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We consider scattering of gravitational radiation incident axially on Kerr black holes. A Jeffreys-Wentzel-

Kramers-Brillouin formulation applied to a combination of the Teukolsky-Press and Chandrasekhar-Detweiler

formalisms allows the integration for relatively large frequencies ~Mto ~. Many interesting structures arise in the

resultant cross sections. These include glories, dips in the cross section "due to" geometrical-optics orbits near the

capture orbits, preferential polarization of the scattered wave, and very strong backward scattering when the

conditions for superradiance hold.

I. INTRODUCTION

The concept of a black hole, an object so con-
densed that even radiation cannot escape from it,
was once dismissed as a prediction of relativity
which was technically theoretically correct, but
had no relevance to astrophysical objects. The
Schwarzschild radius, i. e. , the horizon radius,
of a black hole of the mass of the sun is only 1.5
km. It see~ed safe to dismiss black holes as
theoretical ir relevancies.

The situation now has changed significantly. Al-
though absolutely conclusive astronomical evi-
dence for a black hole has not been found, very
plausible candidates (e. g. , Cygnus X —1) exist.
Astrophysicists have had to take black holes seri-
ously. They are part of the standard vocabulary
of astrophysics, and part of the standard testing
ground of astrophysical ideas.

In a similar way, theoretical investigation may
turn from a concentration on the properties of a
black hole to the use of black holes to test our
understanding of other phenomena. A classical
black hole is the gravitating object of absolutely
minimal structure, ' it gives us the greatest likeli-
hood of discovering the properties of the gravita-
tional field per se, free of contamination of "ma-
terial" modes. In more practical terms, there
are many limiting situations where only the black-
hole-like properties of the gravitational field are
relevant, and it can be taken as the paradigmatic
test body.

This work is concerned with the scattering of
gravitational radiation by vacuum black holes
(Schwarzschild or Kerr ). It is an extension of
work done by Matzner and Ryan. That earlier
work presented catalogs of black-hole cross sec-
tions for gravitational waves with frequencies
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of up to 0.75/M (M is the mass of the black hole).
For higher frequencies, phases at small l values

(I is the angular momentum value for the angular
decomposition in the separation-of-variable solu-
tion) were presented. Matzner and Ryan were
prevented by the cost of computer time from car-
rying the large-
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calculation to values of l large

enough to be considered asymptotic. Hence they
could not determine the entire summed cross
section for those higher frequencies. In fact, it
appears that some of their calculations for
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=0.75/M which they did present as cross sections
were not carried sufficiently far into the asymp-
totic regime. Neglect of large-l structure for
those frequencies gave a smoothed result, cer-
tainly the conservative result one expects if fine
angular structure is suppressed. Many interest-
ing details of such structure are related to the
qualitative descriptive pictures which have been
developed for understanding wave scattering, and
unfortunately these qualitatively enlightening fea-
tures were suppressed in the Matzner-Ryan
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=0.75/M summed cross sections. We display
these features here (Figs. 12-14).

Section II gives the outline of a partial-wave
formulation of gravitational scattering. We then
discuss in Sec. III the technical improvements
which allow us to carry out calculations for larger
l values. The thrust of this section is toward a
JWKB approximation (Rayleigh, ' Jeffreys, ' Went-
zel, ' Kramers, ' Brillouin, ') of the radial differen-
tial equation based on Chandrasekhar and Det-
weiler's' formulation of the wave-perturbation
problem in the Kerr geometry.

Section IV gives results for absorption and scat-
tered wave phases. Before introducing the full
summed cross section, we recall, in Sec. V, the
beautifully descriptive semiclassical theory of
scattering and show the relation between the value
of phases as a function of angular momentum
parameter l, and the scattering cross section. It
is this semiclassical theory which allows an un-
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derstanding of the remarkable prggression of fea-
tures seen in the cross sections calculated in Sec.
VI for different values of ~ and for different val-
ues of the Kerr specific angular momentum a.

Section VI does not present a complete catalog
of cross sections in the parameter space of to and
a. Instead we concentrate on a few particular
examples which typify the behavior of the cross
section, and see displayed the semiclassical wave-
scattering structure of gravitational radiation
scattering. Gravity waves do scatter just as elec-
tromagnetic waves do. Rainbows formed by light
on spherical droplets of water have their equiva-
lent in the scattering of gravitational radiation by
black holes, even spinning black holes. The unity
of the wave description of radiation should have
been expected; what is remarkable is the revelation
once more, in an unexpected place, of this unity.

II. GRAVITATIONAL WAVE CROSS SECTIONS

Analysis of the gravitational perturbations of the
Kerr geometry (the Schwarzschild case is always
treated as a limiting example) may be approached
either from the Riemann-tensor approach of Teu-
kolsky and Press, "based on the Newman-Pen-
rose" (NP} formalism, or from the metric perturba, -
tion approach of C handrasekhar and Detweiler. "
For the present authors, familiarity dictated the
Teukolsky-Press form; in particular, this work is
an outgrowthof that by Matzner andRyan, 'whoused
that formulation. Connections are still required
between the Riemann-tensor structure and the
metric perturbations; such may be found in the
literature. &' ' The critical element in the actual
calculation of a cross section is the calculation
of the radial wave function. As discussed below,
we will find it expedient at a crucial point to switch
from a direct calculation of the Teukolsky-Press
variables to a JWKB structure based on Chandra-

sekhar and Detweiler's formalism. Hence, we
opportunistically take the most useful from each
formalism to meld into the whole.

%'e now review the formal analysis leading to a
gravitational scattering cross section. In what
follows,

' dr* 2+a
dr

~=r- 2M'+ a

=( —r.)(r- -)

(2.1)

(2.2a)

(2.2b)

(defining 6, r„and r )
The equation satisfied by Riemann-tensor wave

perturbations is separable in Boyer- I indquist
spheroidal coordinates. Because much of this
analysis is available in the literature, we only
sketch results here; symbols have their conven-
tional meaning, and details and definitions not
given here can be found in the Appendix. One has

@~q=e '"',ZP(8, p;au))R, „(r,&u),

where 4(q —4'0, p 44 for the spin-weight s=+2,
—2 Riemann-tensor components, respectively.
The radial equation is

, d / ~g dR K -2is(r —M)K+ +4riscor- ~ ~A,A& dr )

. (2.3)

with

K=(r +a )v —am,

and & is related to the eigenvalue of QP of the
angular equation (A1):

& =,EP + a uP —2am'

[cf. Eq. (3.27)]. Asymptotic solutions of Eq.
(2.3) take the form

oo I
@4~' ~ —g e ~"' "*"[(HeC +12iMa&'P)K, 'e/r ] gZP(a&a'), .le

00

e~ ~ — (~')'K"'„.p (e'"'"" "/r) qZP(a&')
m QQ

(2.4)

(2.5)

with similar expressions holding for @0. (The
constant C is defined in the Appendix. ) Here and
subsequently, "down" refers to a mode which van-
ishes on e' (i. e. , pure ingoing at infinity} while
"up" refers to a mode which vanishes one (pure
outgoing at infinity}. These forms (2.4) and (2.5)
are related to asymptotic metric perturbations
(in appropriate gauges; Chrzanowski et af. '~) ex'-
pressed in terms of the metric projected on the
transverse vectors m, nz.'

