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The constraints on the supertorsion and Maxwell curvatures for N = 2 supergravity are derived from N = 2
extended supergravity in ordinary space with a closed gauge algebra. Nonlinear constraints are found.

I. INTRODUCTION

Supergravity can be formulated in ordinary
spacetime or in superspace. In ordinary space-
time the theory obta. ins a closed gauge algebra if
one adds auxiliary fields. For N =. 1 supergravity,
the minimal set consists of a scalar S, a pseudo-
scalar P, and an axial vector A .' For N=2, one
set is known' ' which is presumably minimal and
consists of two spin--,' SO, doublets (X', g'), two
symmetric traceless SO, tensors (A' t, P't), four
antisymmetric SO, tensors (V",t'„'„,M",N'"),
and three SO, scalars (A, S, V ). The gauge
algebra of spacetime symmetries, SO, rotations,
and supersymmetry closes, and the structure
constants depend on physical as well as on aux-
iliary fields.

At this point we emphasize that the SO, group
we consider acts only on the photon B„'~ but not
on the indices i of g,', etc. In other words, this
local SO, gauges the central charge of N =2 super-
symmetry, but not the outside charge which ro-
tates the generators Q' and Qt into each other.
For the action this simply means that the photon
only appears in the Maxwell curl, so that the
action is locally SO, invariant, but not, for ex-
ample, as 6„$„'+ee'tB~"gs —(p. —v). As a result,
local supersymmetry and SO, commute. The

, reason we make this choice is that in Ref. 3 only
the results for this case have been given. The
N =2 extended supergravity model was first found
in Ref. 5 and an extension to a. local SO, which
acts on the indices for g'„was given in Ref. 6 with-
out auxiliary fields. This result agrees with a
group-theoretical approach, in which one gauges
Sp(4) x SO(2) (see Ref. 1). In this de Sitter algebra
the photon charge appears of course on the left-
hand and on the right-hand side. If one takes a
%'igner-InonG group contraction, one reverts to
the SO, which is a central charge. Thus, we will
consider a base manifold A~ in which general
coordinate transformations act, and a tangent

manifold in which one has local I,orentz sym-
metry and local supersymmetry as well as SO,
rotations of the photon alone. The latter still
enable one to compute the parameter composition
law for the SO, parameter. Also, in superspace
we will restrict ourselves to this kind of SO,
group.

In superspace one needs constraints on the
supertorsions. For minimal N =1 supergravity,
the constraints read (a, h, c are four-component
spinor indices, and r, s, t bosonic indices)

(1)
They were found by a series of unrelated argu-
ments, ' but no systematic method seems to exist.
However, one can establish a bridge between
ordinary space and superspace by making a choice
of gauge in superspace and requiring compati-
bility. ' " In this way it was found" that the set
in Eq. (1) follows from the gauge algebra, for
N=1 theory with S, P, A . If one replaces in
superspace at 0 =P the ordinary spin connection
+'„s(e, g) by the improved spin connection, one
finds" the constraints which also appear in the
approach in which superspace consists of two
small chirally conjugated super spaces. " Also
for N =1 conformal supergravity, the constraints
in Eq. (1) hold. " Moreover, the bridge between
ordinary space and superspace yields here also
the local scale and chiral transformations in
superspace, and they agree with the ones pre-

'viously proposed. "
For N =2 superspace, Wess has proposed a set

of constraints on the supertorsion similar to
Eq. (1)." In this article we construct these con-
straints by using the bridge between ordinary
space and superspace and assuming the results
of the N =2 auxiliary fields." Our results are

T,"; » = ——,'5;t(Cy'), „, T„', =T,';, =0,
Ck 3 &1 c & C D
At, Bi s AB~tt(~ I) e (A~B~D t t t)i

7 C& p gC4 p TCA' —& QBTDk
Ass Bj

22 2364



CONSTRAINTS FOR N = 2 SUPKRSPACE FROM EXTENDED. ~ . 2365

where the symbol A. c, in our method is the N =2
auxiliary field, and as we shall discuss, must be
replaced in Eq. (2) by

0

Bi -2T (8)
The last two constraints in Eq. (2} are conse-
quences of the following constraint which we will
derive

