dimensions the topological excitations are
strings of monopole current. It is thought that the

phase transition in the four-dimensional theory
arises from the unbinding of closed loops of mono-
pole string. ' We find that when an external mag-
netic field is applied to a four-dimensional system
there is a,dramatic change in its behavior at 1/e'
=P= 0.99-1.00. For smaller P the field is
shielded, while for larger P a finite field penetrates
the bulk of the material. Thus, by observing a
long-range field, we obtain a direct verification of
the transition to a Coulomb phase.

Most of our calculations have used the Wilson
form of the action. In this form the partition func-
tion is

Z~~ =
Jl [dO„(r)] exp p g cos6„„(r), (1.1)

&eP ~&

where 8„is the angular variable associated with the
link ate in the p, direction and

6~(r) =6„(r)+O,(r+ P) 6„(r+-9) O„(r)-
is the sum of the four angles around the unit plaq. -
uette. In this form the theory has a phase transi-
tion at P= 0.99. We have also carried out some
simulations using the Villain form of the partition
function,

Z vg~, = dO exp -p O~„x' —2+77
r, p&P n=-~

(1 2)

We find that this action yields the same qualitative
behavior as the Wilson action [Etl. (1.1)], but the
transition point is at P, = 0.62.

The internal symmetry grouj under which 8
transforms is chosen to be Z(N) with N large—
50-200, typically. Z(N) theories for ¹

6 are
known to have three phases —a low-P electrically
confining phase, a medium-P phase which is pre-
sumed to be Coulombic; and a very-. large-P phase
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which is magnetically confining. " The high-P
critical point is known to be proportional to N2 so
that for the large N's studied here it occurs at p
much too high to be seen. So the Z(N) theories are
equivalent to U(1) for all practical purposes, and
we shall often refer to them as such.

Our interest in Z(N) rather than U(1) symmetry
is purely technical. The time required for per-
forming computations is considerably shortened,
allowing us to study larger systems than would
otherwise be possible. With this preparation we
turn to the actual computations.

In Sec. II we briefly discuss Monte Carlo simula-
tion of U(l) gauge theory. In Sec. III we describe
how to find topological excitations in Monte Carlo
data, and Sec. IV is an analysis of the behavior of
these systems in external magnetic fields. Our
conclusions are summarized in Sec. V. Some
technical details of our Monte Carlo methods and
a review of some simple theoretical ideas about
monopoles are relegated to the appendices.

II. MONTE CARLO SIMULATION

' =exp(S, —S,).
2

(2.1)

Monte Carlo simulations typically generate new

configurations from old configurations by changing
one variable at a time according to an algorithm
designed to reproduce the configuration weighting
(2.1) after many cycles. This process is repeated
for every variable in the system. (Application of
the algorithm to every variable in the system will
be called "a pass through the system. ") We use
the standard Metropolis method for generating con-
figurations. ' After a sufficient number of passes
for the system to each equilibrium (i.e., to become
essentially independent of the starting configura-
tion) expectation values of physical quantities may
be measured by averaging their values over many
successive configurations. Because configurations
on successive passes are highly correlated, . it is
convenient to make several passes through the sys-
tern between measurements. Further comments on
our Monte Carlo program will be deferred until
Appendix A.

Perhaps the most fundamental quantity that can
be measured is the average energy (action). This
quantity was extensively studied in the original

The aim of Monte Carlo simulation is to generate
a sequence of configurations for the system in such
a way that the probability of producing a given con-
figuration is given by Boltzmann weighting. That
is, if two configurations have actions S, and S„ the
ratio of the probabilities of finding the configura-
tions should be

W(C)=(Tr Q lf,). (2 2)

Expectation values of small Wilson loops can easily
be evaluated in a Monte Carlo simulation. We ex-
pect that in a confining phase large Wilson loops.
will be proportional to exp(-area), while in a
phase with free charge large loops behave as
exp(-perimeter). The expectation values of small
loops in four dimensions are graphed in Fig. 2.
For small P, these small loops show an area-law
behavior. However, for p & 1 the behavior is un-
clear. Our data for loops up to 3x 3 for p & 1 do not
fit well to any simple form. We expect small loops
to show large corrections to the asymptotic form
in a phase with massless particles. ' Clearly, we
want better indicators of the nature of the phases
than small Wilson loops. To find such indicators
we turn to a study of the topological excitations of
the theory, monopoles in three dimensions, and
monopole strings in four dimensions.
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FIG. 1. %ternal energy (E) vs IV, the pass number,
for a 6" Z(100) system at p= 0.99, very close to the

critical temperature.

work of Creutz, Jacobs, and Rebbi. ' In three di-
mensions the energy is an entirely smooth function
of the inverse temperature P, consistent with a
one-phase structure. In four dimensions the energy
shows pronounced hysteresis for p near 1, as ex-
pected if there is a phase transition there. One can
test whether the putative phase transition is first
order or continuous by beginning with a completely
random or completely ordered initial configuration,
presumably typical of the large- and small-P
phases, and watching the energy as a function of
the number of passes through the lattice. As shown
in Fig. 1 and in the results of Creutz et al. , ' the in-
ternal energy in the two cases converges to a com-
mon value, indicating that the phase transition is
continuous.