h '~J) d(o'QK ~' Z (a(u')e '" " /r
l ml-

and

(2.6)

h-"'- ~ d&o'g K"„„,& ~ZP(a&u')e'"'" "/r. (2.7)
l mP

Since the metric perturbations are real there is a
condition: +l~~ =I'll

These formulas are relevant because the mode
constants ~l'„~,~l „~for an incident plane wave
of frequency ~ are easily calculated:
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Z, „„;p(planewave) =- —. 2N»;, (a&@)
hm

x[5~5((u'-(o)-P5 26(»d'+ (u)]

(2.3)
and

K",'„,P(plane wave) = —(-1)""&d'""(plane wave) .
(2.9)

These amplitudes are for circular polarization.
If a~&0, the. waves corotate with the hole. If
a+ &0, they counterrotate. Plane polarized waves
are constructed by combining circular polariza-
tion amplitudes. Note also that the subscripted
E, ~ is a mode constant, while the unsubscripted
& of Eq. (2.3) is an explicitly defined function of

Similarly, note the distinction between, Z, , the
angular wave function, and the quantity Z which
appears in Eqs. (3.17) and (A13). This latter Z is
one form of the radial wave function. Unfortun-
ately, the conventional notation for these quantities
is ambiguous. We hope the context will make
the meaning clear. jP», is a constant related to
the limiting behavior of the angular wave function
g~r= e» ~,S, (8;a»rr) [cf. Eqs. (A11) and (A12)] and

h is the wave amplitude.
We point out a curious feature of the metric

perturbation approach versus the Riemann-tensor
approach. In the asymptotic metric plane wave
form, the two parities appear in essentially the
same way. However, it is well known that the
metric perturbation equations (even in the spheri-
cally symmetric case) differ for the two parities.
On the other hand, the Teukolsky equation (2.3)
does not depend on parity, but the asymptotic
plane wave for the Riemann-tensor components
does. Because the parity splitting occurs there-
fore explicitly in the initial data, the different
parity dependence in the general solution is
straightforwardly obtained. Chandrasekhar and
Detweiler" showed that the reflection and trans-
mission coefficients (quantities obtained by taking
the absolute square of the amplitudes} for the
radial equation, considered as a 1-dimensional
scattering problem, are the same for the two pari-
ties. It is here precisely the phase of the ampli-
tudes which is important. The explicit ReC
+ i&2M(dI' dependence on parity leads to differ-
ences in phase shifts, which are very important
in calculating the cross sections.

Equations (2.3)-(2.9) contain the fundamental
equations for a scattering calculation. A solution
to the radial Teukolsky equation is found (by nu-
merical integration if necessary) with normaliza-
tion adjusted so that If ' =Z '(plane wave), and
with scattering boundary conditions, nothing emer-
ging from the past horizon K . The value of the
mode coefficient ~' determines the scattered
wave by

Xg Zr..p
rmP-

e ga)' (y+ -t)
2Z» (a(O'}

(2.1O)

where

ff'1 P '~l mu) P~'l P(pla'ne wave) . (2.11)

Since Z also determines the asymptotic trans-
verse (traceless) part of the metric wave pertur-
bation, we may directly evaluate effective energy
fluxes, etc. , using K By using the symmetries
of the angular function, S»", we obtain'

2do ~ k»2~ 2S, (&;»rv)
GQ „gg

while the total absorption cross section is

(2.12)

o„,= P h '[~kr'~(plane wave) ~' —~I»r ~, ]
lmP

(2.13)

(see also Unruh").
In these two equations, k is defined by

«m~'p= &r2m~w~(rd —~ )

+ kr 2 ~ 6 25 (rd +»rr') (2.14)

with a similar expression linking &"'(plane wave)
and k"'(plane wave).

III. MATHEMATICAL FORMULATION, PROBLEMS,
RESOLUTION

Previous studies of the gravitational-wave-scat-
tering problem used a direct numerical integra-
tion of the Teukolsky radial equation. The appear-
ance of the term 4is&u in Eq. (2.3) forces an as-
ymptotic difference of ~2s

~
powers of x in the

amplitude of the ingoing versus t'he outgoing solu-
tions. A change of dependent variable, to a new
variable called X, was given by Press and Teukol-
sky." It removes this asymptotic amplitude dif-
ference but leaves the resultant second-order
equation in a form in which the incoming solution
is asymptotically of the form -e '"" while the
outgoing solution is asymptotically constant. The
presence of this rapidly oscillating phase, together
with the necessity of maintaining accuracy over a
substantial number of cycles, results in imprac-
tically large integration times, even for moderate
values of ~~ ~. The previous work was therefore
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(3.1)

and find (prime denotes d/dr*)

[X —pfx(x- M)Ã+ x(4)xtxx —l )]
(P p 2)2

= o, (s.2)

where X is defined as in (2.3}, and

G = s (r —M)/(r + a ) + rn, /(2 + a ) (3.3)

Equation (3.2) is of the standard form for JWKB
analysis. '

Q "+ Eq =0

with E asymptotically given by

(„=a/+ +0(

(3.4)

(3.5)

A similar asymptotic form is obtained for the X

equation. The JWKB solution is (cf. Mathews and
Walker")

restricted to relatively small values of this param-
eter, and relatively small values of the angular
quantum number E, since the required integration
range in r is proportional to

~

l/(d ~.
When difficulties of this type arise, it is natural

to consider some sort of analytical approximation
that handles the rapid phase variation, and allows
a more straightforward integration of the ampli-
tude. Such an approximation is the JWKB approx-
imation, the eikonal approximation. ' ~ ' ' To
proceed in this fashion we set"

Q —(r +a) n R

tion also obviously depends on the asymptotic be-
havior of g. We define error as the accumulated
change in the ratio a /a, (integrated from the
match point to any particular radius r}. We find

(a/a. )'- gr ' (s.io)

with

1(" 5 (s.ii)

Asymptotically, for Eq. (3.4),g-r '. [Noticethatthe
JWKB solutions are exact solutions to 8',"+ ($ + g) W,
=0.] Withthis asymptoticformforg, (aJa,)' r'""
and hence requires s & —,

' for convergent total er-
ror. Such an ap roach is thus inapplicable for the
gravitational (~s =2}and electromagnetic (~s ~

=1}
cases, and marginally unsuitable for the neutrino
case with ~s

~

= —,'. One would have to refine the
error analysis to make a definite statement about
this latter case. (The formulation in terms of th'e
variable X, referred to above, leads to similar
error estimates if cast into a JWKB form. )

We expect, however, that the JWKB inapplica-
bility is only an artifact of the Newman-Penrose
formalism, which deals ab initio with complexified
objects. It is the imaginary term proportional to

in Eq. (2.3) which causes the difficulty with the
JWKB approximation and this type of term must
have arisen from an explicit complexification of
the problem. Actual metrics are, after all, real.
Consider a general radial wave equation of the
form

with

(3.5) d2y (, 2y Z
~ +I ~'+ ——g+Va ~4 =o (3.12)

Ip, =( ' exp]x), ("dr').-1/4 ~
~ 1/2 (3.7)

The constants a, may be determined by matching
the JWKB form to an exact solution W at any par-
ticular point. This gives

where V„-O(r ) or higher. By a suitable choice
of the parameter y and V„and if (t) =rt/i, where g is
the probability wave function, Eq. (3.12) is the
quantum-mechamcal Coulomb (y=Ze, h /p =1)
or the Newtonian gravitational (y= 2MaP) scatter-
ing problem. By letting

a, =+2i(WW,' —W—
' tV,), (s.s) r = r~+ln r

(d 4) ]
(s.is}

where the right-hand side of the equation is evalu-
ated at the match point. The W, are not exact
solutions to (3.4); we may view the deviation of the
JWKB solution from the exact solution as a func-
tional variation with match point r of the con-
stants a, .

