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%e describe a precise definition of the determinants that arise when fermions interact with a given gauge field, This

allows one to clarify the relation between zeros of determinants and eigenvalues of the corresponding Dirac
operators which has led to some controversy; sometimes this relation does not conform to naive expectations.

I. INTRODUCTION

In the study of the Euclidean version of gauge
theories coupled to fermions, one is naturally led
to consider determinants such as "det iP" or
"det (iP+m)" where iIl) is the covariant Dirac oper-
ator corresponding to some given gauge field. In
the past few years such determinants have been
discussed by many authors (see Refs. 1-3 and
references given there).

Here I want to make a few remarks of a math-
ematical nature concerning the definition and the
properties of these determinants; these things do
not seem to be generally known but are of some
relevance in the applications. The main point is
that many people have been too cavalier in assum-
ing that the simple relation between determinants
and eigenvalues known from finite-dimensional
linear algebra carries over to the infinite-dimen-
sional problems considered.

This point is best illustrated by the explicitly
known determinant of massless two-dimensional
QED (QED, ) (Sec. III). Recently Patrascioiu' no-
ticed a discrepancy between the definition based
on perturbation theory and a definition using the
eigenvalues; Rothe and Schroer" ' blamed this on
his use of the "wrong" boundary conditions. Here
I want to show that such a discrepancy is to be
expected and is in a sense unavoidable; I use an
approach that is, I think, very natural and does
not depend on any boundary conditions.

This approach is also suitable for two-dimen-
sional quantum chromodynamics (QCD, ), QED~,
and in particular QCDe where the situation is qual-
itatively similar to QED, .

H. GENERAL REMARKS ON RENORMALIZED
DETERMINANTS

The use of renormalized determinants in physics
goes back at least to Schwinger's classic papers4
on QED4; in mathematics it is even older and can
be traced back to Hilbert. ' In constructive quan-

turn field theory they proved especially useful
since they allow one to construct the two-dimen-
sional Yukawa model and verify Wightman's ax-
ioms for it."

The idea is the following: First we transform
our problem by formal manipulations in such a way
that we have to compute det(1 —XK) where K is a
compact operator. It often happens that TrK" ex-
ists for n ~ no but diverges for n& no, so as a first
step we discard the divergent terms in the "loop
expansion" for ln det(1 —XK) =tr ln(1 —AK), defin-
ing

lndet„(1 —XK) =—Tr ln(l —&K)+P —(AK)~ ~.ffo

The terms that were thrown out are then rein-
serted after carefully renormalizing them indi-
vidually (in applications they usually correspond
to one-loop Feynman graphs); in this way a re-
normalized determinant det„,(1 —&K) is defined.

The mathematics of det„ is well understood (see
Befs. 8, 9, or 10 for a very clear recent exposi-
tion); det„(1 —XK) is usually defined for operators
K with [tK([„=-[Tr(K*K)"']""(~(this space of op-
erators is denoted tt„). One crucial property is the
following: det„(1 —VC) is an entire function of h of
order at most n; it has its zeros exactly at the
inverse eigenvalues 1/&,. of K and

det„(1 —XK) = (1 —hh. , )exp~ P—(Xh.,)'
i=1

det„„has the same zeros as det„; this fact and
the close relation to renormalization theory are
main advantages of its definition. Both properties
are much less obvious (and sometimes false, as
shown in this note) for the currently popular r
function definition of determinants" '2; this defini-
tion has of course other virtues that make it in-
teresting in pure mathematics.

It should be stressed that for our definition of
det„, K does not have to be self-adjoint —in fact
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in applications it almost never is —in contrast to
the situation for the f-function definition.

