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Functional integration through inverse scattering variables. II
H. J. de Vega
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We continue to develop the method of functional integration over spectral variables introduced in a previous paper.
The usual functional integration variables are taken as potentials of an auxiliary linear problem whose spectral data
become new integration variables. We deal in this paper with the quantum pendulum and the one- and two-

dimensional anharmonic oscillators. We find the functional integration measure and the integration bounds for the
spectral variables associated with these quantum systems. This integration measure is valid semiclassically. We
compute with it the functional integral for the systems mentioned before. We get in this way integral representations
for the ground-state energies. These integral representations turn out to be exact in the semiclassical limit in all

cases. They possess the correct large-order behavior of the perturbative expansions (both in Borel-summable and in

the non-Borel-summable cases). They also exhibit correctly the tunnel-effect features.

I. INTRODUCTION

In a previous paper' we developed inverse scat-
tering techniques to compute functional integrals
of the form

1
&(I)= ut exp ——S[v(~ )]

yCO

S[e]= dx ——+1-coeur)
2 dx

(1.2)

Here x stands for the imaginary time. We write
this action S in terms of the SV of the Dirac-type

Basically, we considered an auxiliary linear
problem where the original integration variable
v(t;) is considered as a potential. We take the
spectral data of this l,inear problem as new in-
tegration variables. This change of variables
can be recast as a canonical transformation in
several cases. ' ' It is profitable only if it com-
pletely separates the action S. This means that
one must look for an auxiliary linear system
whose spectral variables (SV) completely separate
the action. One still needs the integration mea-
sure in the SV and the integration bounds. In I,
we explicitly found the integration measure (in
the semiclassical regime) and the integration
bounds for the SV of the Schrodinger equation.
(That is the linear problem associated with the
Korteweg-De Vries equation. )

In the present paper we find the integration
measure and the integration bounds in terms of
spectral variables for three systems: the pen-
dulum and the one- and two-dimensional anhar-
monic oscillators. Using these inverse scattering
variables we compute the functional integral for
these three quantum systems.

As is well known the generating function for the
pendulum reads like Eq. (1.1) with

linear problem associated with the sine-Gordon
equation. S completely separates in such vari-
ables. The measure and integration bounds we
find for these spectral variables can be used for
the two-dimensional sine-Gordon field theory.
Here we focus our attention on the quantum pen-
dulum and we compute its ground-state energy
(lower edge of the first allowed energy band). Our
final result reads

E,(g) =E,(g)+ E,(g)+E,(g) . (1.3)

4 p+a~ 8E,(g)=- —
J dxcoslm exp ——cosh@)F,&,g)

aOO

24 +co

E~(g) =- —, dy coshy
Wg

P ~/2
"J' d8 sin&(1+ sing)

0.

16
&exp ——coshy sin8 F, y, 6,g,

where

(1.5)

&,(o,g) =1+o(g), E,(~, o,g) =1+o(g) (1 6)

The first term Ez(g) correctly gives the non-
analytic part of Eo(g) as a function of g for small
g [see Eqs. (2.23)-(2.25)]. That is the tunnel-
effect contribution. In our approach EI(g) comes
out from the canonical spectral variables (CSV)
associated with soliton co'nfigu rations. The sec-
ond term E~(g) accounts from the CSV associated
with doublet configurations. E~(g) is analytic at
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and for the two-dimensional one

z("(-a)=- 16&(2 &(('

de 8(p, P '))D (2) (p p g)
"Im p&0

+~(2) (b) (1.6)

Here -h=—g&0 stands for the anharmonic coupling
constant and

g=o, and the large or'ders of its expansion in
powers of g coincide with the known behavior for
Ea(g).' We recall that this series is not Sorel
summ able.