The standard probe of the physics of a lattice
gauge theory is the Wilson loop,
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derstood in terms of these monopoles. We begin
with the simplest question: Are there monopoles in
three dimensions?

We search for monopoles by using Gauss's law.
By measuring the total magnetic Qux emanating
from a closed surface in the lattice we can deter-
mine whether or not the surface encloses a mono-
pole. For small angles 0, the Qux is defined by

ds B= g dsc» , (V,O-, —V,O,)=g e~, (3.1)
surface

0'
0.5 0.7 0.9 1.3 1.5

FIG. 2. Wilson loops of size L xL in Z(100) on a 5
lattice, for I =1,2, 3. The smooth lines are direct
extrapolations of a perimeter law from one L to L+1;
the broken lines are extrapolations of an area law.
Closed symbols represent data taken in runs where
P decreased; open symbols show data taken in runs
where P increased, for P near P„where hysteresis
is seen.

III. MONOPOLES IN LATTICE THEORIES

It is well known that confinement in three-dimen-
sional Abelian gauge theories can be understood in
terms of magnetic monopoles. This is true both in
lattice gauge theory with a compact gauge group'
and in a continuum theory where the U(l) symmetry
results from the breaking of a compact group via
the Higgs mechanism. ' This mechanism may be
analogous to the effects of instantons or merons in
four-dimensional non-Abelian theories. " The ana-
lysis of three-dimensional lattice theory by Banks,
Myerson, and Kogut, ' which follows the analysis of
the two-dimensional XY model by Jose, Kadanoff,
Kirkpatrick, and Nelson, "proceeds by performing
a series of transformations on the partition func-
tion for the Villain form of the theory which explic-
itly decompose the functional integral into Gaussian
integrals and an integral over a monopole field.
This monopole field is defined in the boxes (three-
cubes) of the theory where it takes integer values,
and interacts with itself via the lattice Coulomb
potential. Confinement is then understood in terms
of the disordering of the theory by free pseudopar-
ticles. In four dimensions the topological excita-
tions are strings (world lines) of monopole cur-
rent. Consideration of entropy and energy suggests
that the phase transition at large coupling can be
understood as the unbinding of loops of monopole
current to form a condensate.

%'e are naturally led to ask whether monopoles
are present in Monte Carlo simulations and wheth-
er the observed behavior of the theory can be un-

(3.2)

Vpf puXevX
inside surface

(3 3)

= 2g E ~xVptlvx.
boxes

(3 4)

Equation (3.3) is the lattice equivalent of M(x)
= V ~ B and (3.4) says that the monopole number in
a volume is given by the net number of Dirac
strings entering the volume. It should be clear
that adding multiples of 2m to any of the link vari-
ables in a configuration can move the Dirac strings
around but cannot change the net number entering
a volume, and that the monopole number in any
volume is the algebraic sum of the monopole num-
bers of its subvolumes. Therefore, to count the
monopoles in our system we examine cubes of unit
volume. Examples taken directly from computer
data of a monopole configuration and a monopole-
antimonopole pair are shown in Fig. 3. By looking
at successive Monte Carlo configurations, one can
observe the movement of monopoles and the crea-
tion and annihilation of monopole-antimonopole
pairs.

Because monopoles are collective excitations of
many link variables, they move slowly in Monte

where e~ is the oriented plaquette angle, a gauge-
invariant quantity. Clearly, if we used exactly this
definition, we would find a net flux of zero for any
closed surface since each link would be included
twice, once with each sign. However, our defin-
ition of flux should be periodic in the e~. In partic-
ular, if the plaquette angle is 2m, the plaquette
carries zero energy. Such a configuration
should be regarded as a Dirac string passing
through the plaquette. Our algorithm for eval-
uating the flux is as follows. We assume that
the plaquette angle 0„,consists of two pieces:
physical fluctuations which lie in the range -m to m,

and Dirac strings which carry 2m units of flux. De-
fining 0~=8~ —2mn„„, where n~ is the number of
strings through the plaquette, we measure the
monopole number M inside a surface:
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FIG. 3. A monopole (a) and a monopole-antimonopole
pair (b) in Z(50). Arrows label the flux out of each face.
The strings, carrying + 50 units of flux, flow through
the left-hand faces.

