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We formulate a method to derive the time-dependent Schrédinger equation which describes the interaction of an .
electron with a c-number radiation field. To obtain this semiclassical approximation from the complete quantum-
mechanical formulation we use the corresponding Schrodinger equation in its projection form, which is an extension
of the Hill-Wheeler generator coordinate method. For the basis states of the radiation field we introduce a complete,
but not overcomplete, subset of coherent states, which were found by von Neumann and whose proof of
completeness was given by Bargmann et a/. and Perdomov. We find that the conventional overcomplete continuous
coherent states are not suitable for the projection form of the Schrédinger equation. The method also allows one to
calculate quantum-mechanical correction terms systematically.

I. INTRODUCTION

Since the very beginning of the development of
quantum electrodynamics and other field theories,
their classical limits have been attracting much
attention.! It is well known that coherent states
are useful for studying such classical or semi-
classical limits.?

Very recently, several authors have used co-
herent states to study various field theories and
have shown their powerfulness. It has been shown
that the use of coherent states with a path integral
for elements of the S matrix gives a different
treatment of the Callan-Coleman vacuum tunnel-
ing.® Coherent states combined with the variation-
al method have been used to treat an isovector
meson field interacting with a static source.? It
has also been shown that coherent states can be
used to describe equilibrium states of boson
fields.®

Apart from their applications, coherent states
themselves have been intensively studies since
the pioneering work of Bargmann and Segal.® In
1971, Bargmann, Butera, Ghiraradello, Klauder,
and Perelomov provedthat a certain subset of coher-
ent states form a complete, but not overcomplete,
set.” This will be important for our considera-
tions. )

In the present paper we shall study the semi-
classical treatment of a charged Schrodinger parti-
cle interacting with a c-number radiation field.
We shall derive the corresponding Schrodinger
equation from the fully quantized theory, in which
the radiation field is also quantized, by using co-
herent states to describe the radiation field. To
avoid trouble due to the above-mentioned over-
completeness of coherent states we shall use the
complete subset of coherent states of Bargmann
et al. and Perelomov, which we shall call VNLCS
(see Sec. III). Inorderto introduce such a subset of
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coherent states (VNLCS) in a consistent manner
into the quantized theory, we shall use the time-
dependent Schrodinger equation written in projec-
tion form,® which is a generalization of the Hill-
Wheeler method.’ This method has been used to
obtain a microscopic nuclear theory for low-ener-
gy phenomena from a unified point of view.?

As a charged Schrodinger particle we shall con-
sider a nonrelativistic atomic electron interacting
with a strong radiation field. In Sec. II we shall
formulate the problem quantitatively by defining
the semiclassical treatment of the system. In
Sec. III we shall introduce coherent states, es-
pecially VNLCS, as the basis states for the radia-
tion field. In Sec. IV we shall rewrite the Schro-
dinger equation for the system in the projection
form. In Sec. V we shall introduce a classical
approximation to the projection form of the Schro-
dinger equation to obtain the semiclassical Schro-
dinger equation. In Sec. VI we shall give some
concluding remarks.

. QUANTITATIVE FORMULATION
OF THE PROBLEM

We shall consider the system of an atomic elec-
tron interacting with a strong radiation field in the
nonrelativistic case. Such a system can be de-
scribed semiclassically by the time-dependent
Schrodinger equation

[ = (e/m)R(E, - (/) ]| 9(E, =il [(F, 1),
(2.1)

where A(F, ¢) is the classical time-dependent vector
potential and |¢) is the wave function of the atomic
electron. For simplicitly, we consider a one-elec-
tron atom. Then, ﬁe has the form

H,= -(5/2m)V 2+ V(#), (2.2)

where V() is the electrostatic potential!® in which
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the electron moves. We shall show under what
conditions Eq. (2.1) can be a very good approxima-
tion to the fully quantized description, where the
transverse radiation field E(T-, t) is also quantized.
The corresponding Schrodinger equation is

A0 =[A,+ 8, - (e/m)A®)-$]|¥)= m— [¥). (2.3)

