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The Iaein-Gordon equation for a scalar field of mass p is analyzed in the geometry of a rotating black hole. It is
shown that in the limit @M&1, i.e., particle Compton wavelength much larger than tQe size of the black hole, the
scalar field is unstable with an e -folding time of v = (a/M j '24(pM j 'p

I. INTRODUCTION

Black holes have by now become common-
place in the literature of.physics and astro-
physics. But before this could happen an impor-
tant theoretical question had to be answered. If
a black hole is perturbed in some small way, will
the perturbation oscillate and damp out? Or will
it grow exponentially until it can no longer be
considered a perturbation and hence demonstrate
the instability of the black

holey'

This problem
was studied first by Hegge and %heeler' in the
case of nonrotating black holes and later by
others' ' and notably Press and Teukolsky' who
resolved many of the questions concerning rota-
ting black holes.

Most questions concerning stability have now
been answered satisfactorily by a combination of

- analytical and numerical techniques. Nonrotating
black holes are stable to all scalar, electro-
magnetic, and gravitational perturbations. ' ' Ro-
tating black holes are a bit more complicated;
any of the above types of perturbations are clearly
stable as long as the azimuthal index m is not
positive' " (the conventions and notation are de-
scribed below). But if a perturbing wave is sent
in from infinity with rn& 0 and frequency e less
than some critical value &u, =am j2Mr„ then the
wave is amplified upon reflection off the hole—
this is called super-radiant scattering. Some
analytical results have been obtained, but it has
not yet been proven that this amplification cannot
lead to any instability. But numerical work for
massless scalar, ' electromagnetic, ' and gravita-
tional' fields implies that these perturbations are
indeed stable, although a black hole with a =M is
in some sense marginally unstable. '

It has now been recognized that a massive field
around a rotating black hole may indeed be un-
stable. " Imagine a wave packet of the massive
field in a distant circular orbit. The gravitational
force binds the field and keeps it from escaping
or radiating away to infinity. But at the event
horizon some of the field goes down the black
hole, and if the frequency of the field is in the

II. KI.EIN-GORDON EQUATION

The metric of a rotating black hole is

2%x 4aM'ds' = — 1 ———dt ' — sin'g dt dyZ Z

Z
+ —dr'+Ed&'

2Ma'x
+g + sjn 6I sjn 6I d(p

with

+a2 cos g (2)

n, =r' —2Mr+a'-=(r —r.)(r —r )

in the standard Boyer-Lindquist 3 coordinate sys-
tem. The quantity M is the mass of the black hole
and a (~M) is the Kerr angular momentum para-
meter; the quantity r, is the radial coordinate
of the event horizon.

super-radiant region then the field is amplified.
Hence the field is amplified at the event horizon
while being bound away from infinity. Conse-
quently, the massive field grows exponentially
and is unstable.

In this paper we use analytical methods de-
veloped by Starobinskii"'" to solve the Klein-
Gordon equation in the limit when both the mass
of the field and the frequency of the perturbation
are much less than M '. For large values of x
the radial part of the Klein-Gordon equation looks
much like the Schrodinger equation for the electron
in a hydrogen atom and can be solved in terms of
confluent hypergeometic functions. Close to the
event horizon the radial equation can be solved
in terms of hypergeometic functions. For a small
mass and frequency a region can be found where
the valid regions for the analytic solutions overlap,
and the solutions can be matched together.

The fastest growing instability which we find
is the analog of the 2P state and has an e-folding
time of v =24(g(M) ~(pM) 8p,
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A classical, massive scalar field obeys the
wave equation

V'V, g = p, '(, (4)

This is the same equation as that which governs
an electron in the hydrogen atom. For large
values of x the two independent solutions of A go
like

where p, =5!IG/hc for a. particle of mass %. For a
pion mass p, =(1.4x10-" cm) '=(1.9x 10"g)-'

Equation (4) is separable in the Kerr geometry'4
so we make the assumption that

e -j&u t+jmyS(8)R(r)