In Sec. IG we consider the one- and two-dimen-
sional anharmonic oscillators. Besides its own
interest, it could be noted that the two-dimen-
sional anharmonic oscillator is equivalent to a
hydrogen atom in a uniform electric field (Stark
effect). '

We compute Z(g) for the anharmonic oscil-
lator by using the CSV of the Dirac-type linear
problem associated with the nonlinear Schrodinger
equation. We do that with the aid of the integration
measure and integration bounds appropriate to
these CSV. Finally, we get the ground-state en-
ergy. For the one-dimensional anharmonic oscil-
lator, we find

~ 3
~(1)( b) i

gp e ()(Pp P&D(-&) (p-) P(1& (b)
m ~o

function reads, as usual,

(2.2)

We can add a supplementary integration on a
variable v(x) in order to build a canonical struc-
ture:

Z(g) =Z, '
) uu u v exp(-S„,[»,u]), (2.3)

S„,[((,u] = — dxv(X)'+ j dxZ(x).
2g

(2.4)

Here Z, is such that Z(0) =e (2~& '. The Poisson
brackets are defined by

5(&( 5p 5p 6n a

6u(x) 6vg) bu(x) bv(x)

(2.6)

We compute now the functional integral (2.3) for
Z(g) by using the CSV of the sine-Gordon model. '
We recognize that S,«has the same form as the
Hamiltonian of the sine-Gordon field if we identify
our imaginary time x with the spatial coordinate
in the sine-Gordon model. This is not surprising
because the quantum pendulum is the sine-Gordon
theory at fixed time.

The CSV of the sine-Gordon field follows from
the spectral data of the following linear problem':

i8$ i du&&

Bx 4 3 dx
&

——O' W+

In conclusion, we have obtained integral rep-
resentations for the energy and/or for its imag-
inary part (for negative coupling) via functional
integration over CSV. The integral represen-
tations are exact for small coupling. In this
regime, we obtain the correct nonanalytic expo-
nent and the correct pre-exponential factor with
the correct power of the coupling constant.

This suggests that we are in presence of the
leading term of a new kind of perturbative expan-
sion. High-order terms can in principle be com-
puted by working on a system made discrete by
inverse spectral techniques.

1
+

6 (o, cosu+io, sinu)-&o, P(x). (2.6)

Here o„o„and o, are the Pauli matrices and

(&&&(x) is a two-component spinor. E(luation (2.6)
has Jost-type matrix solutions g, with asymptotic
behavior

gffyx g fox

x a~ (i&Arx ie-(axj

where o'—= X-1/(16K). The solutions P, (x) and
((t (x) are linearly connected by the transition
matrix T(X):

II. THE QUANTUM PENDULUM
(MATHIEU'S EQUATION)

y, (x, X)=y (x, ))r(~).
Here

(2. I)

1 1 dQ
Z (x) = — — +1 —cosu(x),

g 2 dx
(2.1)

where x is the imaginary time. The generating

We consider in this section the quantum pen-
dulum. As is well known its Lagrangian can be
written as

fa(x)-b()()+).
T(~) =I

&b(~) a(~)*)
with ~a(X) ~'+ ~b(X) ~'=1. It is easy to show that
a(X) is analytic in Im)(&0 and that its zeros in
that region are the eigenvalues of the linear sys-
tem (2.6). These eigenvalues are purely imaginary
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or lie in pairs symmetrically to the imaginary
axis.

Finally the CSV for the sine-Gordon field can
be written as

to

-~&u(X) &+~

for all finite x and

&(&)=- »l~(~) l) Q(&) = —»gb(~),
8

ggX.

0 ~ x(-+

p, = —In(4z, ), q, =8 ln Ic
1

(2.9)

(2.io)

u(+~) =0 (mod2v)

follows from Eqs. (2.9)-(2.11):

ao (P (+ ao ao ( $ (+ao

(2.i5)

(2.i8)

40„=—argy„, y„=—4 argd„. (2.11)
0 ~ e„&2))/g. (2.1V)

Here the i)(', (I = 1, . . . , n, ) are purely imaginary
zeros of a(X) in ImX&0. The A.„=+S,+it, with

S, &0 &(» (k =1, . . . , 11,) are pairs of complex zeros
of a(X). The configurations associated with them
are solitons and doublets (breathers), respective-
ly. Finally

(2.i2)

That is, c, and d~ are normalization coefficients
for the eigenfunctions of the linear problem (2.6).
The asymptotic behavior of the first column of
g. (x) at an eigenvalue reads

q~ + 8X cosh(gp(),

q& —iq), - 1), iq), ——4iXe "&cosh(4 g$, ) .
(2.18)

Then, if we now consider the system in a large
box of length 2L, in imaginary time, we find

-8L cosh(gp, ) &q, &8L cosh(gp, ),

Jl d1i„dq), =-8L cosh(—,
' g$, )f,(e„ t'„g) .