Here, |¥) is the state vector which descrlbes the
quantum-mechanical state of the electron and the
light-quanta states of the transverse radiation
field. H 4 is the Hamiltonian of the light quanta,
which can be written as

ﬁA=Zﬁwka‘Elah=21}fﬁ, |k|=wy/c, (2.42)
kX ksd

with the commutation relation for o} and a,

[ail’ qn] 57:,1 iqyn? (2~4b)

where a3, and a;,‘ are the annihilation and the cre-
atlon operators of the light quanta with wave vec-
tor k and polarization x. The operator K(i‘) has
the form

A= (/v 2 /20, (ag, 07+ af e 002,

(2.5)

where €3, is the polarization vector and V is the
normalization volume.

II. COHERENT LIGHT-QUANTA STATES

In this section we shall discuss the basis states
for the radiation field which are especially suited
for the transition from the completely quantum-
mechanical Schrodinger equation (2.3) to the semi-
classical equation (2.1). The most suited basis
states of the radiation field for this purpose are
the so-called coherent states which were intro-
duced first by Schrodinger.'* Coherent states are
minimum wave-packet states!? and are labeled by
complex eigenvalues, whose real and imaginary
parts correspond to the expectation values of two
canonically conjugate observables, respectively
[see Eqs. (3.5¢) and (3.5f)]. This is one of the
reasons why the coherent states are extremely
useful for the discussion of the classical limit of
the quantum-mechanical treatment. Indeed,
Klauder has shown that the classical-mechanical
description can be obtained formally from the
quantum theory by using the continuous repre-
sentation, which is a generalization of the coher-
ent states.?

The coherent states were discussed by many
authors during the last 20 years.® Here we list the
main properties of these states and refer to the
literature!? for their derivations.

With the operators a' and a (for simplicity from

now on we write the indices E,n explicitly only
when it is necessary for discussion), which have
been introduced by Eq. (2.4b), we can define the
coherent state |@), where a is a complex number
to label the state, as

|a)=exp(—|a]2/2>"z=.;\gl-——:—]n>. (3.1)
Here,

In)=-£ﬁ-(a’f)" |¢o)s |@o = |vacuum state) (3.2)

is the eigenstate of the number operator
N=a'a , : (3.3)

containing » light quanta of (k,7). For our later
considerations it is useful to split a' and q into a
sum of Hermitian operators, i.e.,

a=(u+ip)/@nM2, a'= (i -ip)/(2m)"2. (3.4)

The coherent states [a) have the followmg prop-
erties:

(a]a)=1, (3.52)
alay=a|a)=(1/20)2(u+ip)|a), (3.5b)
(a|a'={a|a*=(1/20)""u - ip)a], (3.5¢)
B=(a|N|a)=(a|a'a|a)= a*a, (3.5d)
@) =a|u|a)=(27)" Re(a)=u, (3.5€)
(py+(a|p|a)= (@m)#Im(a)=p, (3.5¢)

[(u|a) |*= const X exp[-(u - GDP/2K],  (3.5g)
|{p |@)|?=const xexp[-(p - (p))2/2%], (3.5h)

where («|a) and {p |a) are the » and p representa-
tions of the state Ia) respectively. The eigen-
values of # and p are written as » and p, re-
spectively. Equation (3.5b) shows that the co-
herent state |a) is the eigenstate of the non-Her-
mitian annihilation operator a with the complex
eigenvalue a = (u+ip)/(27)Y2,

If this complex eigenvalue a; which labels the
coherent states as already stated, runs over the
whole complex plane, the coherent states become
overcomplete for the Hilbert space. Such an over-
complete set of coherent states cannot be used
for our considerations because they are linearly
dependent (see Sec. IV and Appendix B). However,
Bargmann et al. and Perelomov’ proved that a
subset of the overcomplete coherent states forms
a complete set. This subset is given by

}{[a): a=(m"2(1+im); 1=0,+1,22,.
m=0,+1,+2,...}. (3.6)