For the asymptotic potential given by (3.5), the
asymptotic JWKB solutions are

W, = g
' exp[+i~(r+2Mlnr) ws lnr], (3.9)

where the term involving ~ arises from the as-
ymptotic form of dr*/dr. The ratio of the two so-
lutions thus varies as y". The error accumula-

and

2/2 (d+)] 1/2

(s.i4)

one finds that y satisfies

d +z +(~ —V,)y=O,2

dr* (3.15)

(3.15)

with the potential V~ asymptotically of order r
or smaller, given by
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C learly, any scattering with a r'eal potential
which admits plane-wave solutions at infinity may
be put in short-range form by a suitable choice
of wave function and coordinates. If one chooses
to work directly with (real) metric perturbations
instead of the complex quantities of the NP for-
malism one then expects the Schwarzschild case
should possess a choice of variable yielding the
form (3.16). Indeed this is the case (cf. Ref.
15 and references therein). Since the Kerr
case is asymptotically Schwarzschild, by ana-
logy one concludes that Kerr should also pos-
sess such a form. " That this is not immediate in
the analytical structure is due to the fact that the
algebraic intricacy of the perturbation problem
motivates the use of the complex NP formalism
with a resultant potential having, in particular,
complex r [see Eq. (3.2)]. This leads naturally
to a potential which is short range but in a com-
plex variable. The resultant solutions then still
differ asymptotically by several powers of x.

Since we know a suitable solution with (at least)
real y exists we seek such a form by using instead
of (3..14) the most general transformation of the
form Z(x~) =g(r)R(r)+h(x)R' and solve for g and
h subject to the form desired of the equation for
Z. Such a calculation has been performed by
Chandrasekhar. " The result is that Z satisfies

z + (&u —Vz) Z=0, (3.1V)

where ~~ is defined by

dr„ i'+ a am/(u -' (3.13)

and where V& is asymptotically real, and V~ -~"

as x-~. The explicit dependence of ~ an R and
its derivative, and the explicit form of Vz are
given in the Appendix. In fact, since V& contains
two constants determined only up to a sign, there
are four physically equivalent potentials V~.

The detailed behavior of the potential V~ has
been discussed at length by Chandrasekhar and
Detweiler in a series of papers. "'""For our
present purpose several of the general features
are of importance and are distinguished by the
presence or absence of superradiance. (Super-
radiance is the process whereby incident radiation
may extract energy from the hole, increasing the
amplitude of the wave. )

In the nonsuperradiant (&u & am/2M'. = &u,) case,
the potential is well behaved everywhere autside
the horizon, differing from the usual sort of po-
tential encountered in central potential problems
only by being complex. In the superradiant case
~ & ~, singularities appear outside of the horizon,
and the r(r„)relation becomes double valued with

x~ -+ corre'sponding to x-x, and x-~.
In principle, the singuarities arising in the po-

tential present no insurmountable obstacle to
numerical integration but do require special con-
sideration at the singular points. To avoid such
consideration we choose to integrate the X equa-
tion, which is well behaved everywhere, from the
horizon through the points of singularity of V& to
a value of x at which the error in the JWKB ap-
proximation to the function ~, as given by Eq.
(3.V), with W, appropriate for Z, is small. We
then match X and its derivative t'o ~ and its deriva-
tive and apply the JWKB approximation to the Z
equation to continue the integration to large r.
Because of the asymptotic form of V, , the JWKB
analysis goes through without difficulty. Since
the amplitudes of the ingoing and outgoing parts
of Z are asymptotically constant, there is no
difficulty in separating these parts from the as-
ymptotic solution.

There is dramatic evidence of the advantage in
using a JWKB approximation to integrate the phase
directly rather than integrating the rapidly oscil-
lating wave function itself. For instance, for l
= V and M~ =-a/M = O.V5 it takes more execution
time (several seconds) to integrate X directly
from x-30M to x-40M than to perform the inte-
gration in (3.V) from ~-30M to the asymptotic
regime at x-400M, a reduction of computation
time by about a factor ~. Even greater savings
are realized for the larger values of l, for which
integration must proceed to still larger values of

The difference in partial absorption cross
section for each l mode as calculated by the two
methods is less than one part in 10 .

The Chandrasekhar-Detweiler equation (3.1V) and

the Coulomb version of (3.15) are very similar. For
calculating cross sections, this similarity at once
poses a problem and provides its solution. First
note the similarity. ' the radial equation for 2 in
the Kerr gravitational scattering ease is identical,
for large l and x, to that of quantum- mechanical
Coulomb scattering of spinless electrons except
for the parameter choice in the I/2 term. We
then have the same problem in a partial-wave
calculation of the gravitational cross section as
in the Coulomb problem, namely, the radial solu-
tions only slowly approach an asymptotic form as
l increases. This would force a tedious numerical
integration of the radial equation for many values
af l until l was large enough to transcribe the
analytical asymptotic remainder and sum the cross
section.

The problem is its own solution since the Cou-
lomb caNe has a well-known analytical solution.
Recall for a moment the usual motivation for
adopting a partial-wave analysis in potential scat-
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tering problems. For this one views each in-
coming l mode as an individual projectile of orbi-
tal angular momentum -(E,)'~'-b&o, where b is an
equivalent asymptotic impact parameter along the
axis of incidence (see Fig. 3 and Sec. IV). For
problems containing only a short-range potential
V (i. e. , V falls off as fast or faster than 1/2 or
else V=O for x greater than some value ro) those
modes with l &l, =r 0(d contribute negligibly to the
scattered wave, ' they effectively miss the poten-
tial. For such modes one may simply transcribe
the asymptotic free wave solution. Hence, the
radial equation need be exactly solved only for
l & lp.

In the Kerr and Coulomb cases the potential is
not short range since it possesses a term in I/r
We then expect to have to solve the radial equation
for a large range of l values to obtain a complete
solution. But now the analytical Coulomb solution
solves the problem for it can play the role of the
asymptotic free wave in the usual partial-wave
analysis. The point of using the asymptotic free
wave was not that it is free but simply that it is
analytically known, allowing immediate transcrip-
tion for l & lp. For sufficiently large l the Kerr
modes; instead of missing the potential, are scat-
tered as they would be by apure Coulombpotential.
For l less than some reasonable value we cal-
culate the Kerr modes numerically. For the re-
mainder of the l modes we make an appropriate
identification of parameters and. transcribe the
analytical Coulomb result exactly.