(2.1S)

The variables q, and p, can take in principle
any real value from - to +. If we make a
translation x-x+X the only CSV that change are
Q(() )~ qr ~ F))) and 1ta:

(x)1 ~
l

exp i x —
8

x(1) I-. 1

a;-a

(2.i3)
The integration measure in CSV can be written

for the present case as

)i) (x) ~
l

lb()(.) exp -i x — x )
ga ~oO ~

1
dp, =

n n't T

2N-nfl-Pn2

dP(x, )dQ(x )
e=l

OO. 1S.„[v,u] =-.' d»(~) 4~+—
0

8
2

+ —Q cosh(gP, )
l=1

16
+ —P sin(8, ) cosh(-,'g$„) ~ (2.i4)

The integration bounds for the CSV corresponding

where ~=~, or X=i~,.
The CVS (2.9)-(2.11) are useful to compute the

functional integral for Z(g) [Eq. (2.3)] because
S,ff separates completely when expressed in terms
of them:

P(dq& dna d$s d&a dye,

(2.20)

where we have made imaginary time discrete as
a lattice of 2M points with spacing & =L/M. We
integrate over 2M —n, —2n, points in order to
preserve the total number 2M» 1 of independent
variables. The factorials n, tn2t avoid double
counting of configurations. As it was discussed
in I the measure (2.20) should be multiplied by
the Jacobian of the transformation from (v, u) to
CSV. This Jacobian tends to one for &-0,
L, ~oo

The computation of Z(g) is now straightforward
using Eqs. (2.3), (2.14)-(2.20):
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Z(g) = llm
1

M~ eg, F2=0 1 2

—I/16K
~; X +1/16)(.

8
dg sxc(- —cosh(gg))16L cosh(gh)

)

+oo

x 8L d
~ ~ao Jo

2~/g
d8f,(g, 8, $) cosh —g

16 . i gx exp ——sin 8 ~cosh —
g

~g ) 4 )
(2.21)

Finally, the ground-state energy reads

16
d8 sin8 exp — sin8 coshy, y, 8,g +p g,

1 +NO 8
Ec {g)=- 11m log (g )=- —

I dx coshx sxp ——cosh@)f, (x,g )t"

16 g/2
dg cosh/

g 0

where x —=gp. , y ~gg/4, and we have inserted the
functions f, and f, instead of one in order to take
into account quantum effects associated with the
Jacobian. The last term in Eq. (2.22) stands for
contributions from the integration over the con-
tinuum variables P, Q . c(0) is such that
E, (0) =!.

The first term in Eq. (2.22) is the contribution
from the (p„g,). That means tunneling between
two consecutive minima of the potential 1-cosu.
It gives for small g

I

orders of the expansion'

E (g)= QA g
F=o

(2.27)

2 K! 1!~
16» 1+O K I

g» eo

(2.26)

Equations (2.26)-(2.26) clearly show that the
large orders in g of EG(g) are obtained from the
term E~(g) and that we can set

E, (g) — ',f, ' e ' '[1+O(g)],4f, (0, o)

g os 7I g
(2.23) f,(8, 0, 0) =(1+sin8)/v . (2.2e)

where the subscript I stands for instanton. On the
other hand the usual semiclassical methods' give
for this tunneling contribution

E, (g) -4(gv) ' 'e ' '[1+O(g}].
g 0+

Hence, we should set

fL(0, 0) =1.

(2.24}

(2.25)

coeff (g~) =- const 6~ 1+O

(2.26)

'This should be compared with the known large

It must be noted that the integration over CSV
gives not only the correct exponent Sg ' in E,(g)
but also the correct power g ' ' with correct sign.
This power of g is a quantum feature of E,(g)
related to the zero modes of the instanton. '

Let us analyze now the second term E~(g) in

Eq. (2.22). This term is analytic ing at g =0 and

admits an expansion in powers of g. The behavior
of its coefficients is determined, for large or-
ders, by f,(8, 0, 0). If we insert a constant instead
off, (8, 0, 0) we Set from Eq. (2.22) for large K

The term in sin(9 takes into account the odd power
of g. As before in Ef (g), inverse scattering in-
tegration provides besides the classical factor
16 ~ a quantum effect, i.e., the correct leading
power of K in Eq. (2.26).