Tdk - i6C(6 6lll l626I)y (4)A&B Bg

Just as in the N =1 nonminimal theory, one can
introduce a spinor superfield TB, such that its
8 =0 component equals XB,. Capital letters denote
two-component spinors (see the Appendix). We
used in Eq. (2) four-component notations where
it led to a simplification. In addition, we find for
the 80, curvatures in superspace the constraints

1
F~i', ll =- ~ &.A'6'l' ~

The symbols ( ) and [ ] denote symmetrization
and antisymmetrization; for example, A'B~
=A'B~+A~B'. For E'~„we find the supercovariant
photon curl, while T„'~ contains the supercovariant
spin- —,

' curl and T,'", , contains many auxiliary
fields. Qur results agree with Wess's results on
many points, except that he proposes (in our no-
ta.tion)

as the coefficient of D„. This equation can be
multiplied by (c„)pz. Utilizing the Fierz identity
for two-component spinors (see Appendix) we
obtain a result which contains two independent
equations:

C & C
fA(BC)m 0 fAgl m 26 'TAm t

TAi, Bg
—8 CAB~(iT&) —85(A&B)D5iT&~ .ca — 3 a c ~c k D

(11)

(12)

(14)

From the supersymmetry variation 6(&) of the
auxiliary field XA as given in Ref. 3, one finds
that

D2jT"'i =Inij 2(tj'+&y-, 8)ij -2V'6ij

—2(M +2y, N)i jl'2 —&'i &2j ~ (15)

From Eq. (8) we thus obtain

and complete agreement has now been shown ex-
plicitly if one identifies TA, =XA7.

The differential constraint, however, is in dis-
agreement with our results. To show this, we use
the fact that TA„, the superfield defined in (ll)
and (8), is a good tensor. Hence, using the com-
patibility method foilowed in this paper, one finds

AT . Ck —0Aia Bj

which we do not find. (Note that Wess raises
isospin indices with z'j, whereas we use 6'j}.
Specifically Wess has proposed the constraints
(in our notation)'""

(5) The constraint in (5) becomes with (13)

D AA +k —m =0. (16)
r

Substituting (15) and using two-component nota-
tion [which means multiplying by 2(1+y, )2 =6AB] we
find

T,";,j —,
'

;6(Cjy")„=T„',= T,', ,=0, (6)
0

AiBj A, i,Bj ~i j2~i! Ajt B 2

in addition to the constraint of Eq. (5). It can be
seen that our results [first line of (2)] agree com-
pletely with Eq. (6) above. Similarly, the first
two results in Eq. (7) agree. To see the equiva-
lence of the remaining algebraic constraints, we
note that the general solution of the "cyclicity"
and traceless equations on T» B, is

T„j ' —(6j6 — 6„6j)f„f, — (8)

for some spinorial quantity fA~c . Next there is a
dimension--, superspace Bianchi identity,

Ai +Bj»+C2] [[ C2& +Bj fs Ai]

+[»C. &Ai»&aj] ' (&)

which on using the constraints on T,", » and T,', ,
yields-

TAi Bj 2(&')cc+Tca, aj i(&")8A+Tca, Ai j(c'}BB

(10)

2SO" +2ip'~ —XA'XB~g =0AB (17}

This completes the proof that the formulation by
Wess is inequivalent to that of de Wit and van

'Holten. We have not, however, shown that the
formulation of Ref. 16 is inconsistent. This re-
quires a detailed study of the superspace Bianchi
identities. Perhaps it allows no action.

Fradkin and Vasiliev' have also given component
results for 80, supergravity. Between their first
and second works, they have made many field
redefinitions. However, the net effect of these
redefinitions is to bring their formulations into
precise agreement with the form first presented
by de Wit and van Holten. [The differences in
notation used by these two sets of authors obscures
this fact but, utilizing SU(2) Fierz identities,
equivalence has been found. "]

We have not constructed the constraints on
Lorentz supercurvatures, since they follow ac-
cording to a general theorem from the Bianchi
identities, once the supertorsion constraints are

ao
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Many other authors21 have studied constraints in
superspace from points or view or by using me-
thods which differ from ours. We intend to com-
pare in the future their results to the results
obtained by the method we follow, and to see
whether proper choice of integration constants
can simplify our or their results.