FIG. 4. Monopole density in three dimensions. The
solid circles are the total density of monopoles, while
the open circles are the density of "isolated" monopoles,
for which no adjacent box contains an antimonopole.

Carlo simulations. To change the monopole num-
ber inside a surface, or to move the monopole
around, at least one plaquette must pass through
its maximum energy.

The definition of monopoles used here is similar
to a definition of vortices in the XF model used in
Monte Carlo calculations by Chester and Tobo-
chnik. ~ It should be emphasized that our de-
composition of a particular configuration into mon-
opoles and fluctuations is not exactly the same as
Banks, Myerson, and Kogut's decomposition of the
functional integral into integrations over Gaussian
variables and monopole variables. It is only at
very large P (low temperature), where monopoles
are heavy and Gaussian fluctuations really are
small, that the two decompositions should coin-
cide. Among other differences, the monopole field
defined by Banks, Myerson, and Kogut can take on
all integral values, while the monopole number
used here is kinematically limited to be no larger
than taro in a unit cube.

The simplest measurement we can make is the
density of monopoles. The average density of mon-
opoles or antimonopoles p = 2((N„+) + (N„))/V as--
a function of P is displayed in Fig. 4. It is seen to
be a smoothly falling function of P. For the range
of P in which Monte Carlo calculations are practic-
al, most of the monopoles and antimonopoles are in
pairs, with a monopole and antimonopole in adjac-
ent boxes. Figure 4 also shows the density of
"isolated" monopoles —those for which none of the
neighboring cubes contains an antimonopole. It can

be seen that as P increases, the density of close
pairs falls off more rapidly than the density of iso-
lated monopoles. Both the density of pairs and the
density of isolated monopoles appear to be falling
off exponentially with slopes in reasonable agree-
ment with theoretical estimates using the Villain
form or the dilute-gas approximation (DGA). These
estimates are discussed in Appendices 8 and C.
Finally we remark that for p & l, nearly all our
monopoles haveM =+1. At lower p, occasional M
=+2 monopoles are seen. Simple arguments sug-
gest p„,= p„,', so it is not surprising that double
monopoles are scarce objects.

The pointlike typological excitations in three di-
mensions become one-dimensional objects in four
dimensions. These objects are the world lines of
three-dimensional monopoles, or continuous
strings of monopole current. The presence of a
monopole current in a given direction at any point
in space may be found by the same method used in
three dimensions, simply measuring the flux (or
counting Dirac strings) flowing through a three-
dimensional surface oriented normally to the cur-
rent. That is, we measure

2~M„(s) = ~ „„.gV„e.s(~)

as a test for a monopole current at x. Conserva-
tion of topological charge demands that B„M„(x)= 0,
so monopole strings form continuous loops. The
study of monopole strings is somewhat more com-
plicated than the study of monopoles. %e have not
found it profitable to measure the average peri-
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IV. MONOPOLES AND EXTERNAL FIELDS

Although entertaining, the mere counting of mon-
opoles does not elucidate their role in determining
the properties of the theory. The presence of free
monopoles is expected to cause confinement. " A
medium containing free monopoles can be thought
of as a magnetic superconductor, where magnetic
fields are shielded and electric fields are confined
to flux tubes.

The quantity of interest is the polarizability of
the monopole gas"

8
Xif= BB BB

' 7

f
(4 I)

I
f

$

p 0 (Ij

g

I
'

I
'

I

meter of a string; rather, we have opted to mea-
sure the total perimeter of all the strings in a
system. We plot this quantity as a function of P in
Fig. 5. At low P, p„ is large and slowly varying.
Near P„p„falls dramatically. For large P, p„
falls exponentially and more steeply than in three

-m28dimensions. The Villain model predicts p, - e '
which is not inconsistent with our data. This curve
encourages us to believe that monopole strings are
involved in the phase transition.

which is proportional to

y= -g( 'M(0)M(r)) . (4.2)

eR = (I+X)eo. (4.3)

In principle, the susceptibility could be evaluated
in Monte Carlo simulation by directly measuring
(r'M(0)M(x)). However, this quantity involves near
cancellations between monopole-monopole contri-
butions and monopole-antimonopole contributions.
As a result, it is difficult to evaluate accurately
and we experienced little success in our attempts
to do so.

