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Time delay is defined by geometrical considerations which work in classical as well as in quantum mechanics, and
its connection with the Smatrix and the virial is proven for potentials with V(R) and X QV(x) vanishing as r ' ' forr~oo.

INTRODUCTION

The idea of time delay as a characteristic of a
scattering process was introduced by Wigner' and
was given a precise definition by Jaueh et al. ' It
is closely related to the existence of resonances
and to the time of transit for which upper bounds
are found, e.g. , in Ref. 3 (although here general-
ized to long-range potentials).

The notion of time delay appears already in
classical scattering. Here it can be defined easily
by essentially geometrical considerations. Its
connection with the virial and with the scattering
matrix can be shown in the same way in classical
and in quantum mechanics. %e will not worry
about domain problems although we are dealing
with unbounded operators. The existence of the
relevant quantities follows from estimates in Ref.
4 and references therein, if the potential V(x) and

[x'~V(x}( decreases faster than 1/r and therefore
its square root is H, and H smooth, so that the
relevant quantities in the virial. are integrable in
time.

GEOMETRICAL CONSIDERATIONS

The existence of scattering theory implies the
existence of

lim p(t) =p,
t

Iim [x(t)-p(t)t]=- »m x(t)=», .

These equations are valid for classical dynamics
as well as in the quantum-mechanical problem.
In the latter case the limit has to be understood
as a strong limit. ' Then-x, =& -x, is space de-
lay in comparison to free time evolution. This
operator has the disadvantage that it depends not
only on the path but changes under time transla-
tion t- t+ g,

(x(0}, p(O)} -(x(z), p(a}},

x„-x,-p, x, x, -x, +(p, -p )x

This ambiguity can be removed if we take only
the part of x, parallel to P, . Then we lose the
vector property and it is more natural to speak of
time delay (we set m = 1):

(2)

For notational simplicity we are concentrating on
classical dynamics, although the generalization
to quantum mechanics is obvious, This time delay
still not only depends on the path of the particle
but also on the choice of the origin in space and
changes accordingly to

x x+a T7 —'

p. '
But since neither the interaction Hamiltonian nor
the S matrix is invariant under space translation
this ambiguity is to be expected. %e shall com-
pare now our definition of time delay with the one
given in Ref. 2 (which was used in Ref. 6 for clas-
sical mechanics). Consider a sequence of balls
S~ with radius ~ and center at x= 0. Take v~ to
be the difference between the time a particle
spends in the ball S„ if it starts at t= - with the
same initial condition and moves either freely or
accordingly to the interaction Hamiltonian. Then
the limit v„exists and coincides with the limit of
our definition. Suppose V = 0 for ~x) &A. If the
orbit enters the ball at t = —T, and leaves it at T,
we have

x =x(-T,)+T,p, x, =x(T,) —T,p,
from which we obtain, as can be seen in Fig. 1,
the time the particle really spends in the ball
equals

(&' —~')"
l p+ I x+p+-

1 2 lp. l
'

(It —a) p ~+x p
I(p
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4Ht ~-4Hpt=st-lim e e

(

jH jD jHpj ejHj 4))
(5)

(4I -jH jejHO De j jHj

kept -fHttH t kept Dg p=-—' lim 4Ie e(4IvI4) = --, lcm

=-' (1/a, )Dwit D = z (xp +px) and D = 2with the dzlat&on D = ~ & +
+D(1 H,/ )] . Calculating

Q~
t
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(3)

iH t -i&iice -aapt~&s «D=e e

,'[x(t )P(t )+P-+ (i )x(t )]

1 e that ourd as in (1) we realize
d with (2). Its

connection with the
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taking into account that [H„S]= 0. Now we write
S in the spectral representation with respect to
Hp p

S = dE 5 II, -E S E

+ T
v= lim ~

e'"' —(2V+x VV)
Q~tto ~ g LH

1
+ (2V +x ~ VV)- e '"' dt

H

with S (E) being a function of the angles only such
that [ S(E),D] = 0. Therefore,

[D, S]= i —-dE 5(it, 'H, E)S-(E)
8A

=2e dEH5 H, -E

(@Isle)=-~(s s-' fm ~(z, -z) e.).
(6)

It should be noted that we have to choose 4
(=P&, „&X, a&0, so that 41&EP&, &+. Then we
replace 1/P' by 1/(p'+ e ) and take finally the limit
z-0.