To conclude, we can write the ground-state en-
ergy of the pendulum, that is, the lower edge of
the first allowed band as in Eqs. (1.4) and (1.5)
where

F,(x,g) =f,(x,g),

vf~(8, y, g),(8, ,g)=
1

In the present ease we cannot determine the large-
g behavior of Eo(g) as we did in I for the N
dimensional anharmonic oscillator, because we
do not know at present I", and I", for large x and

g. However, it is interesting to note from Eqs.
(1.3)-(1.5} that ED(g) behaves like g ' for g-~
as E~(g) really does. '

The expression we got by integration over CSV
in the present case corresponds to the physical
region g &0 because the original functional integral
(2.3) converges in this domain for real u(x}.
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III. ONE- AND TWO-DIMENSIONAL ANHARMONIC
OSCILLATORS

We consider in this section the one- and two-
dimensional isotropic anharmonic oscillators.
ln paper I, we transformed the quantum N-dim-
ensional anharmonic oscillator to CSV via the
"n representation. " Here we shall go to CSV
without appealing to the & representation.

The CSV associated with the nonlinear Schro-
dinger equation will be useful as new integration
variables in the functional integral for these two
anharmonic oscillators.

The generating function for the two-dimensional
anharmonic oscillator reads

P(&) = &, In~a(&)
~

', Q(X) = —argb(X) (3.7)
1 -2 1

Ap,
'

7t

1P„=, X„, q„=inc„', n =I, . . . , Ns. (3.8)

Here c„-=b(X„)and Ns stands for the number of
eigenvalues. The transformation from

()i)(x), )i)(x)*,x E R]

to

(P (X), Q (X), X e R;P„,q „,1 ~ n ~Ns "f

is canonical. Poisson brackets are defined through

gt i(g) I g)y~p q-all;ll

where

(s.1)
5n 6p |)p 5n

J „ .5$(x) 5)t)(x)* 5$(x) |))1)*(x)

(3.S)

and

)i(x) =)i,(x)+i(,(x)

s '2

sk)', ) "I =-*' I u~( —, + v'It) I'+);u'I)'I'I.

(3 2)

The CSV given by Eqs. (3.7) and (3.8) are ap-
propriate for the two-dimensional anharmonic
oscillator because they separate completely its
Euclidean action (3.2).

By using the two first trace identities given by
Ref. 4 it follows that

Matrix Jost-type solutions C, (x) defined by

C, (x) ~ e '~3" (s.4)

are connected by the transition matrix T(X)
through the relation

Similar expressions hold for the one-dimen-
sional anharmonic oscillator provided one imposes
((x) = P(x)*, i.e., the constraint 11,6(g(x) —P(x)*).
We will focus our attention on the regiong&0 and
call h=—-g&0. The linear problem relevant in this
case is4

~w

io, —+(ap')"'(o;y, +o,y, ) @(x)=&C(x). (3 3)

S[)t), )C)"] = dXP(X) 1+4 —
22n ~ „p

-ip, 'g t p„-p„*+~3k'g'(p„'-p„*')]. (3.10)
n=1

To deal with the one-component anharmonic
oscillator we simply impose )) =~i)*. This implies
that the &„and hence the P„are purely imaginary.

Let us now write the integration measure for
the CSV variables (3.7) and (3.8) in semiclassical
approximation. Following the same procedure
as in I and Sec. II, we get

( ~ M-2Ng Ng

dp =, ~

— dQ(x )dP(x ) d'q, . d'p,
N~ t

k 7t '0,='i /=1
e (x) =e, (x)T(X). (s.5)

(s.ll)
Here

(a(X) b+(~))

EI (~) a*(~) i
(s.8)

[a(~) ['+ JI (~) f'=1.
The eigenvalues of the linear system (3.3) are
given by the zeros of a(&) in Im&&0. The angle-
action variables for the nonlinear Schrodinger
equation follow from the spectral data of system
(3.3). We shall use these canoncial variables in
the functional integral (3.1). They can be written

Here

d'q, =d (Req,.)d (Imq, .),
d'P,- =d(ReP&)d(ImP, .) .