A better way to proceed is to introduce an ex-
ternal magnetic field and study the response of the
monopoles to it by measuring the field deep inside
the system. The magnetic field inside the system
will be a sum of the external field and a field gen-
erated by the monopoles in terms of a permeability
p, where p-=1+X, H,„„~=pH. „,~. For parallel-
plate geometry we measure the magnetic flux 4
through planes perpendicular to the external field.
Then H is proportional to C and a susceptibility
may be measured directly:

@' externalX=
4 g term

If the susceptibility is infinite, magnetic fields
are shielded. This is what we expect in three di-
mensions, where the monopoles are unbound for all
P. On the other hand, a. finite susceptibility cor-
responds to a renormalization of magnetic charge

as =g.&(I+X),

which corresponds to a renormalization of electric
charge

-2
jp

0.8 I.O l.2

FIG. 5. Expectation value of the monopole string den-
sity vs p in Z(100) for a 5 lattice. Open circles are
found by stepping down in p, closed. circles by stepping
up in P. At each point the first 50 passes are discarded,
then 40 measurements, each separated by five passes,
are carried out.

We begin by considering three dimensions. Con-
sider a finite cube of a lattice gauge theory, illus-
trated in Fig. 6, and fix all the plaquette angles on
the xy faces to some small value. This amounts to
introducing a uniformly distributed magnetic Qux
through the face. We then put in periodic boundary
conditions on the other faces of the cube. How-
ever, unless the flux is a multiple of 2m, we must
introduce a twist in the boundary conditions. ""
That is, when leaving the top (xg) boundary of the
cube and reentering the bottom, we add some
amount to the links in the x direction. Clearly, the
sum of the twist angles on the boundary of a face
must equal the magnetic flux through the face mod-
ulo 2m. In essence, by fixing the flux at the bound-
ary we have put our medium in a magnetic capaci-
tor. We can now use the Monte Carlo algorithm on
this system and measure the location of the mono-
poles. Equivalently, we may measure the total
flux (as defined in Sec. III) through each xy plane.
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FIG. 6. A finite three-dimensional system. An evenly
distributed magnetic flux in the Z direction is imposed
by fixing all the plaquette angles on the front face to
some value. A "twist" in the boundary conditions in-
volves setting link A' equal to link A plus some incre-
ment. Periodic boundary conditions are used in the
other two directions.

Some of the results of this three-dimensional ex-
periment are shown in Fig. 7. We see that for P of
order 1 the magnetic field is screened over a range
of one or two lattice spacings. Thus we can actual-
ly observe the screening of magnetic charge by the
free monopoles in the medium.

In four dimensions the experiment is more inter-
esting. It is easiest to imagine the experimental
situation by thinking of three dimensions plus time.
For each value of time, we fix plaquettes exactly
as in three dimensions. This amounts to embed-
ding the system in an external field oriented in the
z direction which is time independent and constant
inx and y. We measure the time-averaged flux
through planes of constant s. The quantity 4(z)/
C (z = 0) is plotted for two values of P in Fig. 8, us-
ing data taken on a 5x 5x Qx 5 system. At small P
the external field is again shielded after a small
penetration. However, for P & 1 the situation is
completely different. The field in the center of the
system is a constant fraction of its value at the
edge. Thus the susceptibility is f inite, and mag-
netic charge is renormalized by the monopole
strings.

By testing the ability of the medium to support a
long-range magnetic field, we are essentially test-
ing for a massless photon. Thus our measurements
give a direct verification of the Coulomb phase of
U(1) lattice theory.

We have also measured the expectation value of
sine~ in planes perpendicular to the flux. This is
another possible definition of the physical flux and

FIG. 7. Screening of a magnetic field in three dimen-
sions in a 10 system. The plaquettes in one plane (at
the left) are fixed to 8(), and we plot the expectation
value of the reduced angle F as a function of distance
from the fixed plane.
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FIG. 8. Screening or penetration of a magnetic field
in four dimensions, for two values of p near. the phase
transition.

behaves qualitatively like our usual definition.
Clearly the quantity in which we are most inter-

ested is the expectation value of the flux at an in-
finite distance from the plane of fixed plaquettes.
Imagine extending our system a long way in the z
direction and chopping a segment out of the middle.
Information about the bare flux through the sys-
tem is carried by the twist in the boundary condi-
tions, so we may still carry out the experiment.
However, the twist only defines the flux modulo 2m,

so we are restricted to fluxes between -m and m.

We have now arrived at precisely the twisted
boundary conditions introduced by 't Hooft" and used
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exp[S(e~)] = g exp[-—,
' p(e —2mn)'] . (4.4)

This form of the action is of interest because it

in Monte Carlo simulation by Qroeneveld et gl."
The advantage of our experiment over that of Ref.
15 is that we are measuring quantities which are
linear in the bare flux, while the authors of Ref.
15 studied the energy, which varies quadratically
with the bare Qux. In Fig. 9 we plot the ratio of
renormalized flux to bare flux imposed by twisted
boundary conditions as a function of P. The change
in character at P= 1 is striking. We estimate from
this curve that the transition temperature P, lies
between 0.98 and 1.00. We also plot in Fig. 10 the
ratio of (sine„, ) to the bare angle sinO, = sin (flux/
N„N, ). Its behavior is qualitativelysimilarto that
of the flux ratio, again showing a long-range field
for p& l.