The separate equations for S(8) and R(r) are

d t'. dS—
~

sin8 —+ a'(~' —p, ') cos'8
sin8 d6 & C8

(5)

and

~0

+X S=o (6)sin'8

+ [ar (r +a ) -4aMrm&u+a m,
d dR 2 2

Ch dh

—A(p, 'r'+a'~'+X)] R =0. (7)

The quantity A. is the separation constant, to be
found as an eigenvalue of Eq. (6), and the eigen-
functions S(8) are the spheroidal harmonics. "

We are interested in solutions to Eq. (7) with
boundary conditions of an outgoing wave at in-
finity and a downgoing wave at the event horizon.
Such a solution corresponds to a particular mode
of free oscillation of the scalar field. Ef a parti-
cular mode is stable then its frequency v is com-
plex with a negative imaginary part: The field is
radiated away and the amplitude dies off exponen-
tially. However, if Im(&u) is positive then, despite
the radiation, the amplitude of the field grows
exponentially and the mode is consequently un-
stable.

If +18 «1 and pM «1 then, as first noticed by
Starobinskii, "Eq. (7) is amenable to analytic
methods. We henceforth assume these inequali-
ties to hold. Also in this limit S(8) becomes a
spherical harmonic and X =l(l +1).

For values of h»M, but not necessarily large
when compared with I/e, Eq. (7) is approximately

R(x) =x'e "~'U(l +1 —v, 2l +2, x), (14)

where U is one of the confluent hypergeometric
functions in the notation of Abramowitz and Ste-
gun. "

The bound states of the hydrogen atom corres-
ponds to integral values of ~ such that v =l +1+n
where n is non-negative. And v is then the prin-
cipal quantum number. We expect a free oscil-
lation to look much like a bound state; the dif-
ference is the boundary condition at small values
of x—the electron wave function in the hydrogen
atom must be regular at the origin, but in our
problem the'inner boundary condition must cor-
respond to radiation down the black hole. All of
this leads us to guess that for slowly growing
instabilities the complex eigenvalues ro have
corresponding complex v, Eq. (10), which satisfy

v -E —1 -=n+6v (15)

for some integer n and small complex number
5v.

For small values of x the independent confluent
hypergeometric functions go like a constant and
like x '"+". And in particular for small values
of 6 v, R (r) is approximated by

R(r) =(2kr)'e*'U( n —6v, 2-l +2, 2kr)

-(-1)",—' (2kr)'+ ~ ~ ~

(2l +1)!

R(x) -x'"e'"~'

Now for an unstable mode x is in the lower right
quadrant of the complex plane, and an outgoing
wave corresponds to the top signs in Eq. (13).
For simplicity, we continue the calculation with
this assumption of instability and in the end verify
consistency. The solution of Eq. (12) for R with
the correct boundary condition at infinity is just

d' » 2M', ' l(l +1)
, (rR)+ &u'- p. '+ —,rR =0. (8)

dh r
+(-I)""6v(2l)!n! (2kr) ' '+ ~ ~ ~ . (16)

Useful definitions are

v—= Mp, '/k,

x =2kh.

Then Eq. (8) becomes

(9)

(10)

When kr «1 but (kr}""-6v then these two terms
in the expansion are comparable and yet dominate
all others.

Equation (7) can also be solved analytically
when r«max(l/&u, l/p, ). In this case it is approxi-
mately

e(e +1) —e(e +1) —+ [P' -l(l +1)e(e +1)]R=0,d dR
cz

d'(xR) 1 v l(l +1)1
+ ——+ ———,IxR =0.dx' 4 x x' J

(12)
where

(17)
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and

P = (am —2Mr.co)/(r, -r )

z = (r r-,)/(r, -r ) .

(18)

(19)

This coefficient vanishes if

6v =2iP[2k(r, -r )]""
nt

The solution for R is

( g 't(iP
R(z) =i ——

I I G(-l, l+I;I —2iP;z+I), (20)
(2l)! (2l +1)!