II. CONSTRAINTS IN FOUR-COMPONENT
FORMALISM

straints. The SO, theory with auxiliary fields'~
is invariant under local supersymmetry s, Max-
well m, and Lorentz transformations 1, all of
which act in the tangent space; and under gen-
eral coordinate transformations g acting in the
base manifold. The closed gauge algebra' is
given by

[~(&i i V 1 i ~1 i 4) i~(~2i '12i ~2 i ~2)~

We extend to N =2 supergravity a method used
in Refs. 9-12 and 14 for finding superspace con- where

=~.(F12) +~.(%12) +~i(~12) +~,(&12) (18)

12
——Q2& CIA + 2~)20rs&1) +~sf 1Y e2(gp+YpYi) (es't12 e 1'Yses Ys)X

i

ij 1~ P K ij 1 —ti j] ikPl 2+[28 iii113 2eiY ~2fip ~g, ~l e iIi2'21ii13

&12 ~i2& ~ii+~L2~1i 2~i& &2&dp +s&1(T+'Y T) e +2& (& il + 0& )&2' (19)

~12 t$2 P~1j st[21 ~1~

and the supersymmetry variations of the physical
fields are

g( A @)EA — 118 EA +(8 „A)EA

+—'Ar'X E"+-'4i g .rs II 2 ij
g(„A @)mrs —„AS mrs +(8 A)firn

v'2

1Y iiUe9 ie L&yJ&it'll 1(eiY y9) Y iciJ

(20)
8 Ars DrtAts gstArt

II rr II

&(:",A, @)Bg' ="-A8~B„"+ (e„=A)B~'

4 ij g&K@,Kj gjKC iK
II

where the generators of I orentz and Maxwell
transformations X„,and F,.j act on tensors as
follows:

(21)

In the ca.se of N=2, the PP term in (19) vanishes.
The notations are as in Ref. 3, the gravitational
coupling constant ~ is taken equal to 1, and & is
normalized such that 5g'„=s„c+ more. Under
Maxwell K)2 rotations, 5b„'~ = —a„p'i (thus our
signs in Q,'2~ differ from Ref. 3).

In superspace we assume three local sym-
metries": . general coordinate transformations
5c(:-")with II = (p. , 12), local Lorentz rotations
|1B(A"') and SO2 Maxwell rotations 6„(4'~). The
index convention is as in (12) and (14). The para-
meters ="(x,8), A'*(x, 8), 4'~(x, 8) depend on x"
and 8 ' with e =1,4, i =1,2 since we consider
K=2 superspace supergravity. " The superfields
are the vielbein E„"(x,8), the Lorentz connection
Gp"(x, 8), and the Maxwell connection B„'&(x,8).
Their variations under the whole symmetry group
are

12 [2 A. 1] "La 2] p

A12 -A(2A, ] +" I-29„A,] + ),A2],

12 t:2 1] (2 II 1], $1 2]

(23)

Finally, we define covariant derivatives, super-
torsions, and super curvatures:

Ai B~ AB C 2 ABAn 2 ABF jj

—'A"X E"=A E" —'A"'X E = —'(A o) E
(22)

2 ij II p 2 I i~ II II
1 cii jjy EA —

Q 1@&j~r +kl —@kjg jl +@l jg3kj
II

In N=2 supergravity, the B4 terms in (21) and

(22) vanish. From (21) one can extract the super-
space gauge algebra":

~&("-1 Ai @1) &(="2 A2 4'2)~ =~C("-12)+»(A12)+&B(@12)
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so that

Tc —
( )i& 8 EAE [D Ec ( )AnDE ]

ftmn ( )k&))+n)E»E&&[&) I) mn
( )an& gmn

A B

+ flmsflsn ( )k&flmsgsn]a

y i& —
( )k& B&)E»E&)[&) E && ( )»Q~ U

+E i»E»J ( )knH &»E»J]

(25)

E,"(x,8 =0) =e,'(x), :-'(x 8 =0) = ]'(x),
Oc"'(x, 3=0) =&un'(x), A"(x, 3=0) =X"'(x),

E (x, 8=0)=q (x), =-"(x,8=0)=e" (x),
(26)

at (&x8 = 0) = h"( x) 4"(x 8 =0) =y"(x) .

Then the higher-order components follow by re-
quiring consistency between the gauge algebras
of SQ, superspace supergravity and of SO, or-
dinary supergravity. As the purpose of this paper
is to find constraints on gauge-invariant quanti-
ties, all the "integration constants" are set equal
to zero. The results, to first order in 8, are

\

We have chosen the same sign for the QX and
BY terms in D» so that our BY term has opposite
sign to the one in Ref. 11.