This fact was originally stated by von Neumann
without proof. Therefore, these states are called



von Neumann lattice coherent states (VNLCS). For
later use we shall list some properties of VNLCS:

(B|a)=exp[-|a - g[2/2+iIm(B*a)],
=exp[-(l =s)?/2 —intl]
xexp[ —(m - /2 +insm], (3.7a)
with
B=(mY(s +it), s,t=0,+1,+2,...,

;<B|a)= zm: i (B|a

J== Mm==c0

(3.7b)

= 95(=7t/2,e™®)S(ns/2,e™), (3.7c)
E(B |@Ya = Boy(-nt/2,e )9 (ns/2, ™),

(3.73)

where

sa(z’q)z Z qn2e52nt.
ragers
The derivations of Eqs. (3.7¢) and (3.7d) are given
in Appendix A. It is important to note that the
subset states of (3.6), which form a complete set
of states, are not mutually orthogonal, as can be
seen from Eq. (3.7a). On the other hand, the states
|az), with different k, A, are mutually orthogonal.
With the properties of the coherent states |a)
given in Eqgs. (3.5) we can now discuss their physi-
. cal qualities by considering th% expectation value
of the radiation field operator A(¥). For the mo-
ment we consider only coherent states belonging
to a given wave vector k and polarization x. That
means the coherent states with (k’, »')# (k, \) have
the complex eigenvalues a3.,. =0 (i.e., these modes
are in their ground states). In the interaction
picture, with respect to the Hamiltonian )4 4 given
in Eq. (2.4), the radiation field operator has the
form

AF,)=Ve Z c(i/2w, )"

ks
X (aineik-r'iwbt+ a{ne‘ik-rdwbt)é’in ,
(3.8a)

where
|E| =w,/c.

Using the formulas (3.5), its expectation value can
be obtained:
(a|&|a)=cli/2w, V)P 0z, ert 1 c.c.) Ein
=K cos(k- T - wit+ ¢g,) - (3.80)

Thus, the above coherent state Ia) corfesponds
to the classical radiation field A{” cos(k T - w,t
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+ ¢g,). However, it remains to be examined
whether the above quantum-mechanical expectation
value can be approximately substituted by the
corresponding classical value in any functions of
A,. For this, it must be shown that the quantum-
mechanical root-mean-square deviations from the
expectation values of the radiation field are rela-
tively small. By using the formulas (3.5) we can
obtain for these deviations

Dot = Du({0)? + (1;>2)"/2

= [{@ = @2 ¥2((@) 2 + (p)2) V2

=27(|a|?) 2= 272((R) 2 (3.92)
and
Ap = Ap(@)7+ (5))
= [{(p = (D@2 + (p)2)
=272, (3.9b)

where (N) is the number operator of the light
quanta in the normalization volume V [see Eq.
(2.5)]. Similarly, we obtain

AN= AN/ = ()2,

Hence, we can see that if the expectation values
of the light-quanta number operator for the co-
herent states are very large, the classical approx-
imation can be a good approximate substitute to
the quantum-mechanical description.

To obtain an impression for the magnitude of
these deviations for macroscopic dimensions, let
us consider the radiation field that corresponds to
the classical field of the wavelength 1 ¢m having
the volume .of 10 cm® and the energy density 1
erg/cm?®—the belonging absolute value of the field
strength is 1 G. For such a state (N)=energy/fiw
becomes about 5 xX10'® and therefore Aug, Apy,
and AN, become about 5 x107°, which is indeed
very small. It should be noted that AN itself is
proportional to ((N))? and therefore also becomes
large in the classical case, i.e., only the relative
deviations Awu,y, Ape, and ANy become small in
this limit case.

Up to now we have discussed the physical prop-
erties of the single-mode radiation-field coherent
state specified by the complex a=a;,. We can
straightforwardly generalize the above discussion
to arbitrary radiation fields by taking into account
all modes. If we form the direct product of single-
mode coherent states with a set of a3,, which we
write as {a} s

(3.9¢)

(3.10)

Hah= II oz,

then such a state gives the expectation value
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{a} 171(?, ) H{al)=ve E c(l/2w,) (o, e ¥ Fiont + c.c. e, a} [{ad)

ks 7

= T(.ZnAg,’l’cos(l«:-Y' ~ Wb+ Pz,).