Theoretical arguments suggest that the phase
transition may occur when the renormalized coup-
ling reaches a universal critical value. " This
would mean that as P is lowered toward P, the sus-
ceptibility increases to a finite value and then sud-
denly becomes infinite; In this case we would ex-
pect the "renormalized field" that we are measur-
ing to have a discontinuity at p, . Our data are in-
sufficient to decide whether the flux measured here
has such a discontinuity. We repeat that the opera-
tional definitions of renormalized flux used here
are not quantitatively the same as the definition
used in the theoretical arguments, but we can ex-
pect them to have qualitatively similar behavior.

We have also carried out some experiments on
the Villain form of the theory, where the expon-
ential of the plaquette action is given by
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FIG. 10. The expectation value of sin8 for the same
sample. This is another possible definition of the mag-
netic field.

V. CONCLUSION

In this study of lattice U(1) gauge theory we have
demonstrated that it is possible to formulate a de-
scription of a monopole which is accessible to
measurement in Monte Carlo simulation. We have

lends itself to theoretical analysis. It is in this
form of the theory that the partition function can be
explicitly decomposed into Gaussian fluctuations
and monopole excitations, ' and it is the Villain
form of the action that provides a strikingly good
approximation to a. fixed line under the Migdal ap-
proximate renormalization-group transforma-
tion. "'" In Fig. 11 we plot It '=C:„„, ~~jC „,for
this theory, showing a phase transition at p, - 0.62
or 0.63 and the same sharp behavior of p as we
saw before.
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FIG. 9. Expectation value of the reduced plaquette
angle 8~ in four dimensions with twisted boundary con-
ditions (solid circles). 80 is the angle that the plaquettes
would have if the twist angle were evenly distributed over
all the plaquettes. The open circles are (8) in the four
central planes. of 5x 5x 9x 5 system with fixed plaquettes
on the xy planes of the boundary.
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FIG. Ii. (II ) in the Villein form of the theory with
twisted boundary conditions.
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shown that these monopoles screen external mag-
netic fields when the theory is in an electrically
confining phase. The iong-distance penetration of
the external field in the high-temperature phase of

the four-dimensional theory is evidence that this
phase possesses a massless photon. In addition,

we are able to measure the renormalization of the

external Geld in the Coulomb phase due to the mon-

opole currents.
Although we have studied systems of only modest

size, the nature of the effects we have measured
are such that they should be equally valid in sys-
tems of infinite extent. In that respect, monopoles
and external fields are much better signals for the

nature of the phases of a system than are measure-
ments of small Wilson loops whose area and peri-
meter are of comparable magnitude.

Two extensions of our work suggest themselves.
It should be a simple matter to study the Abelian

Higgs model in an external field and map the phase
boundary between the Higgs/confinement sector and

the massless photon sector. It may also be possi-
ble to extend the techniques of this paper to studies
of topological excitations in non-Abelian gauge or
spin theories, monopoles, or instantons. Work on

these problems is in progress.
We believe that the results of our studies provide

an extremely physical picture of the interplay of
topological excitations and critical behavior in lat-
tice photondynamics. Our results also indicate the

profitability of using Monte Carlo techniques to
study collective excitations of the degrees of free-
dom of gauge and spin systems.
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the inner loops of the program. We used values of

N ranging from 50 to 200 and found no detectable
dependence on ¹

We used boundary conditions which differ slightly
from the usual periodic boundary conditions. Fig-
ure 12 iQustrates our "skewed" boundary conditions
in two dimensions. The blocks represent a finite
two-dimensional system replicated an infinite num-

ber of times. Ordinary periodic boundary condi-
tions amount to connecting the blocks (really all the

same block) as illustrated in Fig. 12(a), while

skewed boundary conditions involve connecting the
blocks as in Fig. 12(b). Operationally the skewed
bouridary conditions require that every time one

passes out of the right-hand side of the lattice, he

reenters the lattice from the left-hand side, but

one rom higher. In general, when we leave our fin-
ite system in the direction of the ith coordinate, we

imagine reentering the system with the ith coordin-
ate reset to zero, but the (i+ 1)th coordinate in-
creased by one. The advantage of this method is
that all the variables may be arranged in a one-
dimensional array x(j). The structure of a d-di-
mensional lattice is then described by d numbers