We proceed now as in Refs. 12 and 14 by first
choosing a gauge through the identifications at
order 8'.

)

given in Tables I and II.
Using (25) and Tables I and II, it is now straight-

forward to derive T~os(x, 8 =0). We get the fol-
lowing tensor relations (therefore true to all
orders in 8):

Tn s:Tai s 0
& Ta&~ k«&(cr )a

Ta& ~ b J 4 6&i(Cr )ak(rc~ )

——,', [6»„c.,);,+6»„.(cr,)., (r&) „)']
——,', [6«(cr')„(r,)&»)'+ t)«(Cr'r, )„(rcr,)&»)']'

+ ", 6(&(-co"),k(o„)&&))', (27)

Tck —) enev(yccv)ck pms qi)i (Tck )

Tck —ps' (Tck ) + )Hck
ai~s s af, Bj ~ stai &

where (gn~„')" is the supercovariant spin--,' curl,
i.e. ,

(qccv)ck —D )t
ck

and D„ is defined by 6,&1)kn=D„ek [see the super-
symmetry variation of g» in (20)]. H;k„ is the
tensor e,"(D„E„'" D~k&), -which can be written
(order 8') as

(28)

(29)

and from the explicit form of E'„'(x, 8') we see that
the + terms cancel, leaving

TABLE I. SuperfieMs to Drier 8.~

Em nm y & 8 &rm)t)&
V tt

E,=p --,' {3,~)

+ ~(~ .~~~) +'~ {~~.) + ~(~~+~|:~~~)~ ~--'I~'„'+~
2

v 5 s 5 4

--'(v n "B')'--' "~"0"-' ('v ~') (7 0')'
2 s 5

Eas gag)+ $ {gy) (~ yj)a 3 [g B gA+aA+ (@8~ ),gkj(~ yA)a]

& ((8«ra) 8») (r )&k)a+ (8 &&rsr ) 6»3(r r )&k)a) + & (8 «& )sk)cc(o pk)a
8

graf p (QB QJ3)
1

'2

&i„,„= „„,+~&8&( v„(t„";)'+r,@-."O' r.(t,":)*)+~8-*(.J)"+6':)4+—,
'8'(- t.*'+7,'r&)t'

+ 8 (Tire &e 43+ ~Cre ~5&e&s3~~ff

n., =p -~[a'P +&5~)...'.j.-~[~'(~„,n,'+n,'~„,)J.

'&I«corit«ins only the 8, &, A fields (/&i =—88«+ t p' r&tri)fe'~k)t.
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TABLE jI. Suyerparameters to order 8.'
i pj+pgf

E i - ~ X"ski + ~ e fy ~gf {$'+ y Xi)P

8 (& byj3+ & By @JAN )yJ i (& &iyp3 j)y + & hy ys3R1 y pR+ R
(R isa st j)gj6 5 5 gg p 5 p 5

@0 yis + R (sky PR«)t 0 + gpss
i]

4 2~2

Qrs mrs R {fiysgi)adrs + 1 &i{Z + y T)rs, i @ii + & pi(irrQi& + q &i@ "s)g&
4 P 8

~ ~ ~

A term -4".P' in "' present in Ref. 1 is absent here, because our SO2 gauges the central
charge.

If«« („3-0)='g (y, )s 5', +-,'(yk~+q„"X")5;5',

-'(a«„'+b(sky, ~'),)(y )' 5' --.(~ T"y )'.5'

i(y Z») 5& ', I5: -~k-'iq'„'--.'( 5( y&'),),( y4,)'. (30)

=0 I" = — C
1

+st, s & sk~bbs ~2 sb k s

Notice that the right-hand side of the first re-
lation is the supercovariant curl of 5 [cf. the
supersymmetry variation of 5 in (20)].