Here we have used Eqgs. (3.5b), (3.5¢), and (3.8b).
Thus, by choosing appropriate {a} we can con-
struct a coherent state l{a}) which corresponds
to a given classical field, which is expressed in
general as a linear superposition of electromag-
netic plane waves.

One interesting fact should be noted: To con-
struct a quantum-mechanical wave-packet state
for a free massive particle one has to superpose
linearly plane-wave states with different wave
vectors E, as is well known. On the contrary, to
construct a quantum-mechanical state of the radi-
ation field which corresponds to a classical elec-
tromagnetic wave packet one has to make a direct
product of many single-mode states and not a
superposition of such states.

IV. REFORMULATION OF THE SCHRODINGER
EQUATION FOR THE ELECTRON-LIGHT-QUANTA
SYSTEM

In this section we shall reformulate the elec-
tron-light-quanta Schrodinger equation using the
projection equation method® with the VNLCS for
the light quanta as basis states. With respect to
the atomic electron we remain in the usual x rep-
resentation, i.e., we use as basis states the con-
tinuous electron coordinate eigenstates. First we
write down the Schrodinger equation (2.3) in the
mixed picture, which is the interaction picture
with regard to the radiation field and is the Schro-
dinger picture in the x representation with regard
to the atomic electron:

[H,+ Hyy (1)) | ()= zﬁa% e (1)) (4.12)
with
A, (£)= —(e/mc)exp(H 4t /M)A exp(~iHt/n) D, .
(4.1pb)

The Schrodinger equation (3.1a) can now be re-
written in the projection form

<6\If(t)l [fle+f1m(t) - m%] I\Il(t)> =0. (4.2)

If (6y(t) | represents an arbitrary variation at
every time ¢ in the whole Hilbert space, then Eq.
(4.2) is equivalent to Eq. (4.1a).

The great advantage of the Schrodinger equation
written in the projection form is its flexibility to

(3.11)

r
allow various possibilities of basis states. Thus
we can introduce a desirable physical ansatz into
the formalism from the very beginning in a quite
natural manner. That is, we can introduce a
superposition of basis states with linear variational
amplitudes, which can be adapted to the physical
conditions, i.e., the boundary conditions, of the
system considered. It is important to note that
those states do not have to be mutually orthogonal
but only have to be linearly independent.

The nondegenerate stationary solutions of Eq.
(4.2) are mutually orthogonal, whatever basis
states are chosen. This is so because if the basis
states form a complete set of states in the belong-
ing Hilbert space, the exact solution of the Schro-
dinger equation (4.1a) can be obtained from Eq.
(4.2). This orthogonality of the solutions of Eq.
(4.2) also remains valid when one constructs ap-
proximate solutions of Eq. (4.1a) by restricting
the basis states to be used in Eq. (4.2). For de-
tails see Ref. 8.

After these general remarks about the Schro-
dinger equation written in the projection form,
let us now return to the discussion of the electron-
light-quanta system. Since our purpose is to ob-
tain a classical description of the radiation field
as an approximation to the quantized field, the co-
herent states are suitable as basis states for the
radiation field. As-already mentioned in Sec. III,
in order to use the projection form of the Schro-
dinger equation we introduce the VNLCS as basis
states for the radiation field:

Heb) =TT 5., (4.32)

ks 7
where |a;,) is the VNLCS for the mode (&, 7) with
a;,= (M (13, +img,), I3,,mg,= integers. (4.3b)

For the electron we use the coordinate eigenstate
|r*)=6(r — ') with the orthonormal relation

G 7= [ oG ~ Do - 71ar
=6(r" —1'). (4.4)

Then, the basis states for the whole system are
the direct products

Hat, )= {ah®

which span the whole Hilbert space. Using these
basis states we now make the following generalized

r'), (4.5)