CONNECTION WITH THE VIRIAL

The connection between time delay and the vir-
ial was already observed in Refs. 10 and 11 al-
though here restricted to a central field and ex-
pressing the relevant terms by the phase shift
and not by the S matrix. On the basis of Jauch's
definition it was demonstrated by Lavine in Ref.
12. We want to prove the equivalence in our con-
text. With D as above,

+T 1i dt eiHt [H D] iellt

H

(etHt Dtellt e tilt De let )
1
H

=H[P'(~)~+I'(-&)&+D(&) -D(-T)j . (7)
1

On the other hand, it equals

d ~~+~ 1

Through this expression we see that 7 exists for
potentials such that V and x V V fall off like

].

Furthermore, one can make conclusions about
the sign of the time delay. Consider, e.g. , a
purely repulsive potential: due to repulsion the

path of the particle will become shorter, due to
energy conservation the velocity of the particle
will become smaller and the virial tells us which

effect dominates. Take V(r) = cr '. Then

7= dt —V+V—

For v= 2, 7= 0, the phase shift is independent
of the energy. For v & 2, 7 & 0, the change in the
velocity is the dominant effect, whereas for v& 2

(where scattering theory exits for repulsive po-
tentials) the length of the path is the relevant ef-
fect. We also see that for these potentials the
phase shift is a monotonic function of the energy.

TIME DELAY FOR n PARTICLES

Based on the definition of Ref. 2 the idea of time
delay was generalized to n-particle scattering
theory in Ref. 13. We will sketch how this gener-
alization can be done for our definition and leads
to the same result. We ignore our insufficient
knowledge about the existence and completeness
of wave operators. As usual, let H be the chan-
nel Hamiltonians, x„and P„ the coordinates and

momenta between the clusters, and E„the corre-
sponding kinetic energy. Let P~ be the spectral
projection operator of H„where the correspond-
ing individual clusters are in bound states. De-
fine Q„i to be the projection onto the range of
st-lim e'"' e &' P„and assume further that
our state satisfies

+ T
dt —(p'-x ~ VV)e '"'

-T H

=4T —
I dt —e'"'(2V+x VV)e tet1

H

If we take into account that 1/p, ' = 1/p '= 1/2H,
and further, that our V is integrable in time and
its derivative with respect to time is bounded,
so that P'(+ T) and P'(- T) converge to 2H faster
than 1/T, we can conclude

and that

46 =st-lime ' ~'e'~4

exists. Then we define analogous to (5)

(4 ~a, [e) =-,' lim C Qq„,e '"'e t"~tDe'"~te '"tq„,
f ~oo
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where D„=—,'(x„P„+P x„) and D„=~ [(1/K„)D„
+D„(1lZ„)]. Thus D„ is the dilation between the
clusters and D„ is the corresponding operator
with the desired dimension of time. Kith

limP giH~t e 2iHt ~iHe tP
fjfg a 8 ~

we know that

where E and E& are the energies of the clusters
and S„8 is the unitary mapping of the (E E-s)
shell of Ks onto the (E E-J shell. of K„. Since
D~ acts in the same way on K~ as li6 acts on K~
we obtain again by partial integration

S„&D8--2i dE 5(K„-E+E„)8S,(E)

Q S*ixe S„8Ps = PB .

Thus we obtain in the same way as for the one-
particle case

(i'i~, lo&=(o. gs„,(s'„, ,i-ia„s„,) i..).
Now we know that we can write

S~g = dE 6 K„-E+E„S„gE

dES~g E 5 Kg —E+Eg

and the whole time delay becomes

(4[v8 I@)= -i(4 QS;~ f dZ ll(ii„8)—

8S„6(E)
BE

The virial for the n-particle case is more compli-
cated. Its connection with the time delay can be
found in an analogous way as for the one-particle
problem considering

T P+

e'"'[a, D„]e '"'dt=D (r) D„(O)=-2r+ ,' Z
-D (T) +D,(&)+ Z -D„(0)

T Te'"'[& +I„D„]e '"'dt=2r+i e'"'[I D„]e '"'dt
0 0

where I„is the interaction between the clusters.
Thus

(@I~sl@)=iim (O QQ„if die' '[ii„l„je '"'Q„,

()

+i di ewe IDs, Isle lz' 4)

u+ Da n+

Unfortunately results on B„and H smoothness are
missing. Also, nothing can be said about the sign
of time delay esseritially due to the fact that also

in the one-particle case results are only available
for central forces, and for many-body theory
this has no meaning.
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