In the Coulomb scattering problem, the wave
function has the form

[( 1)l e-irurP e2i0iei~rc]
2Z(dt'

(3.10)

2,.„,I'(/+ 1 —2/Ma&)

I'(/ + 1 + 2/M id)
(s.ao)

with I' denoting the gamma function. 2~ The Kerr
case is analogous to the situation when the Cou-
lomb case is combined with a short-range nuclear

where x& is the Coulomb radial variable defined
by Eq. (3.13). It incorporates the long-range
logarithmic phase in both ingoing and outgoing
waves due to the I/x potential. The first term on
the right is the ingoing part of the mode normal-
ized conveniently to unity. The second term on
the right is the outgoing scattered piece of the
wave multiplied by the phase-shift term e '"' in-
corporating the effect of the scattering by the po-
tential. The pure Coulomb phase shift with param-
eters appropriate to gravitational scattering is
given by

potential. The phase shifts may then be written
&, =p, + 46, . Generally, for any given value of l,
the larger &u (hence the larger the energy of the in-
coming wave) the larger is n&, . For a fixed v,
however, &&, -0 as l becomes large.
We may put the perturbation equation (3.17) for

gravitational waves in the Kerr background in the
form of (3.12) by letting i/ ~ =(dr/dr~) Z T. hen
in the large-r limit we have

t'd
4z~+ [& —Vz+0(y )]~ yr = 0

~dh
(3.21)

with the prime again denoting derivation with re-
spect to x. Asymptotically, the potential V~ as-
sumes the form

2E, +u (u -aa(um
g( q) (3.22)

/=- —,'+ —,'[1 —48M &u +4/(/+1)] ', (s.a4)

Eq. (3.23) is identical to a Coulomb problem with
/(/+ I) replaced by /(/+ 1). For large /, / & L say,
the Schwarzschild phase shifts are thus indepen-
dent of parity since both parities approach the
Coulomb form [cf. Eq. (4.12)] and are given by
Eq. (3.20) with / replaced by /. Typically L is a
fu11etlOI1 Of (d.

IQ the Sehwarzschlld case we can then Use, as a
good approximation to the cross section,

2"
+ QQ (- I)'Pl, 2 i 2S, (v-8;0)

P gQ

(s.25)

where the k,2~, defined as in Eq. (2.14), are
numerically computed using the exact Schwarz-
schild radial equation and the k, q'„"Pare obtained
from (3.20) with the substitution /-/. In fact, the
summed Coulomb amplitude

N ow we may expand dh~/dr to obtain the large-x
limit of Eq. (3.21) [cf. (3.15) and (3.16)]:

4M&v 12M &d —8, —a &d +aa&dm)i

r
= o. (s.as)

This is essentially an approximation in //v» 1
since for fixed (d the classical turning point in-
creases approximately as l.

First consider the Schwarzsehild case a=0. In
this case the angular eigenvalues are 8, =/(/+ 1).
Now Eq. (3.23) is identical to the usual Coulomb
radial equation, except for the appearance of the
term 12M &u in Eq. (3.23). If we then define
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constitutes anumerieal estimate of the apparent size
of the Kerr hole as viewed along the rotation axis
then using the data. in. the figures the average re-
sp.ective sizes become, for a=0.9M, b, -3.VM

for the corotating ~ & 0 ease and b -5.6M for the
counterrotating ~ & 0 case. This suggests that if
one were to solve for tile marginally trapped null
geodesics with incident direction parallel to the
axis of the rotation of the hole one should expect a
splitting in the apparent size of the hole depending
on whether the angular momentum of the hole and
spin angular- momentum of the incoming wave were
aligned or not, with the minimal apparent size
corresponding to the case of greatest total angular
momentum in the g direction.

If, instead, one estimates the apparent size of
the hole from total absorption cross sections
calculation via Eq. (2.13), a splitting is still evi-
dent between corotating and counterrotating inci-
dent waves. , For instance, for a =0.9M and ~M&u

~

=1.5, one finds a~, =80.3M for counterrotating
and a =62.5M for corotating incident waves. By
a~ =mb' this gives b =5.06M and 5, =4.46M. The
Schwarzschild numerically calculated value for
M(v=1.5 is bs,h ——5.15M, indicating that the geo-
metrical optics absorption behavior (correspond-
ing to bs,h -5.2M) has not been reached for the
relatively low frequency M~ =1.5.

a =.9M
Mco = .75'

—I-
Phase

I I I I I I I I

2 4 6 8 IO I2 l4 t6 l8 20

FIG. 4. This figure, along with Figs. 5-8 immediately
following, shows the phase of the scattered waves for
various frequencies for m= +2. The m= -2 case may be
obtained via the reality condition K, z= PK, „z.The
phases of positive-parity P=+1 waves are shown with
pluses. Minuses indicate the negative-parity phases
where they are significantly different. Coulomb phases
are shown as dots. As discussed in the text, waves
which are completely absorbed possess the phase -~/2.
For the case shown here, a= 0.9M and corotating fre-
quency Mco = 0.75, the phas e for only the lowest l= 2
mode shows nearly complete absorption (phase= -~/2).
Between l= 3 and l= 5 the phase changes rapidly, yieM-
ing a large value of the semic'lassical deflection function
8(l) =2d(phase)/cg. This suggests large-angle scattering
for these modes. For l ~5 the Kerr phases approach
the Coulomb values rapidly, - being virtually identical for
l~8.

B. Phases

The simplified rectangular-barrier problem of
Eq. (4.2) is also useful in understanding the be-
havior of the phase of the scattered wave (equiva-
lent in the ease of zero absorption to the usual
phase shift). Figures 4-V display the computed
phases versus E, for a=0.9M, M(d =+0.V5, and
Mm =+1.5. Figure 8 shows the phase for the co-

rotating case Mco =O.V5, a=0.99M. For small
values of l the phase is uniformly -w/2. Since the
outgoing-plane-wave amplitude is proportional to
i [see Eq. (2.9) and the Appendix] a phase of -v/2
indicates total absorption since the corresponding
term in the scattering amplitude is then, just the
negative of the plane-wave part. As l increases
the scattering enters the region of transition be-
tween total absorption and reflection and the phases
are relatively erratic. In the rectangular-barrier
problem, the reflection amplitude when absorp-
tion is substantial is

8 ~ i exp (-2i&ob)
(4.Vj

~i exp[-2i(l'+l)"'] .

Hence the phase is -[l(l+1)] . Since the phase
is modulo 2~ this gives the erratic behavior of the
phases in the transition region. We emphasize
that the magnitude of the outgoing wave in these

Phase

a =.9M
Mcg =1.5

—3-

+~

X~ +g
N~ +

0
I I I I I

2 4 6 8 IO I2 I4 I6 I8 20

FIG. 5. This plot is similar to Fig. 4 but for a= 0.9M,
M&=1.5. Notice the larger region for low l (between
l=2 and /=4) showing complete absorption. Notice also
that the region between complete absorption and ap-
proach to the Coulomb values is much larger in l. This,
plus the fact that the phases are changing erratically
there, leads to a semiclassical expectation of greater
interference between modes in the large-angle scatter-
ing features. The Kerr phases do not become nearly
equal to the Coulomb phases until l -, 20; in fact, inte-
gration to even higher l values would be necessary to
completely determine the asymptotic l behavior of the
phase.
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FIG. 6. This is a plot of the phases similar to Fig. 4
but for counterrotation u= 0.9M, Mar=-0. 75. In com-
parison to the corotating case of Fig. 4, notice that this
case shows more complete absorption for the low l
modes and only one or two modes which have phases
differing greatly from neighboring modes. As discussed
in the text this implies less oscillation in the cross
sections at large angles since fewer modes participate
in large-angle scattering, resulting in less interference.
Finally, notice that the counterrotating case approaches
the Coulomb phases more slowly than the corotating
case of the same frequency. These features are. even
more apparent at larger frequency (see Fig. 7).

cases is small.
As l increases into the region of greater reflec-

tion, the figures show a convergence to the Cou-
lomb value. The converngence is slower in l for
larger values of a(d, indicating that even for the
relatively small value M~ =0.75 one should com-
pute phase shifts for l past 10 (the value to which
Matzner and Ryan were limited) to obtain the de-
tails of the cross sections. The truncation to l

0-
Phase

a =.9M
M~ = -l.5

+++++++

l I
'

I I I I I I I I

2 4 6 8 IO I2 l4 I6 I8 20

FIG. 7. This is the counterrotating a=0.9M, M~
=-1.5 case corresponding to Fig. 5. The comments of
Fig. 6 apply here as well, but this example is even more
striking than the lower-frequency case. Compare this
figure with Fig. 5.