The integration bounds read in the present case

0 ~ ImP~ &+, j = I, . .. , N~

oog ReP

O~P(A)&+~, O~Q(X)&2, Xc R.
(3.12)

The variable q,. needs as usual a bit of ca,re. Under
a translation x-x+X on )i)(x), it is the only CSV
that changes. It transforms in the following way:
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q~
—qj —4ipp'. (3.13)

J
d q& =2I, p, c"&(pz,pp), (s.i4)

where p stands for dimensional reasons and C' '

is proportional to ~p ~
for large p.

. We can easily obtain the integration bounds if
I

If we put the system in a large box of length
2I the domain of q& in the complex plane will have
an area proportional to I for fixed P&. We can
then set

g = g* (one-dimensional anharmonic oscillator).
In this case, the p& become purely imaginary

and the q~ real:

(3.16)
0 ~+ —Zp ~ ~++j

I c&'&(p ) ~q ~ gL c('&(p )

One should also set II~," instead of II ",'"
in the measure (3.11). The bounds on P(X) and
Q(X) are the same as before.

We turn now to the computation of the functional
integral for Z(2&(g). It results as follows:

1 (I, i)~Bi2'"'(g) =~,-' llm Z, I

—
~ I dq[

&& w NBO +B (v I k4

g kg
X

10 ~

a=1 "0
dP(X )exp—P(X&x) ( 4X 2)

(+ 2
5 imp 0

d2pe "' ' d2q~
)

(s.16)

And then

5

zg"&(-h)=- ("),
X

J. .., d p C '(p p+)e-(&&oho*&+D(ll)

~ 3
E(1)( I )

i
dp e-&)(&)f-2& C(l&(p) F(1&(I )

4n

(s.2i)

The saddle point (3.18) also dominates the Il-0'
behavior of this integral. We find in this limit

(3.17)

=0, =0.QP

ap~,
=BP

ep

For ImP~ 0 we find

where D(11) stands for possible contributions
coming from the continuous spectrum of CSV.
D(0) is such that E&2&G(0) =1 and p(p, p~) is given
by E(I. (1.9).

For i'1 =-g-O', Eo(-Il) given by E(I. (2.17) is
dominated by the saddle points of the integral.
That is, the points where

c&1&(p ) 25 (3.23)

Imsg"&(-a) ~ " = C"'(p,) exp —
~

[1+0(I&)l.
)& o+ 16&['wh

(3.22)

The i.maginary part of the energy for a one-dim-
ensional anharmonic oscillator with coupling -Jl/2
is, for h-0' (Ref. 10),

1mB& '(-h) = 1p(~h) '~'ahp( ——[[I+0(h)[.
Sh)

We get then

~C PC

The contribution of this saddle gives

(3.18) The ground-state energies are finally given by
E(ls. (1.7) and (1.8) where

1m'&"(-I ) = " C"'(p„p,*)exp(-
3 ~ll+o(@)l.

(3.18)

This should be compared with the known value"

D(l) ( ) C(1)( )25

D(2) (p p g) C (2) (p p8)
2

IV. FINAL REMARKS

(s.24)

(3.26)

1mh~t" (-1) hph 'exp( —h=h)[1+0(h)l.

Then

&2 c(p„p~) =2'v. (s.20)

For the one-dimensional anharmonic oscillator
we compute Z"' by the same lines, now using
E(I. (3.15), and we find

The functional integration procedure we use
here and in I can be easily worked out for any
other canonical variables constructed by inverse
spectral techniques. For example a nonsym-
metric N-dimensional anharmonic oscillator" can
be treated by the present methods. The use of the
CSV associated with the ASS systems'2 enables
one to compute functional integrals where the
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action is a linear combination of terms such as

Bx &q
I qvdx, S,=

„i q ——— x~dx,
~X ~X and terms with high-order derivatives.
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