The rlationships between 6v, n, and ~ =—0+iy are

where G is any solution to the hypergeometric
equation. In the notation of Erdelyi et al."two
independent hypergeometric functions are

U, = (-z) 'F (- l, - l —2iP; —2l; -z ')
so that 0. = ILL, , and

( r- (-z)' -i
!!,r

where the approximation is valid for r/M»
max(P, l) and

U =(-z) ' 'F(1+1,l +1 —2iP 2l +1 -z ')

~
-f-l

( z) I 1

r, -r i

(21)

(22)

l+1+n (27)

2""(2l+1 +n)! l ~

(l + 1 +n)"4n!,(21)!(2l + 1)!

Finally, the imaginary part of the frequency is
determined by Egs. (25) and (27),

y =p, (p, M)"~(am/M —2pr, )

The functions U, and U4 are linear combinations
of two other solutions of the hypergeometric equa, —

tion,

f z i' 1"(2iP)I"(l+1)(-1)' z
I'(-l+2iP)I'(2l+1) z+I)
I'(-2iP)I'(l +1)(-1)' z
I'(-I —2iP) I'(2l +1) z +1

l

[j'(I —a'/M') + (am/M —2&r, )'] . (28)

III. CONCLVSIONS

For rn) 0, '
y is positive and the mode is un-

stable, and for m (0, y is negative and the mode
is stable as discussed in the Introduction.

and

(
z 'l! '~ I'(2iP)I'(2l +2)

z+ I& & r(l +1)r(l + I+2iP) z+1U=-- U,

I"(-2iP)I"(2l +2)
r(l+, 2iP)r(l, l) I«+I

(23) We have demonstrated conclusively that rotating
black holes are unstable to perturbations of mas-
sive scalar fields. But are the growth times short
enough to be of any astrophysical significance?
From Eg. (28) the fastest growing mode corres-
ponds to l =1, rn =1, and v=2, the analog of the
2P state of the hydrogen atom. In this case

(24) y=@, (29)
The functions [z/(z+1)]' U, and [z/(z+1)]' e"~U,
are the ingoing and outgoing solutions, respec-
tively, of R near the event horizon where z -0.

As long a.s ~M and p, M are much less than l
then there exists a value of r, rp such that

r, »M max(P, l) so that the expansion (16) is ap-
plicable and yet r, is small enough that r,
«min(l/&u, 1/p, ) and the expansions (21) and (22)
are also applicable. Hence the solution R(r)
which is outgoing at infinity can be matched via.

Eqs. (16) and (21)-(24) to [z/(z +l)]~~U, and

[z/(z +I)]'~e"~U, which are ingoing and outgoing
at the event horizon.

In particular, if after such a matching the coef-
ficient of U, vanishes then the solution corres-
ponds to a free oscillation of the scalar field.

a
7' = y

' = 24 — (p, M) '
p.

i

=Pa-* -.)(—")(oM)- (
—') ', (30)

For a pion field around a solar-mass black hole,
p, M-10"&) 1 so our entire analysis is inappro-
priate. However, the life history of any eva-
porating black hole most likely passes through
an er a during which the instability plays a crucial
role. " When the decreasing mass of a black hole
is significantly less than 2x10' g (p,

' for a pion
field) then the approximations of this paper are
valid. The growth time of the instability is
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which is much less than the evaporation time
seal

v„"=(10"sec)~

as long as p, M is not as small as 10 ' and, of
course, the angular momentum parameter a must
be comparable--to M.

But for the instability to be truly effective, 7

should also be short when compared with the life-
time of the m', 7, -10"sec. . It is not definitive
from our analysis that v will be less than v; for a
value of p.M which is small enough to trust our
appr oximation.

However, it seems most likely that if an eva-
porating black hole is rotating, then when its mass
drops below 2 x 10"g this instability sets in and
quickly removes the angular momentum and
leaves behind a nonrotating black hole. It is ex-
pected then that the final burst of radiation from
an evaporating black hole will be that which is
characteristic of a nonrotating black hole. "
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