I I I I I i & I

2 4 6 8 IO I2 I4 l6 IS 20

FIG. 8. This figure shows the phases for the highly
superradiant, nearly maximal, Kerr case, a=0.99M,
M~= 0.75. It should be compared to Figs. 4 and 6. No-
tice that the E=2 mode not only is not strongly absorbed
but shows a large difference in phase between the posi-
tive- and negative-parity waves. This leads to a large
backward contribution as discussed in the text. The in-
termediate modes, between 5=3 and 1=6, are very sim-
ilar to the a=0.9M, M~=0.75 case whereas the large l
modes appear similar to the counterrotating M&=-0.75
case. Thus we expect a large-angle interference pattern
similar to that of the counterrotating case, with similar
angular behavior of the maxima and minima, but a large
background backward contribution due to the superradi-
ance in the lowest two modes. This is se'en in the cross
sections in Fig. 14.

I

= 1.0 in the calculated cross sections of Matzner
and Ryan and the resultant normalization to the
Coulomb value at l. = 10 suppresses (at least) the
interference pattern expected between the higher
l modes. This should be particularly evident for
the higher values of a&a. [See also the discussion
after Eq. (3.26) above. ]

(The calculations here extend only up to a&v=1.35
(a=0.9M, M&v=1.5) for which the value L =20
[cf. Eq. (3.26)] is sufficient. It should be observed
that this limitation is not imposed by the radial
integration since the integration of the radial equa-
tion via the JWKB approximation becomes more ef-
ficient as l increases. Instead the limitation was
imposed by the necessary solution of the angular
equation (Al) for the PP and QP. The technique
used here is exactly that of Press and Teukolsky, '7

namely, a continuation method based on an expan-
sion for the spheroidal functions (a~& 0) in terms
of the spherical functions (ace =0). Integration of
the continuation equation to large values of am is a
relatively time- consuming process. Other tech-
niques, such as a modified JWKB procedure for
the large-l angular functions, would alleviate this
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difficulty, but we have not attempted such an ana-
lysis. )

We mentioned in Sec. 0 that our approach gives
the parity dependence of the calculated scattered
wave in a direct way, since the nontrivial parity
dependence appears only in the incoming plane
Riemann-tensor wave. The importance of the
parity dependence of the' phase shifts lies in its
implication for significant backward scattering.
For any value of l a backward contribution to the
cross section arises only from the second absolute
square term in Eq. (3.25) since the 2S„(e)vanish
at ~=m but not at ~=0." Henceabackward contri-
bution is found only when

0~2'=-g & 0~ (4.8)

in other words, when the difference in phase shifts
between the two parities is significant. Any dif-
ference in phase arises from the parity dependence
of the asymptotic plane wave -ReC+12iMcoP.
Since ReC - (&,), the phase splitting in parity is

M~ -0.5. (4.I))

Figure 9 illustrates the difference in phases for
several cases in which it was significant, a = 0.99M,
%co = 0.75; and a = 0.9M, I+= 0.75 and 0.5. Fre-
quencies lower than those estimated via(4. 9) above
also show phase splitting but as frequency in-
creases for a given value of a, absorption quickly
becomes complete at small l values. The large
phase splitting for a =0.99~ is particularly signi-
ficant for backward scattering since this case
shows large (-120%) superradiance in the phase
split l=2 mode (see Fig. 2). The resultant signi-
ficant backward scattering is evidenced in the
angular cross sections discussed in Sec. VI.

Since parity splitting in phase appears explicitly
in the plane-wave expression the 1 dependence of
the resultant splitting may be determined. Using
the explicit parity dependence of the incident plane
waves, one finds the resultant phase term given by

maximal for smaller values of l. At the same
time, for the phase splitting to contribute to the
backward scattering, the mode concerned must not
be substantially absorbed. Therefore we expect
the maximal phase splitting, hence maximal back-
scattering, to occur for smaller corotating fre-
quencies and larger values of a, particularly those
values for which there is considerable superradi-
ance.

Using the potential of Eq. (4.2) we may estimate
the maximum frequency for significant phase split-
ting as that value of ~ which has co comparable
to the maximum height of the potential for small
l, i. e. , I uP ~ - (2 && 3)/2V providing

I 2 I I I I I

24iMco
&2~P =+2- r2~P= 2=I2g2~a+2 -[(R ~)2+ 144M' 2~ y2

-5-
- I.O-

-2.0-

c) ~ ~ -—~—O—O—~—O —~—~

a =.99 M

Map = .75

12M&
~exp -~tan

ReC

(4.10)

For large l, k-k "' and

Re& -Re&(Schwarzschild)

= l(l + l)(l + 2)(/ —1)» 12M(u . (4.11)

Hence, for large l the parity-split term is
I i I I I 2 I I I I I I

4 6 . 8 IO !2
~~24'�(d

&(&+1)(I+ 2)(E 1)
FIG. 9. The difference P,—P between the positive-

parity I'=+1 and the negative-parity P= -1 phases for
Kerr holes with several values of frequency Mw and a.
The difference between the phases is important for un-
derstanding the backward (8 -&) behavior of the cross
sections as discussed in the text. These plots are illus-
trative of the cases in which the difference is signifi-
cant.

o- k' l (4.12)

For l ~20 the relative contribution to the scatter-
ing from the large-/ modes is less than one part
in 10 and virtually no contribution to the cross
section is lost by truncating the computations as
we do, at L =20.
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V. SEMICLASSICAL DESCRIPTION OF SCATTERING

6(I) =2d5t /dl . (5.2)

Hence, a knowledge of the JWKB phase shift can
be expected to predict the qualitative behavior of
the cross section, via the classical formula

do b db

c&assi a

co'(I„+-,') de
) s&ne/ dl

(5.Sa}

(5.sb)

Two classical scattering phenomena have im-
portant analogs in black-hole scattering. The
first is glory scattering. This arises when the
deflection function passes smoothly through 0, or

etc. Classically, the vanishing of sine(l)
where de/dl is finite leads to a singularity in the
cross section for forward or backward scattering.

A substantial gain in understanding the results
computed here can be achieved by considering a
modified JWKB-wave- mechanics description which
allows a direct connection between the phases,
say, the classical deflection angle [Eq. (5.2) be-
low], and the classical cross section. This sec-
tion is named after the definitive reference on the
subject: Ford and Wheeler. Almost all the qual-
itative features of the scattering can be under-
stood by appealing to the semiclassical analysis,
a fact which greatly enhances our confidence in the
numerically computed results. The principal dif-
ference between Ford and Wheeler's treatment and
ours is that they considered only elastic scatter-
ing. For black holes, we know, and Figs. 1 and
2 confirm, that absorption and superradiance are
also important phenomena, as is phase splitting
(Fig. 9). We shall see that in some situations
they make significant modifications to the cross
section expected from the Ford-Wheeler analysis.