HI. QED2

Here the goal is to define 6—=detg/det) where
P=P —i' and for definiteness we may use the
y matrices

(0 i) (0 Il
i 03 ~1 Oj (0 -lf

It might seem natural to try to interpret 6 as
det[l —(e/p)A'] (with p =i)); in fact a Hilbert space
on which (1/P)A' is a compact operator can be
found. It is easier (and equivalent), however, to
make a formal similarity transformation and in-
terpret a as det„,(1 —eK) with K(A) =-(p/Ip I"')
xg(l/IpI'~') considered as an operator on two-
component square-integrable functions on R2 [i.e.,
La(R') e I:(R')].

We first consider the "nonwinding" case; for
simplicity we assume j IA„Ia(Px& ~ for all q& «

(i.e. , I A„ I"' (,~„L') Then t.he following facts
are true:

(1) K(= s, for all q&2.
(2) The spectrum of K consists only of the origin

(i.e., K is quasinilpotent).
(1) follows from a theorem proved for instance

in Ref. 12 which asserts that an operator of the
form f(x)g(p}, i.e., multiplication by g in p space
followed by multiplication by f in x space is in

0, (2 &q &~) provided f and g are in L'. To apply
this here one has to write K as a product of two
factors of the form f(x)g(p) and g(pg(x), respec-
tively:

«=I„s, ,s, u. I"I'"a')
l,l"I'",s, ,I.

&1

and then split 1/ p I"' into 1/(1+ Ip I

)"' and

1/ Ip I'~' —1/(1+ p )'~', K(= 8, (q & 2) follows then
from some elementary properties of 8, spaces.

(2) expresses the triviality of the Schwinger mod-
el. To prove it one only has to prove det, (l —eK)
=1 according to the remark made in Sec. II. This
follows from the following facts:

(a) det, (1 —eK) is gauge invariant,
(b) det, (1 —eK) is even in e,
(c) deta(1 —eK) = deta(1 —ed+).

(a) should be clear; (b) follows from charge-con-
jugation invariance (Furry's theorem); (c) follows
from (b) by noting det, (l —eK) =det, (l —e'K ) and
K' = (y, K)'.

Now by (a) we may assume 8„A„=0; by (c) and
tbe fact that y, g=-i(( with „B=ie„, „Awseee that

deta[1 —eK(A)] =det, [1—eK(B)]. But B„ is a Pure
gauge and so deta[1 —eK(B)]= det, [1 —sK(0)] =deta(1)

=1
To define det„„(1—eK) we only have to interpret

the graph (Fig. 1) corresponding formally to TrZ'
in the standard gauge-invariant way (tbe most con-
vincing way to achieve this might be to start with
tbe lattice approximation, cf. Ref. 19); the well-
known answer is

e2
(A trans )adax

2m

where g«a» denotes the transverse part of A. „,
uniquely defined by 8„A" '=0 e 8 (A -A" '}
=0 and J(A" ')'&~. Accordingly lndet„„(1 —eK)

(e'-/2tT) f (A"'"')'d'x which is the well-known re-
sult of Schwinger. "

We want to stress here that, obviously,

det„,(1 —eK) s-'(1— e X,.)

in spite of the fact that no counterterm was needed;
the reason is that K is not in 82 even though the
graph in Fig. 1 is conditionally convergent. It is
not equal to TrK' =Qe'&,.' =0.

The situation changes drastically for a winding"
field A „. A can only fall off as 1/ Ix I

and our
method fails. In fact K(A) cannot be compact be-
cause there is a whole (open) disk of eigenvalues.
[Note, however, that K is still bounded: ))K()
=([ Ip I

"'(IxI+1) '~')('=I'(-,'}'(2t() ' according to a.

result of Herbst. "] The disk of eigenvalues can
be obtained from the well-known zero solution of
Pg =0: To be specific, assume A„= (I/2e}&„~„/
(x'+ p'). Kqr = kqs (qr (= L' SIP ) is equivalent to

For X =1 this has the well-known solution

For general X we have solutions

f q(1)
q( &1=( 0)

with g~(' = (p'+x') t~~. The condition Ip I

' 'qr(= L'
requires Re(l/X) & a or IX ——,

I
& —, which defines

the above-mentioned disk.
So for winding A. „there is no possibility to de-

fine det„,[1—eK(A)] in such a way that its zeros
reflect the eigenvalues of K(A). The f-function

FIG. 1. The graph corresponding formally to TrK .