Hill-Wheeler ansatz® for the states of the whole
system:

EEDY [& b Prral, 750, @9)

where the notation is defined as

Z-L L --I()

{a} Fkin, Yipn, ko \a,

=H(i m:_w), (4.7a)

kyn I==e

1

b [ ar e}, 5 |8, Bu®)] e}, 7)1l 7 t)—zﬁ—

22 CHARGED SCHRODINGER PARTICLE IN A ¢-NUMBER... 2395

with
ag,= (M +im). (4.™)

The time-dependent linear amplitude f{{a}, ¥;4),
which has to be varied arbitrarily at every time
¢ and at every point I for every multiple {a}, is

" a continuous function of the parameter coordinate

r’ and a discrete function of the discrete values
of the multiple {a}.

If we introduce the ansatz Eq. (4.6) into the
projection equation (4.2), we then obtain after in-
tegrating over ¥

LR ORIV CR ST (4.8)

Using Egs. (2.2), (4.1b), and (4.7a) we can write down the three kernels appearing in Eq. (4.8) explicitly:

dst, 7 {ab, #)=BH{ah(@ |#)= (s} {a})o@ - ), (4.9)
A, 7 |A, [{a}, )= g} |{adXe~ |B, |7 =48} {a})oE —1)[(-n2/2m)¥ .2+ V(F)], (4.10)
A8}, 7 |Ad) |{a}, )=V 12 Z c(i/20)"(({B} |az, |Ta}) etF -iunt
ks
+ {8} al [{abe ®F ortyEg, & [B, [#)(~e/me) -
=y 12 Ec(h'/zwk)l/Z a, etk T miwpt B* e -ike ”“’kt)e
x(=e/me){B} |{a})o(@” - #)(-in)V,.
=dpt{aAdBY, {a}, 7 ;¢ )(=e/mc) - 8(F" =7 )(=iR)V,. , (4.11)
where A({g},{a},;¢) is defined as
A({B} {a} . t) Vv 12 ZC ﬁ/zwk)l/Z ak e:k T twkt+ﬁ* e i;-;'+iwkt)gin . (4.12)

ks m

Introducing Eqgs. (4.9), (4.10), and (4.11) into Eq. (4.8) and integrafing over ¥’ we obtain

{a}

2 s} I{a}>[—(ﬁ2/2m)v,~2+V(r")+(—e/mc)z({ﬁ},{a},f”;t)-}—25 —zﬁ—] ({at,#;0=0. (4.13)

Since the basis states (4.5) are complete, Eq. (4.13) is equivalent to the Schrddinger equation (4.1a). That
means until now we have not introduced any approximation.

V. CLASSICAL APPROXIMATION
TO THE SCHRODINGER EQUATION

In the previous section we have obtained the
Schrdédinger equation in the projection form (4.13)
using the coherent states given by Eq. (4.3a) for
the radiation field. In the projection equation our
coherent-states basis effectively resulted in the
kernel, which is an inner product of two coherent
states. In this section we shall develop a system-
atic way of obtaining a classical approximation to
the projection equation (4.13) based on the proper-
ties of this kernel.

First we assume that the amplitude f({a}, ;1)

f
given by Eq. (4.6) varies very slowly with regard
to the change of the variable {a} over the range of
order (m)"2. This means if the square root of the
corresponding 11ght quanta-number expectation
value 20 (N;)=20 a* ‘ a;, varies by a few units
flo},?; t) practlcally does not change [see Eq.
(3.5d)]. In the classical limit region this is
certainly the case (see the discussion in the second
part of Sec. III). For the amplitudes which satisfy
this assumption we can introduce a classical ap-
proximation into the Schrédinger equation (4.13)
written in the projection form by using the proper-
ty of the kernel.