J(i), i= 1 to d, which tell how to move one lattice
spacing in any direction. The variable which is one
unit away from a given variable x(k, ) in the ith di-
rection zs simply x(A, +J(i)). The only remaining
problem is that this rule may sometimes lead to an

index slightly outside the array. This is easily
handled by appendirig a "virtual" copy of the first
part of the array onto the end of the array, and

appending a copy of the end of the array to the be-
ginning of the array (see Fig. 13). If the action is

{03
I

APPENDIX A

This appendix contains some technical comments

on our Monte Garlo procedure and on our error
estimation procedure. The basic principles of

Monte Carlo simulation have been much discussed
in the recent literature, ""so we concentrate
here on some points special to our approach. As

noted in the ,
'Introduction, we approximated U(1) by

Z(N) for N reasonably large. This allowed us to

use integer arithmetic in evaluating the plaquette

angles. Also, because in Z(N) a plac[uette angle

has roughly 4N possible values, one can simply
tabulate all the possible Boltzmann weights at the

beginning of the program. Hence no trigonometric
functions or exponentials need to be evaluated in

I

(b3

I

I
I

FIG. 12. Periodic boundary conditions. Each square

represents a copy of a finite system. (a) Ordinary

periodic boundary conditions; (b) skewed boundary con-

ditions.
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COPY

COPY

FIG. 13. The virtual lattice. The heavy line indicates
the real lattice, stored as a one-dimensional array. The
dashed lines indicate the virtual lattice, which is a copy
of. part of the real lattice.

defined on an elementary plaquette, the fraction of
the array that must be duplicated is 1/N, where N
is the size in the most slowly varying direction.
Of course, we do not apply the Monte Carlo algo-
rithm to the spins in the virtual array, but simply
update them to duplicate the "real" array as neces-
sary.

The advantage of these boundary conditions is
that to find a link one site away in the zth direction
from the current link we simply add an offset to
the index. In contrast, in the most naive imple-
mentation of periodic boundary conditions it is
necessary to increment one coordinate, reduce it
to the correct range (e.g. , by the modulo function),
and then evaluate a (d - 1)-order polynomial to lo-
cate it anyway, since computer memory is a one-
dimensional array. Clearly, the speed advantages
of skewed boundary conditions increase rapidly as
the number of dimensions increases.

An analogy may help the reader who is confused.
Imagine a 10X 10~ 10 spin system where a site is
labeled by three integer coordinates between 0 and
9. Placing the digits which label the site side by
side (that is, evaluating a polynomial), we find each
site labeled by a number between 000 and 999. To
translate by n, units in the y direction, we simply
add (bc,0 to the number. (Ordinary periodic bound-

ary conditions amount to adding On„0 with the prov-
viso that all carries are discarded. ) In the actual
computation, one never needs the three coordin-
ates of a point; everything can be done using the
one (three digit) number.

Even in the case of spin systems, skewed bound-

ary conditions are an equally acceptable approxi-
mation to an infinite system as standard periodic
boundary conditions. For an Abelian gauge theory
these two boundary conditions are gauge equiva-
lent. The reason for this is that any configuration
that is skewed periodic can be gauge transformed
into a configuration which is periodic in the ordin-
ary sense. " The only gauge-invariant quantity
which can characterize boundary conditions is the

Wilson loop going around the entire system. "
Clearly, for skewed periodic or ordinary peri-

odic boundary conditions, this Wilson loop is equal
to the identity element. However, this loop may be
given a nontrivial value by introducing a "twist" in
the boundary conditions. "'" This can be accom-
plished, for example, by setting the links along the
top edge of the square in Fig. 12 equal to the links
on the bottom edge plus some increment. The sum
of all these increments, the twist, is gauge invari-
ant and is equal modulo 2m' to our usual definition
of the magnetic flux through the loop in any partic-
ular configuration. With our representation of the
lattice, such a twist is easily imposed by adding
the increments to the appropriate elements on the
virtual lattice illustrated in Fig. 13.

The alert reader may have noted that with
skewed boundary conditions a plane that naively
divides the lattice —e.g., the plane enclosed by the
Wilson loop made up of N steps in the x direction,
N s-teps in the y direction, N steps in the -x di-
rection, and N steps in the -y direction —may not
be quite closed. We avoid this problem by choosing
the plane defined by the two most slowly varying
coordina, tes when imposing nonzero twists or mea-
suring fluxes. In that plane these annoyances do
not occur.

We use the standard Metropolis method for gen-
erating configurations. '" When examining a par-
ticular variable, we choose a trial value for that
variable which lies within a fixed range of the old
value. The size of this range is adjusted to provide
the desired acceptance ratio (fraction of variables
changed in one pass). We used acceptance ratios
of 0.4 or 0.5 for most of our work. The efficiency
of the simulation appeared largely insensitive to
the exact value of the acceptance ratio.