FIG. 2. The graphs corresponding formalIy to TrK,
TrK, TrK .

definition given in Ref. 2(a) exists of course but
its field-theoretic meaning is not clear.

IV. QCD2, QED4, QCD4

The general formalism carries over unchanged,
but of course explicit computation is no longer
possible.

QCD, does not need any further discussion here,
. so we turn to four dimensions. For gauge fields
that fall off sufficiently fast, e.g. , ~A„~'~'&,~„I.',
we have now K(A) e 0, for q &4 and the definition
of det„, is straightforward:

ln det, (1 —eK) =—ln det, (1 —eK)

——,'e~(trK') „„——,',e'(trK')„,
—2e'(trK')„, ,

where (trIP)„, (n =2, 3, 4) stands-for the standard
gauge invariantly renormalized (and interpreted,
respectively) graphs in Fig. 2; the graph in the
middle is of course zero in QED, .

For winding fields in QCD, one ha. s again the
disastrous situation encountered before: K fails
to be compact while still being bounded; it has
spectrum everywhere in a disk. This can be seen
in a way that is exactly analogous to the winding"
QED, 'discussion; again one uses the well-known
"zero solution" of If)t/i =0."' So in this case again
there is no fully satisfactory definition of the de-
terminant.

It should also be noted that the problem cannot
be solved by factoring off a finite number of zero
modes because changing a noncompact operator by
a finite-rank operator cannot make it compact.
Introducing a mass in the fermion propagator, on
the other hand, makes K compact, and a satis-
factory definition of the determinant is possible
using a suitable infrared regularization for the
(finite number of) divergent loops,

ators is subtle and requires careful examination
in each case. The renormalized determinants
described here allow us to answer such questions
unambiguously, and they show that in some in-
stances this relation is more complicated than what
might be expected naively. In the situation that
received the widest attention, namely, where
massless fermions are coupled to topologically
nontrivial gauge fields, these renormalized de-
terminants cease to exist and no natural general. —

ization seems to be available. Thus the meaning
of the often heard statement that the existence of
zero modes for the Dirac operator implies vanish-
ing of the fermion determinant"'" is not clear.

I want to make the (somewhat unorthodox) sug-
gestion that it may not be necessary to find a fully
satisfactory definition of fermion determinants for
"winding" gauge fields. 8 states have been con-
structed without getting into that problem at least
in two dimensions"", generally they should be
obtainable by adding a term iBj~q(x)dx (q(x) =topo-
logical charge density) to the action, first for a.

finite volume V, and then expanding V to all of
space-time. 't Hooft's mechanism for the avoi-
dance of the U(1) problem'" might also be unaf-
fected by that difficulty. In the one case where it
is rigorously understood —the (Thirring-) Schwing-
er model, it can be reinterpreted as the absence
of any symmetry, spontaneously broken or not,
corresponding to chiral transformations on the
physical Hilbert space (cf. Ref. 18); this conclu-
sion is of course not dependent on any construction
of the fermion determinant for topologically non-
trivial gauge fields.

Note added. We should make more precise in
what sense our definition is independent of boun-
dary conditions. The reader has noticed that we
imposed a certain falloff on the functions on which
our operator K acts by requiring them to be
square-integrable and this might be considered
by some to be a boundary condition. The crucial
point is, however, that both the operator K and
the corresponding determinant can be approxi-
mated by finite-volume expressions with various
boundary conditions (such as periodic, antiperio-
dic, Dirichlet) and that these approximations con-
verge to a limit independent of those boundary con-
ditions. This can be seen rather easily by adapta-
tion of the methods used in Sec. II to show that
K{=J,.

V. CONCLUSIONS

The connection between fermion determinants
and eigenvalues of the corresponding Dirac oper-
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