The essential feature of the projection equation
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(4.13) for the present purpose can be represented is not subjected to such an approximation. The
by the sum kernel ({8} I{a}) is just the product of single-mode
. kernels (8;,|@;,?, which have Gaussian forms
- centered at a;,=B;,. The widths of these Gaussian
[2:1 et ]{a})A({B},{a} ) Qah), , (5.1) forms are of :ﬁe oiaer of (n)2, Thus the kernel
{B}|{a}) has a strongly localized peak at the
where the electron variables have been dropped, point {a} ={ 8} in the {a} space. Therefore, for
since we are interested in the classical approxi- the microscopically slow varying f ({ a}), the
mation to the radiation field and the electron state above sum can be approximated as

]

Z<{B}l{a}>A({B} {ahf (e =2 -+ 2 Biylag,) - (B |z - - ALBY, {ah)r{ a)

°‘k17 Ay

~f{8}) 2 2 o Bunl o)+ By |- - AR, {a})

Otk: n

~f({8}) Z dst [{abAdg},{a}). ' (5.2)

It should be noted here that the correction to this approximation can be calculated by representing f({a})
in the form of the Taylor expansion around {a} = {B}.
Applying this approximation to the left-hand side of the projection equation (4.13), we obtain

E({B‘r ]{a}>[ (#2/2m)V .2+ Vr') + (=e/mACB}, {a}, T3 ) (~il)V,. *zﬁ-]f({a} ;1)
= [— (7#2/2m)v, 2+ V(r') -mait]f({ﬁ},r';t) {Z; A8} {ab)

+ [(—e/me)=im)¥, r( 8}, 73 0] ; {8} |{ebAdg}, {a},750). (5.3)

In order to calculate the two summations on the right-hand side of Eq. (5.3) let us generalize the formulas
(3.7¢) and (3.7d) to the many-mode case:

Z<{s} ehy=T1 2285, 0,

ks n °‘kn

= H 83(—11),‘;,,/2, e"’/z)ss(frs;,,/z, e ™?)

=cd{sh), , (5.4)
where
B, n= (m"2(sg,+ity,) (5.5)
and
Z e} Habase| IL T <sk,,|au] | Z Galasas
e} . kon#ht op,

= B3, Hss( wt;,,/z,e"/z)83(1rs;,,/2, e™™?)

= g;c{s}). (5.6)
Using Eq. (5.6), the summation in the second term on the right-hand side of Eq. (5.3) can be calculated as

E {8} HahA{ B}, {a},5/58)=v 12 EC(ﬁ/Zw )2 (e"""’"“"k‘ (Z):({B} {a}) az, + e";';"‘“k'ﬁfn(z:)({ﬁ} i a}))e’in

ky")

= yie _ZC(h’/Zwk)m(ﬁ;,,e‘i';'"‘”k'+ B’{,, e-ii-;' +£ukt)gi,"c({8})

k,n

=Ad{s}, {8}, 7;0cdB}). , (5.7)
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Introducing Egs. (5.3), (5.4), and (5.7) into Eq. (4.13) we obtain the classical approximation to the pro-

jection equation (4.13):

[ (#2/2m)V, 2+ V(r)+ (~e/mA(BY, {8}, F; 1)+ (=in)V,, —ifi ]f({B} ¥;0)c({Bh)=0. (5.8)

This equation must be fulfilled for all values of the
multiple {a} This comes from the approximation
Eq. (5.2) and means physically that the reaction of
the electron on the radiation field is neglected, be-
cause coherent states of different {B} values are
not coupled with each other. Because the operator
on the right-hand side of Eq. (5.8) is a self-adjoint
operator, the conservation law

) fdf" |f({[3},'f”;t) |2= const in time (5.9)

is valid.