III. CONSTRAINTS IN TWO-COMPONENT
FORMALISM

We can now rewrite the constraints using the
explicit representation of y matrices given in
the Appendix, and we immediately get for their
dotted and undotted components

Tmn TAit m Aib Bf

T„",, „=—'-(R&"4a';~
At 3kC~c k D
Aig Bf S~AB li fl 8 ~A B)D ~i f) &

~k —&5C(5 5«R &5«5R)t
Air Bf

Z'&i —0 Tck ~ 5cZ Dk —pAibBf Pig Bf B Ai Df

Air Bf
br

y'if . —y if =~if -y i.f
Akr BR Akt BR Akq s Akbs

Eif — afizf&
Akg BR ~ ~AB k

v' 2zf
Akt BR CAB~k 5R

li fl
/E'f „=supercovariant photon curl.

(32)

We turn now to the B -field strength I'AB, and we
derive at order 8':

Note that y can be replaced by 2T.', as we seeBR DR Bk
from the expression of T„.. ». Hence, XBR is the
6I =0 component of a superfield TBR.

Note added. Breitenlohner and Sohnius in Ref.
4 have also derived a set of constraints on super-
torsions and supercurvatures in superspace with
(gauged) SU, internal symmetry. The torsion
constraints read

T„. ,f'k should not contain spin or isospin —,':
(7o C- y )si, bjT sk p T r —pmn 5 Qfb {2i P mn

E„„=e, (Cyb)„e.xp(C) .
They do not impose a differential constraint and
state that their formulation is equivalent to that
of Refs. 2 and 3, the difference being a rede-
finition of fields and connections.

Recently, J. %ess replaced his differential
constraint in Eq. (5) by

DcT ~ Bk =DdT
Cjg Bf i C jgBf

With Eqs. (13) and (15) one may verify that this
constraint is not in agreement with our results.
However, we can propose an alternative to Eq.
(5) which is satisfied. We find

&' [(D"R -»".a. B™)T~i,dR, «]

+ iR[(DX 27 2 ats)T . &
]

—P

To lowest order in 8 this equation merely implies
the reality of S and I',.f.

Stelle and West (Ref. 21) applied an algebraic
method of determining constraints to N = 2 super-
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space supergravity. All constraints were deduced,
with the exception of the differential constraint.
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APPENDIX: TWO-COMPONENT FORMALISM

We give here our conventions for two-com-
ponent spinors, and the explicit representation
of ~ matrices used to translate from four-com-
ponent to two-component formalism:

—$(jb v„are Pauli matrices
liob

ll) l -li
XA

i
'iX X =i 'ixi'X+y& (1 -yi

X"-=(X")*, X„-=(X„.)*.
Lorentz transformations on spinors

X & —
(B ( 1 /2) (u'

&&) bX
a a

X'" =(exp[((u+ iv)gg]]A~B,

X„'=(exp[(v- iv )io]]~~XB,

SQP

(d~ = 4E]gg, & =
2

~

&variants:

e~ (e&2=i),
4 ~

(AB (.. ((.. = l)xa

~a

Contraction rule:

XA —~ABX
B

and similar for dotted indices. From the de-
finitions

(C )AB.—(g Zl)AB

(»)AB (+& )AB &

it follows that (c„)»=(c„)B„.Conversely, given

(c„)A~ and defining (c„)gB=(g„)Bg, where (c„)Bg
= (o„) ecBe~A one finds the quoted result for
(c„)AB. Since the (o„)„Bare Hermitian (except
for p =4), (c„)AB=(c„)„B(-)"'as the indices
suggest.

y matrices in two-component notation:

Aa
/~r

c'»& h4' »Y&]&

4 [+&& & ~v]A

Note the useful properties (due to e» = —l)

((x„)„,(c")'"=2&»

(C»)AB(+ CD AC BD &

»)cd =2gsgc

(g")AB(C )~ =5"5C+2(C'"„) C ~

Our conventions are further that Cy„C ' = —y~
and ff =8BCB for a Majorana spinor. [Since in
a general representation C ' = —C does not always
hold, one should not define 8 =C ~8~~. This is
already obvious from the indices of (y„) B

be-
ca.use then C has indices C B

and not C B.] Re-
quiring that Ccr„„C ' =-o~r„(i.e. , that 8 trans-
forms as 8'y, ) leads to the general solution
C =A (1+@,)g, +B(l -y, )c, since X" and X~ trans-
form imtependently, but invariance of the Dirac
equation equates A to B.

The four -component contraction XX =XBC& X

-becomes in two-component notation —X"X„-y"X„
=XAX" +y„A." since C=(zAB, e" ) and one always

contracts as A. g&z and g&~y~.
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