The JWKB analysis of a quantum-mechanical
short-range real (spherically symmetric) potential
scattering proMem yields phase shifts [analogous
to the 'gt of Eq. (3.19) but note that the ordinary
Euclidean radial variable r would appear in the
short-range-potential form of that equation]:

5, =tt/4+ltt/2-krtt+ J) (k, -k)dr, (5.1)
Pp

where k=2tt/Z, k, -=[2pN '(Z —V} —(l+g)'r ']"', u

is the mass of the scattered particles, and rp is the
classical turning radius of the orbit of energy &.
The centrifugal barrier is changed from its quan-
tum form t' l(l+1) to r (l+-,')', a standard tech-
nique to improve the accuracy of semiclassicaI.
calculations. By comparison to the orbital equa-
tion for classical motion in the potential V we see
that the classical deflection function 8(l) is

This effect can certainly arise in the black-hole
case. The forward divergence of the Coulomb
problem can be viewed as a forward glory. In the
black-hole ease the possibility of deflection via
spiralling orbits that wrap a large number of
times is also a possibility, so we expect backboard
glories in the black-hole case.

Following Ford and Wheeler, consider a back-
ward glory. Then

8(l) = tt+a(l —l ), (5.4)

where l~ is the angular momentum corresponding
to the e.=tt orbit. From (5.4) and (5.3}we see that

e- vl Equati. on (5.4), with
(5.2), leads to

5t = —(I - I ) + ~a(l - l ) + 5, (5.5)

where &, is the glory phase shift, corresponding
to 8=r. The usual expression for the scalar
scattering amplitude (except in the forward direc-
tion; cf. Landau and Lifshitz")

f(g) = .Q (2l+1)e t'tP, (cosg) (5.6)
4m& r=p

may be approximated by an integral, and the cos~
=-1 behavior of &, may be approximated as a
Bessel function

f(g) 82tnge rit&
4im

OQ

2
(2l +1)e"" '&' V, (l sing)dl . (5.V)

lp

The integral may be appr'oximately evaluated

u &2~
'"

~(g) ~~ ta6 -rt -t&4)~
(&

~

g}
2m (a 0 g (5.S)

where this approximation now neglects the differ-
ence between l~ and l~+-,'. The cross section in the
backward direction is thus proportional to

&0'(l, sing) . (5.9)

The singularity in the classical cross section is
replaced by a finite peak. When the Besse1 func-
tion is averaged over several cycles (clp (x)) = I/ttx,
the classical result is recovered.

8 more than one value of l leads to 8 =m deflec-
tion, then the amplitudes add; this may lead to
phase interference between the amplitudes with
different l~.

The second important semiclassical phenomenon
is so-called "orbiting" scattering. In quantum
mechanics this occurs because the effective poten-
tial (i. e. , including the centrifugal term) has a
local maximum. The behavior of the deflection
function, for an energy just at the value of the
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local maximum, is, according to Ford and Wheel-
er

(f) =e1+ bin f /, f &4
I-l

ly ]'
6(&) =81+2&»I «f1I'ly —l

(5.10a)

(5.10b)

where b, ~q, and ~2 are constants, and lq is the
value of l which satisfies

~sf' acti ve(+1 & f1)— (5.11)

where xq is the radius. at which the maximum in
~«„«„occurs.It is possible that the logarith-
mic variation in 0 occurs in an angular momentum
interval b,l & l. A logarithmic excursion in O(l)
over such an interval requires that 6, have ex-
tremely large derivative=is essentially discon-
tinuous —over this interval. As Ford and Wheeler
show, this effect can lead to a dip in the cross
section at the angle 8(l,) (Fig. 10). We should ex-
pect qualitative features of the glory or orbiting
type in black-hole scattering, but differences cer-
tainly exist, especially because there is absorption
by black holes. We will also find effects speci-
fically due to the polarization of the gravitational
waves which modify the semiclassical scalar ana-
lysis of this section.

There is a third semiclassical quantum-scat-
tering effect, namely, rainbow scattering. This
occurs if d6/dl vanishes. Since the deflection (at
least for Schwarzschild black holes) always in-
creases as l decreases, this phenomenon strictly
does not occur in scattering by black holes. How-
ever, the glory phenomenon can be viewed as be-
havior of this type for 8 =&, e =0 scattering,
since 6 =s+ c, 6 =w —e (for.instance) are not dis-
tinguishable. Rainbowlike behavior will thus be

'

expected (see Figs. 12-14) because different fre-
quencies are scattered differently.

VI. RESULTS: CROSS SECTIONS

Figures 11-13display cross sections chosen
because they display typical qualitative structure
of the kind suggested by the semiclassical discus-
sion of the preceding section. Figures 11 and 12
are calculated for a nonrotating black hole. These
figures define a baseline against which to measure
the considerably more intricate Kerr cases dis-
played in Fig. 13.

The feature which all these cross sections
have —must have —in common is a forward Cou-
lomb peak -~ . For a given frequency, the angu-
lar momentum can be chosen so large than the
geometrical optics result of the Einstein deflec-
tion

"8(e)

e ' I I I I I I I I I I I I I 8(l) = 4M/l&u

dQ

o(~) e

FIG. 10. An illustration of a sharp orbital dip from
Ford and Wheeler (Ref. 25). The sharp discontinuity
&6& in the phase shift 6& at l~ leads to a deep mini~urn
in the deflection function 8 (I) at f1. The characteristic
orbital dip then appears at 8= 0'(l&) where 0'(l) is the
smoothed deflection function ignoring the dis continuity
in &&. The angular width of the orbital dip is &0 - [do~'/

dll, ~ . Compare the characteristic shape of the orbital
dip with the features seen in the Kerr cross sections of
Figs. 13 and 14.

holds; this leads directly to the Coulomb diver-
gence.

The overall Coulomb behavior is, however, sig-
nificantly modified by glory and orbiting scatter-
ing. Figure 11 shows the Schwarzschild cross
section for fairly low fr equency (Mic =0.1).' Be-
sides the Coulomb behavior, there is some back-
ward enhancement since at this frequency there is
no absorption for any / but some parity splitting
of the behavior of /=2 phase shifts. In the limit
+-0, the backward scattering vanishes. " The
M(d =0.75 case in Fig. 12 begins to evidence the
features predicted by the semiqualitative analysis
of Sec. V, although considerable intuition is re-
quired to recognize the emergence of the glory in
the backward quadrant. Near clairvoyance is re-
quired to view the dips below 8 =ii/2 as orbital
dips. (But compare this and the following
Schwarzschild cases to the Kerr cross sections
which show enhanced orbital dips. ) The signifi-
cantly reduced scattering in the backward direc-
tion evidences the substantial absorption of low-l
modes. The total absorption cross section of the
hole at this frequency is 72.4M corresponding to a
capture radius of b =4.8M.

The Schwarzschild cross sections in Fig. 12 for
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FIG. 11. The differential cross section as a function
of angle for Schwarzschild with Mes=0. 1, from Matzner
and Ryan (Ref. 4). This plot presents the low-frequency
scattering cross section. Notice the Newtonian-type b'ehav-

ior at all angles, especially the lack of significant back-
ward scattering. The exact Newtonian situation has ex-
actly vanishing backward scattering. This is due to
nearly-complete reQection of all low l modes, with only
slight phase splitting. Compare this plot with the higher-
frequency cross sections in Fig. 12 immediately follow-
ing,

O
R

CV
I

X
O

Ql
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m/2

~~ =-1..5 and 2.5 give clear evidence of the Bessel-
function oscillations characteristic of glory scat-
tering. Progressing to smaller angles from near
~ = m, the regular glory oscillations give way to the
somewhat washed out orbital dip near m/2.