To connect the above equation [(5.8)] to the cor-
responding classical description we must intro-
duce another requirement for f({g},#;#). So far,
7B}, ;¢) has been required to be only micro-
scopically slow varying. Now we further assume
that f({B},?’; ¢) is 2 macroscopically well-localized
1

[ ~(1*/2m)V,.t + V(r') +(=e /mc)A{ 8}, {8}, T

Here, the operator[:- -] no longer depends on
{8}. Therefore, for f({8},1';¢) we can make the
following ansatz:

8L T8 =B} - {8 Dy ¢p'},

where g({8} —{8°'}) is nonvanishing only for {8}
~{B°‘} reflectmg the macroscopic requirement on
f ({B}, r’;¢). We can also simply drop the nonvan-
ishing factor C({B8}) from Eq. (5.10). In order to
connect the above introduced 3’ to the electron
wave function we must introduce the proper nor-
malization. From Eq. (4.6), using the same ap-
proximation as Eq. (5.2), we get

1=¥(t) | (1))
=2 [a# | rdenrn feds) -
{8}

(5.11)

(5.12)
J

[—(?iz/Zm)V,,,2 +V(r')+ (—e/mc)x({ﬁcl},{ﬁcl},;';t) . (—i}"Z)_V:,«

which is the Schrddinger equation for the electron
wave function ¢ with the classical radiation field
K({pe, {81, T 450).

Now let us show that A({g°1},{B°!}, T ;¢t) is
nothing else but the expectation value of the radia-

“(=il)V,. ikt ]f({B} stc{gh =0

I

wave packet in the {ﬁ} space, for which the abso-
lute spreads AB;, around B, = Bcf] are much larger
than (7)"2—see the dlscussmn to Eq. (3.9¢)—but
their relative spreads ABg,/|B¢! | are much small-
er than 1. The second cond1t10n demands that the
root-mean-square deviations of A from (A) are
very small. In the classical limit certainly this
must be the case.

As already mentioned, Eq. (5.8) must be. ful-
filled for all values of the multiple {8}. However,
the second requirement on f({8},';#) means that
it is a macroscopically well-localized wave packet
in the {6} space around the point {8}={8°"}. There-
fore, we have to consider only the case {8} ={8°"}.
Because ABg,/ ]B | is much smaller than one, for
{8}={8"} we may approximate A({g},{g},T’;t) by
A({B“} {8'},7';t). Then, from Eq. (5.8) we obtain
for {8} ~{g°'}

(5.10)

I
Introducing the ansatz (5.11), this can be written
as

1zN({;3°‘})fd?’]zp’({eﬂ},?’;t)ﬁ (5.13)
where
N{B N = 2 (g8} -{8°] e B . (5.14)

(8}

Using this N({8°'}) we can define the properly nor-
malized electron wave function :

w{B}, T/, ) =[NPV 2 ({8}, T

From Egs. (5.10), (5.11), and (5.15) it is obvious
that this y obeys the equation

. (5.15)

-iﬁga,;]w({ﬁd},?',t):O (5.18)

I

tion field operator at the position T 4 for the wave
packet in the {8} space, which is given by Egs.
(4.6) and (5.11). Using Eqgs. (4.6), (4.11), (5.4),
(5.11), (5.14), and (5.15) and introducing the same
approximations that are used to obtain Egs. (5.2)
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and (5.10), we can readily show

(ARG, =Edsa] {8}, 750 N B
<[ aw |wd gy, 7,012

sK{8} {81}, 70 [ ar oy, 7,02

~A{ 1}, {8, T ,5t). (6.17)

Now we have cdmpleted the derivation of the
semiclassical time-dependent Schrddinger equa-
tion, because A{8°!},{8°%,7,,) describes the
classical radiation field, as can be seen from Eq.
(5.17), and ¥ is the proper normalized electron
wave function due to Eq. (5.15).

It should be noted that the classical approxima-
tion scheme discussed here has been carried out
for a group of wave-packet states for the radia-
tion field in the {ﬁ} space and not for a specific
wave -packet state. Every wave-packet state
which belongs to this group is characterized to be
microscopically slow varying and macroscopical-
ly well localized in the {8} space.

V1. CONCLUDING REMARKS

One essential feature of our approach is the use
of the projection form of the Schrddinger equation
(4.13), because then one can straightforwardly in-
troduce many kinds of basis states which are ap-
propriate to the problem. This can be done in any

kind of particle quantum mechanics and relativis-
tic or nonrelativistic quantum field theories. It is
important to note that these basis states have to
be linearly independent.'®* The nondegenerate
solutions of the Schrddinger equation (4.13) are
then automatically orthogonal. This remains true
even if one uses only a subspace of the complete
Hilbert space.