Our programs were written in FORTRAN and run
on a VAX 11-780 computer. Gn this machine one
pass through a 5' lattice (2500 variables) required
1.5 sec.

Because lattice configurations separated by one
Monte Carlo pass are highly correlated, it is ad-
vantageous to make several passes between mea-
surements of the quantiti. es to be evaluated. We

typically made three to five passes between mea-
surements. Even so, very close to P, in four di-
mensions we sometimes observed correlation coef-
ficients of successive measurements as high as
0.8. A typical run used 100 to 200 passes to ther-
malize the lattice, followed by 200 to 500 passes
during which measurements were made.

The statistical uncertainty of a Monte Carlo mea-
surement may be estimated. in several ways. The
simplest method, valid when correlations are
small, is to take the standard deviation of the mean
corrected for correlations
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x '-X' (I+2c + ~ ~ ) (A1)
N —1 N

Z(J'}= ll [de„(r)] exp p g cose»(r)

where the x, are the individual measurements and

e, is the correlation coefficient of successive mea-
surements

(81)+;ge„(r)J„(r),
,

t'2P

where e&(r) is the angle on the i) -directed link at
x and—3(x,x„-x

( 2) 2 (A2) e'& =e„o„(r)-a„e„(r) (82)

The error bars in Fig. 5 were computed in this
way. A method which avoids the effect of short-
time correlations is to group the sequence of mea-
surements into subsequences, average the subse-
quences, and compute the standard deviation of the
partial averages. When the correlation between
successive measurements was small, the two
formulas agreed well.

For P very close to P, in the four-dimensional
theory, equilibration takes a very long time. This
is especially true for quantities involving collective
excitations. Therefore, for the measurements of
flux in Figs. V-ll, we made a number of runs (typ-
ically 4 to 12) from different starting configura-
tions. The error bars on these figures are ob-
tained from the standard deviations of the averages
of the separate runs.

APPENDIX B: MONOPOLES IN THE VILLAIN
APPROXIMATION

This appendix recapitulates the transformation of

U(1) lattice theory in Villain approximation. It
contains no new physics but does serve as a repos-
itory for various Villain formulas. The formulas

are taken from Banks, Meyerson, and Kogut. '
Let us compute the partition function Z(J) in the

presence of an external current loop J„(r) for a
three-dimensional U(1) theory:

(all derivatives being finite-difference operators).
The Villain approximation consists of making a
character expansion on the action

ggco8egp(y )— e pp pp I1'
pv

combined with the large-P expansion of the modif-
ied Bessel function

1, (v) - e-' '"/(»e)". (84)

Inserting (83) and (84) into (81), we evaluate all
the 6„ integrals and obtain

1
z(J) = g &2 &„,~„&„~,, exp — — I„„'(r)

2', )2 ~ VI ))(V ( 0 2, )2(V

(85)

E V(() Ir J N'V((t)r (87)

perform the Gaussian integration over (t), and find

z(J) =z „.„z ~ „,z,„, ,

where

(88)

The constraint equation is solved by taking

I»(r) =n"(n s) 'J"-n"(n s) 'J"+~»),s),I(r),
(86)

where n is a unit vector Equa. tion (85) is poorly
convergent so we perform a Poisson resummation

gy~~ye 8 exp

erp 2r))Z m(r))i(r —r')l(r')r2rig 2„V"(r)V(r r')m(r')), -
(.) =- ~ ar' jf

J&r V x-y' J1

v, rr, 2
P )

(89a)

(89b)

(89c)

and V'V(r -r') = 5„„.; i.e., V is the lattice (.'ou-
lomb Green s function. B„(r) is the magnetic field
generated by J&,

B„(r)=e„&qn&(n ~ 8) 'J), (r) or e~s S2B&(r)=J (r) .
(810),

A Villain monopole is an integer-valued scalar
field whose values range from ~ to ~ and whose
self-interactions and interactions with the external
magnetic field are Coulombic.