Notice that as frequency (and hence absorption)
increases, the depth of the backward cross section
minimum incr eases, and the glory crowds closer
to r. The backward minimum is a polarization
effect; backward scattering requires a difference
with parity of a, nonabsorbed I mode. (Notice that
parity affects only phase, not absorption. } The

, glory can be related to the first nonabsorbed l.
Glory —and orbiting —phenomena, occur for spiral-
ing orbits that penetrate very close to the black
hole; the next smaller value of angular momentum
would lead to total absorption. From Fig. 1 we
expect l, ™8and 14, respectively, for M~=1.5 and
2.5. Indeed, the angular separations of the glory
minima, correspond closely to these values.

The calculated absorption cross sections for
M(d =1.5 and M& =2.5 a,re 83.36M' and 83.61M',
respectively, corresponding to minimal impact
pa, rameters 6=5.15M and 5.16M. This compares
well with the analytical Schwarzschild geometrical-
optics value of 5.2M.

The general features seen in the Schwarzschild
cross sections are then clear. In the forward

FIG. 12. Calculated differential cross sections for
Schwarzschild for several values of Mco. These cross
sections were computed as described in the text by
summing the numerically obtained amplitudes from l'= 2
to i=20 and adding the transcribed Coulomb amplitude
for the remaining l modes. Notice the striking emer-
gence of the backward glory as frequency increases.
The oscillatory section has the Bessel-function behavior
characteristic of glory scattering. Notice also the deep
backward minimum due to increased absorption of the
low l modes at higher frequencies.

direction one finds a Coulomb divergence falling
off as ~, giving way to at least one somewhat
subdued orbital dip in the vicinity of 8 = m/2. If
the cross sections for M(d =0.75, 1.5, and 2.5 are
overlaid another orbital dip at e -m/3 appears to
occur at very nearly the same angle. A pronounced
glory is seen; its characteristic Bessel-func-
tion behavior occurs closer to the backward direc-
tion as frequency increases. A deep minimum in
the backward direction becomes sharper and deep-
er as frequency increases. Finally, as the fre-
quency increases the total absorption cross sec-
tion approaches the analytical value 2VmM .

Examination of the Kerr cross sections in Fig.
13 reveals the same general structure with inter-
esting peculiar complications. Consider first the
corotating case, a=0.9M, M~ =+0.75. Apart
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FIG. 13. This figure displays differential scattering
cross sections for a Kerr hole with a=0.9M for various
values of incident frequency Ma. Each shows the char-
acteristic backward glory near 8 = ~ but notice the en-
hanced oscillation in the corotating positive M+ cases
due to reduced absorption of the low l modes. The orbi-
tal features are distinct in all cases as a fairly pro-
nounced dip typically just below 8 -~/2 and a smaller
dip near O- &/4. For a given value of

~
M~

~
the dips

occur at smaller angles for the case of corotation. The
source of the peculiar deep narrow dip at 0= 0.6127t jn
the M~= 1.5 case is obscure. The orbital dips seen here
should be compared to the generic case shown in Fig.
14. Some suppression of very fine angular scale (l & 20)
has probably been imposed by the Coulomb normaliza-
tion of the phases for

~
Mcu

~
=1.5 (ef. Pigs. 5 snd 7).

from the Coulomb forward divergence a pronounced
orbital dip appears again around 8 = v/3 followed
by either secondary dips or interference due to
the same disturbance. The angular width of the
pronounced dip correlates well with the value of
58-[d8~„,/dl]'~ expected from the analysis of
Ford and Wheeler. The glory near ~ =m displays
a beautiful oscillatory behavior. In the backward
direction the minimum is evident but significantly
more subdued than the corresponding Schwarz-
schild case, due to the relatively slight absorption
in Kerr at this co-rotating frequency. The total
absorption cross section in this case is only 36.5M
corresponding to b =3.41M.

Compare this cross section to the a =0.9M, M~
=+1.5 (also corotating) case which is also plotted

in Fig. 13. The orbital dip at 8- w/3 is signifi-
cantly modified probably due to an increased ten-
dency for absorption while the dip closer to 8 = s/2
appears more prominent in this case. The glory
occurs at nearly the same angle as the M& =0.75
case but the oscillatory behavior is considerably
more complicated due possibly to interference
with orbital features. A feature unique to this

. case is the peculiar extremely deep and narrow
dip at ~ =0.612m of width &~ ~0.015m. Its origin
is uncertain but it may be an orbital feature cor-
responding to the la, rger values of l where d8/dl
is smaller. The total absorption cross section in
this case is 62.5& corresponding to b =4.46M.
This produces the deep minimum in the direct back-
ward direction since the small-l modes which
otherwise produce backward scattering are ab-
sorbed.

For significant a, the cross sections for the
counter-rotating case show considerably weaker
features. Figures 4-8 show that the counterrota-
ting case possesses a narrower range in l of
strongly varying phase shifts than does the coro-
tating cases with the same ~M~ ~. We therefore
expect fewer particular l values to contribute to
the striking "semiclassical features" apparent
in the other cross sections.

The counterrotating a=0.9M, Mco =-0.75 is
plotted in Fig. 13 with the cross sections already
discussed. A pronounced orbital dip is evidenced
for e =v/2, and a secondary dip occurs at e = v/3
where the corotaing caseM~ = + 0.75 also possesses
a dip. The glory is considerably less glorious in
the counterrotating case but comparison to the
corotating glory shows the positions of the maxi-
ma and minima are the same in the two cases.
The backward minimum is deeper than in the co-
rotating case since the counterrotating total ab-
sorption cross section is 88.7M, corresponding
to b =5.31, very nearly the same as the Schwarz-
schild case, and much larger than the corotating
absorption.

The forward features of the counterrotating a
= 0.9M, M~ =-1.5 case also plotted in Fig. 13 are
nearly a carbon copy of the corotating case. The
glory is considerably less oscillatory and there is
no evidence of the sharp narrow dip of the coro-
tating case. The backward minimum. drops to
virtually zero scattering. In this case the absorp-
tion cross section is 80.3M corresponding to &

= 5.06M.
Finally, Fig. 14 shows the nearly maximal Kerr

case a=0.99M, M~ =0.75, for which superradi-
ance is definitely significant. The most prominent
feature of the cross section is the dramatic en-
hancement of backward scattering. This feature
arises from the large superradiance which en-
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VII. - CONCLUSION

We have investigated a number of cross sec-
tions for gravitational radiation scattering off a
vacuum black hole. A number of explicit examples
result, displaying the phenomena predicted by a
semiclassical analysis. It remains to extend the
catalog of Matzner and Ryan via the techniques
developed here. This may require some further
investigation of the integration of the angular equa-
tion, but should yresent no real difficulty. After
that one may investigate off-axis scattering in the
Kerr geometry. The most important result of the
present work is the realization that semiclassical
analysis and intuition can explain, if not predict,
much of the structure of gravitational scattering
cross sections.

-2-

m/2
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FIG. 14. Two differential cross sections as a func-
tion of 0, displaying the effect of superradiance. Both
curves are for an incident frequency of M~= 0.75. The
lower curve is for a hole with a= 0.9M for which super-
radiance is relatively small. The upper curve is for the
nearly maximally rotating case a= 0.99M with large
superradiance. The latter curve has been displaced up-
ward by a factor of 10 (+1 on the logarithmic scale) for
clarity. The value log~o(M da/d&) = 5 in parentheses
corresponds to the upper curve only and sets the scale
for that plot. Notice the coincidence of the angles at
which the maxima and minima occur in the two cases.
Notice also that the oscillatory behavior in the back-
ward direction is more pronounced in the nonsuperradi-
ant case, a=0.9M.

hances the lowest l (parity-split modes). The
total absorption cross section in this case is in
fact negative (-15.8M ). In the absence of the
previous calculations one would hesitate to inter-
pret the angular features of Fig. 14. But when the
a=0.9M, M&v=0.75 case in Fig. 13 is overlaid on
Fig. 14 the structure is clear.' Each of the maxi-
ma and minima in the almost maximal Kerr case
corresponds to a maximum or minimum in the
a=0.9M case. Further, the amplitudes of the
maxima are very nearly equal in the two cases.
The suyerradiance has the effect of imposing a
large background over the pattern, filling in the
interference minima; the glory in the a=0.9M
case appears as barely a dimple on the superra-
diant scattering. But once the background is taken
account of, the features in the two cases are es-
sentially identical.