Another essential feature of our approach is the
use of the VNLCS, which represents a nonorthog-
onal complete set of coherent states, as basis
states for the description of the radiation field.

If we use the conventional overcomplete continuous
coherent states, then the linear dependences be-
tween them destroy the application of the projec-~
tion form of the Schrédinger equation (see Appen-
dix B).

Next, we shall derive from the fully quantized
theory the Abraham-Lorentz equation with radia-
tion damping of the charged Schr8dinger particle
including quantum corrections. As already men-
tioned in Sec. V, for this purpose one has to ex-
pand f({a},7;¢) into a Taylor series around {8}
[see Eqgs. (5.2) and (5.3)].
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APPENDIX A

Equation (3.7c) is obtained as follows:

E(Bla)= 2 Z exp[-m(l - s)2/2 - intl] exp[-m(m ~ t)?/2 +insm]
a 1

== mMmz=o0

had o

= Z exp[-ml?/2 —imt(l +s)] E exp[-mm?/2 +ins(m +1)]

I=-w M-

=e'iﬂst83(_ﬂt/2, e-l/2)e i"sﬂa(ﬂS/Z, e-v/z)

@1

=9,(—7t/2,e7/2)3,(ns/2,e"'?),
where the 9, function is defined as
(e, q) = 2 germ.
—
The second sum, Eq. (3.7d), is
Z B|loya= Z (M)2(1 +im)exp[~n(l - $)2/2 - intl lexp[n(m — t)2/2 +insm]
7 l==o m==x
=(m)/2 E lexp[-m(l - s)?/2 —intl] Z expl-m(m —t)2/2 +imsm]
1== m==o0
+i(m)t/2 Z exp[-m(l - s)?/2 - intl] Z m exp[-7m(m - t)?/2 +imsm]. (A2)

I==oc0 m==o
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The two summations which contain the linear factors I and m can be calculated as follows:

®

Z lexp[-m(l - s)?/2 —intl]= Z (L +s)exp[-mi2/2 - int(l+s)]

J== l== N
= Z lexp[-ml?/2 —int(l +s)]+se"itts E exp(-nl?/2 —intl). (A3)
j==0 J==

Since ¢l is an integer, the first term vanishes. Then,

©

> lexp[-n(l —s)2/2 — intl] =se™it2y (—t/2, e %) . (A4)
Pl
Similarly, we can obtain
i m exp[—m(m - t)2/2 +insm | =tei"sty, (ns/2,e7"/?). (A5)
Using Eqs. (Al), (A4), and (A5) we find from Eq. (A2)
E Bl a=(m)t/2se sy (—mt/2, 67" 2)eimtsyg (15/2, €77/ 2)
«
+i(m)t e sy, (—mt/2, e/ 2)te Sty (ns/2,e7"/ ?)
= (m)M 2(s +it)9,(=mt/2,e7"/2)9,(ns/2, 7"/ 2) (A6)
=826l )
APPENDIX B
If we use the conventional overcomplete continuous coherent states, we encounter the integral
fdza(ﬁla)a =(2m) f: d(Rea) f: d(Ima) exp[ - |B —a|?/2 +i m(8*a) Ja (B1)

instead of the discrete summation appearing in Eq. (5.1) for the VNLCS. ' Unfortunately, the above integral

vanishes:

fdza(ﬁ]a)a =(2m)* f‘ds fm dtexp[—(s —u)?/2 - iws ] exp[ - (t —w)?/2 +iut](s +it)

=27[(u — iw) +3(w +iu)] exp[ - (w? +u?)] =0,

(B2)

where we have set @ =s +it and B =u +iw. Obviously, this leads to an unphysical approximation. In con-
trast to this, if we adopt the VNLCS, we get the nonvanishing discrete summations (5.4) and (5.6).
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