At large P the density of monopoles is low: Mon-

opoles are widely separated and the density of
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p„- exp[-2v'PV(0)P] (B11)

monopoles depends in lowest approximation only on
their self-interactions. Then the density of iso-
lated monopoles is

p„—„-exp(-6. 58(8), using V(0)-0.253 and V(0) —V(1)
6 ~

The derivation of a monopole partition function
for the four-dimensional theory is essentially
identical. Equation (B8) is recovered, with

(B12)

These densities are numerically P„ex-p(-5p) and

I

and the density of isolated monopole-antimonopole
pairs in adjacent lattice sites is

p„-„-exp(-2v'[2V(0) - 2V(1)] P] .
1

Z spin wave dA exp ——E~F

and

(B13)

&..m»=P Z 2a„„tm,e»P(-2»'() g m(r) m(r')v(r r )+-2m''P (rm))'(r-r') r»m„m(» 22) 'J, (r'))
r, p m„(r) " " '

I p, r,r' p, r,r'

(B14}

describing the interaction of closed current loops
m& with each other and with external fields. At
large P the only energetically allowed topological
excitations are closed loops of length four. Then

Z (monopole)
Z (vacuum)

-X/2detM (mono) g(vac) -g(mono)

detM(vac)

p~- exp(-2v'P [4v(0) —4v(1)]),

but v(0) —v(1) = ~8 so p - exp(-v'P).

(B15) (c4)

The action S is proportional to P while the deter-
minants are independent of p. Therefore, at large
p the monopole density has the form

APPENDIX C: SIMPLE DILUTE-GAS .

APPROXIMATIONS
M(mono)p„=exp —mP --,' ln det
M vac (C5)

We can make some simple dilute-gas approxima-
tions for monopole densities in three dimensions
for P large. The partition function for a system of
N boxes

Z = d8„exp cos8~
phd

(cl)

is a function of about 2N link variables after gauge
fixing. It'may be (formally) integrated to give

1 2N

Z((8) = e'" e ~(detM) '~', (c2)

where -S~ is the exponent of Eq. (Cl) evaluated at
some minimum-action configuration and

9 8
M]g = — cosa' (C3)

p 8p= fnin

is the matrix of second derivatives evaluated at the
minimum. At large (8 an absolute minimum is just
all ()~ =0. We may, however, imagine (local} mini-
ma of the action which are topologically stable
monopole configurations. The density of monopoles
in the system will then just be given by the ratio of
partition functions evaluated about monopole and
vacuum configurations

where mP is a bare monopole mass and the deter-
minants provide the first quantum correction. The
determinants are independent of P because at large
P the monopole is essentially restricted to lie in the
center of a box—'i.e., the plaquette angles of the
box must all be nearly equal. Therefore, even the
putative translation modes become Gaussian.

This approximation to the monopole density be-
comes valid when the motion of a monopole from
one box to another requires tunneling through a .
high barrier. In this limit Monte Carlo calcula-
tions become impractical because the fluctuations
in the positions of monopoles from pass to pass be-
come tiny and the system thermalizes slowly.
Therefore, the dilute-gas approximation really be-
comes good only for larger (8 than used in our ex-
periments. Nevertheless, it is interesting to use
this approximation to make rough estimates for the
density of monopoles or monopole-antimonopole
pairs at large p.

First, let us imagine a system consisting of a,

single cube of unit size. After gauge fixing, it has
five independent link variables. The ground state
of the system is 8~ =0 for each of the six plaquet-
tes, while a one-monopole configuration can be
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M, &(monopole) =-', M&&(vacuum) (G6)

p„= v'32 e-". (c&)

One may perform similar analyses for larger
systems. For example, a monopole centered in a
3x3x3 cube has a mass mp [mp=S(vac)
-S(monopole)] = (3+0.96)p. In bigger systems one
rapidly builds up the usual Coulomb self-energy of

l

generated by placing 2v units of (outgoing) flux over
the six plaquettes, along with -2m units of Dirac
string in one face. The minimum-action configura-
tion is symmetric: each face carries v/3 units of
flux (plus a string somewhere). Since all cos8~ are
equal to —,',

an isolated charge. For comparison with our
Monte Carlo simulation, however, these calcula-
tions are probably unreliable: If the monopole
density is too dilute, monopoles move too slowly for
pl actlcal Monte Carlo calculation, and if the dens-
ity is higher, interactions become important at
long distance. A value m- 3 to 4 which takes into
account only the short-distance part of the mono-
pole field is probably a reasonable estimation for
a monopole density when that density is such that
monopole separation is typically only a few lattice
spacings.

The density of monopole-antimonopole pairs is
somewhat harder to estimate. In a universe of two
cubes we have

~&'

M -=S(vac) -S(pair) = g (1-cos8~ ) +g (1 cos-8~ ) —(1-cos8~„) p,
1 2 ~J

(Cs)

where p, , are plaquettes on the two cubes which
share plaquette Pya %lllle each cube separately
has a minimum configuration at 8& = v/3, the sys-
tem may lower M by increasing the flux through
the shared face until the pair decays. For exam-

I

I

pie, the symmetric combination (8~=v/3) has M
=+tt, but a configuration with 8~ = v, where all
other 8~=v/6, has M=3.91. This last figure rep-
resents a lower limit on the mass of an MM pair.
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