APPENDIX A: DEFINITIONS AND USEFUL
RELATIONS

and

&~& 2R= ~,2A (A2)

ggpZgg2 2Z = (ReC} 2Z

where

& =8,—i[(P + a')(d —am]/~

(As)

(A4)

„=Be + m csee —a~ sin~ +n cote .
The constant C of Sec. II is given by

(ReC) =(Q +4am(d-4a (d )[(Q-2)
+ 36a(dm —36a (d ]

+ 2(Q —1)(96a (d —48a(dm) —144a (d,
(A6)

ImC =12' with Q = Q( + a (d —2a(dm .

The angular part of the separated perturbation
variable

e( =d'e~e'""P("(8; a(d}R, (r, (d)

obeys

1 d & . dSI I
2 2, m cos—

~ sin8 —[+ ) a (d cos & —' . ,
&

—2ms — . ,8sin'8 sin' 8

-2as cos~- g cot 8+ g+E S=O . A1

The solutions to the radial and angular Teukolsky
equations (2.3) and (Al) of s =+2 and s=-2 are
related by the differential equations
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The angular equation admits among the PP the
symmetries

PP (8; a(u) = (- 1)'",SP(m —8, g(g). ,

PP(8; —a(u) = (- 1)'",S, "(w —8, aar),

(A7)

(As)

1 dE
-&gj-2i~(1 f),-F- 2 dr~

Q2f=1+p2 s
p V' (A14)

and among the eigenvalues

,&p(a~) = &p(a~), (AQ)

(A10}

(A 11)

A"(-. )=W, "( ).
The constants Pl/ are defined by the limiting be-
havior of the angular functions

Pm ~ 8I m+sl ~m ( )

qfV -r WV+ (ft )
p p d

Qy~

(gr 2i~f} (a constant),

~=vp'+ Sp'(2 —a') —Sr a=—q,

p2 =~So.',
z2=+/S6M -2v[& (5v+6) —12a ]

+2p, v(v+2)p",
and

,SP,„,(v —8)' ' PP, (av) . (A12)
v =&+2@,

and x~ is defined up to a constant by
Owing to (AS) the constants for s =+2 are related
to those for s =-2 by

S64,N', ,= (ReC},N', ,
and (A7) and (A8) provide

Pr";0 =-( 1)™-Pr";t ~

PrP, O(a(u) = (- 1)'"P;;",(- a(u} .

Our normalization has (-1)' 2&, ;,(a&@=0) & 0.
In Sec. III we wrote down the short-range po-'

tential equation for the Kerr perturbations [Eq.
(S.17)], due to Chandrasekhar and Detweiler. "

The variable 2 in that equation is related to the
Teukolsky functions by

K, 2Z= ~ [Q —iu&(W 2i(of}]-Y—,(W-2i(of)
,p . p . cf

b, Q2 dr+

(A1S}

where 1'= (a'lp'), P and

p —p + Q2

Q2
q=~(&+ p2),

P

Ch

elf'~ p

Then the potential V, called V~ in Eq. (S.17), is
give@. by

b, pl'. =m q-
( p A)z

x((q p2&)[p hq"-2p q —2r(q'6- b, 'q)]

+p'(~2p'- q'+ p2&')(q'&- &'q)j
&

(A15)

a prime here denoting d/dr. Notice that p, v,
etc. , in these equations have meanings different
from their usual Newman-Penrose definitions.
Owing to the four possible choices of signs for the
constants P2 and x2 there are four possible poten-
tials. Reference 10 shows that each of the
potentials yields the same reflection and trans-
mission coefficients so that for the purpose of
cross-section computation they are interchange-
able'.

The detailed behavior of the potential V has been
discussed at length by Chandrasekhar and Det-
weiler in a series of papers. '~"" The general
features of importance to our problem are dis-
cussed in Sec. III.

Present address.
B.A. Matzner and Y. Nutku, Proc. B. Soc. London

A336, 285 (1974).
K. Schwarzschild, Sitzungsberichte Preuss, Akad.
Wiss, 424 (1916).

B.Kerr, Phys. Rev. Lett. 11, 237 (1963).
B.A. Matzner and M. P. Ryan, Astrophys. J. Suppl. 36,
451 (1978).

5John William Strutt baron Rayleigh, Proc. R. Soc.
London A86, 207 (1912).

H. Jeffreys, Proc. Lond. Math. Soc. (2) 23, 428 (1923).

VG. Wentzel, Z. Phys. 38, 518 (1926).
H. A. Kramers, Z. Phys. 39, 828 (1926).
L. Brillouin, Comp. Rend. 183, 24 (1926).
S. Chandrasekhar and S. Detweiler, Proc. B. Soc.
London A350, 165 (1976).
S. A. Teukolsky and W. H. Press, Astrophys. J. 193,
443 (1974).

~ E. Newman and R. Penrose, J. Math. Phys. 3, 566
(1962).

3P. L. Chrzanowski, R. A. Matzner, V. Sandberg, and
M. P. Ryan, Phys. Bev. D 14, 317 (1976).



F. A. HAND LER AND RICHARD A. MATZNER

B.H. Boyer and B.W. Lindquist, J. Math. Phys. 8,
265 (1967).
S. Chandrasekhar and S. Detweiler, Proc. B.Soc. Lon-
don A345, 145 (1975).

8W. G. Unruh, Phys. Bev. D 10, 3194 (1974).
W'. H. Press and S. A. Teukolsky, Astrophys. J. 185,
649 (1973).
S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
J. Mathews and R. L. Walker, Mathematica/ Methods
of Physics (Benjamin, N. Menlo Park, California,
1970).

2 B.A. Matzner and M. P. Ryan, Phys. Bev. D 16, 1636
(1977).
S. Chandrasekhar and S. Detweiler, Proc. R. Soc.
London A352, 325 (1977).

22I. S. Gradshteyn and I. M. Byzhik, in Table of Inte-

grals, Series and Products, 4th ed. (Academic, New
York, 1965).
B.A. Breuer, M. P. Byan, Jr., and S. Wailer, Proc.
B.Soc. London A358, 71 (1977).
J. M. Bardeen, in Black Holes, Les Houches Summer
School, 1972, edited by C. M. DeWitt and B. S. De-
Witt (Gordon and Breach, New York, 1973).
K. W. Ford and J.A. Wheeler, Ann. Phys. {¹Y.) 7,
259 (1959).
F. L. Yost, G. Breit, and J. A. Wheeler, Phys. Rev.
49, ~74 (1936).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics,
Non-Relativistic Theory (Pergamon, London, 1958).
J. N. Goldberg, A. J. Macfarlane, E. T. Newman,
F:. Rohrlich, and E. C. G. Sudarshan, J. Math. Phys.
8, 2155 (1967).


