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Rotational perturbations of Friedmann universes
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Several new analytic solutions for rotational perturbations of the Friedmann metrics are found in order to
incorporate the possibility of a rotating universe. The field equations impose restrictions on the matter rotation
to(r, t) and some of the solutions for D(r, t)i which is related to the local dragging of inertial frames, are expressed in

terms of hypergeometric functions. Uniform rotation is shown to be incompatible with the present universe (P = 0)
and with the radiation-dominated universe (P =p/3). Geodesics of the metric are studied to reveal the intrinsic

nature of the rotation and to elucidate the role of Q.

I. INTRODUCTION

The cosmological solutions of the time-dependent
Einstein field equations by Friedmann' ' have
successfully incorporated the observed large-
scale expansion, homogeneity, and isotropy char-
acteristics of the universe. At the present time,
in spite of some outstanding problems such as the
uncertainty of the value of the cosmological con-
stant, the actual extent of the missing mass which
would be required to render a closed universe,
and the mechanism for galaxy formation, it is
widely accepted that one of the Friedmann models
accurately describes the present general state
of the universe. Any deviations which may exist
are expected to be small.

In recent years, various authors have considered
some general properties of density, distortion,
and rotational perturbations of Friedmann cos-
mologies. ' However, according to Sanz, " there
have been no exact analytic solutions of the per-
turbation equations published apart from his own
with respect to distortion.

In this paper, rotational perturbations of
Friedmann models are considered in detail in
order to incorporate the possibility that the
universe is endowed with a slight rotation and
several exact analytic solutions are presented.
To the order considered, the models are homo-
geneous: every rest observer in the substratum
Friedmann cosmology sees himself as the center
of the same distribution of small rotation. The
perturbed metric in terms of the usual Robertson'-
%alker' coordinates can be expressed in the
form"

+ 2rs sin'ees &(r, t)dP df,

where ~ is the metric rotation function which is
related to the local dragging of inertial frames.

A solution is determined by the specification of
an equation of state and a distribution of the
angular velocity of matter ~(r, i) =dt's/dt, which
is consistent with the field equations. The entire
range of possibilities for ~ is considered. Some
of the exact solutions for i2(r, t) are given in terms
of hypergeometric functions. These, in turn, can
be expressed in terms of elementary functions.
Other solutions are given explicitly. To be assured
that all perturbations considered are physical and
not merely coordinate effects, the geodesics of the
metric are studied. This, in turn, clarifies the
nature of as related to the dragging of local
inertial frames.

It is difficult to detect rotation directly unless
it is relatively large. Indeed, the only manner
in which one could hope to detect transverse
velocities of objects at distances of the order of
hundreds of megaparsecs is by the transverse
Doppler effect. Unfortunately, since this is a
second-order effect, the limit which is places on
the rotation is rather large: 7 x 10 ~ rad yr
However, Collins and Hawking' have used the
limits on the 24" (dipole) component of the aniso-
tropy of the microwave background radiation to
obtain a rotation rate for closed models of less
than 3 && 10 " sec of are/century if the microwave
background was last scattered at a red-shift of 7
and less than 2 && 10 "sec of arc/century if the last
scattering was at a red-shift of 1000.

Recent observations of the large-scale anisotropy
of the microwave background indicate that our
galaxy is moving with a velocity of 520+ 75 km/sec
with respect to the background radiation. " This
value is rather large from the standpoint that the
peculiar velocities of all the nearby galaxies are
at the level of or below 200 km/sec. It is in-
triguing to consider whether this could be related
to a rotation of the universe.

One might also wish to kook for evidence for or
against a rotation of the universe by determining
the net angular momentum of galaxies in volumes
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II. SOLUTIONS OF THE FIELD EQUATIONS

To establish the perturbed metric form of Eq.
(1.1), consider a general perturbation h„of the
Friedmann metric g,'.,":

(p)g n-ggn +h~a ~

where {x0,x', x', x') = (t, r, 8, Q). With the assump-
tion of axial symmetry, coordinate transfor-
mations can be employed to yield nonvanishing
components hop~ h11& h22& h33 and hp3 The per-
turbations h11 h2$ h33 of the diagonal components
come into play in the case of distortion, which is
not the subject of the preserit study and hence
they are set to zero. In the case of rotational
perturbations, the componen't hop will be of sec-
ond order relative to h„. This is because the
effect of rotation is to take dQ-dQ —Odt. Hence
the only component to be considered is hp3.

Moreover, the rotation will be considered to be
sufficiently slow so that deviations from spherical
symmetry can ge neglected. "" Hence, the per-
turbed metric for slow rotation with axial sym-
metry can be expressed as in Eq. (1.1) with the
function &(r, t) to be determined by the field equa-
tions.

To first order in &~, the pressure and the den-
sity are unperturbed' and are expressed by the
field equations as

(2.1)

of the order (100 Mpc)~. It would be inter-
esting if such a survey were to be carried out.
If the universe were to rotate, it would also be of
interest with regard to the formation of galaxies
since this would provide a reservoir for angular
momentum.

It should be noted that since the models studied
contain matter in bulk which rotates with respect
to the compass of inertia they are non-Machian.
In the usual interpretation of Mach's principle, the
bulk matter of the universe determines the in-
tertial frame and hence should be nonrotating with
respect to it.

Using the perfect-fluid stress-energy tensor

T'"= (p+P)u'u' —Pg" (2.6)

with u'=u'=0, u'=a& and Eqs. (1.1), (2.1)-(2-3),
Eqs. (2.4) and (2.5) can be expressed as (a prime
denotes 9/Br)

, fn+ —,/O (, 2ge ar'i 4 5r~, t 4
~R2

=-I —.-2ge'~~(r, t), (2.7)
&4
iR' )

(- 0)(2 r'g 0'+ r0Q') sin0 9e~ =8 „=0, (2.8)

with

Q(r, t) ~A(r) e " '""'+K(t), (2.10)

where K(t) can be set to zero without altering the
physical structure. " From Eqs. (2.10) and (2.7),

( y A&& (4 5g l A~
+ lkr It'i

&, —2ge'
~

1 ——
A

' (. (2.11)4,& e "~'"(u(r, t) l

Ar
For a given cosmological background, g(t) is
known and the input of the field equations via
Eq. (2.11)places restrictions on the possible
forms for co. Indeed, since the left side of the
equation is a function of r- alone, the right side
must be either a function of r alone or a function
of t alone (and hence set equal to a constant).
From this it follows that ~(r, t) has to be a sep-
arable function. Let ui(r, t)=—a(r)b(t) and consider
the possibilities for a and b with Eq. (2.11).

(i) For a(r) =A(r), Eq. (2.11), separates into

13 (2.9)
T00=(p+P)e'r' si n'9(& —~)-Pr'sin'8e~A.

Generally, the temporal dependence of ~ will be
determined by Eq. (2.8), and Eq. (2.7) will then
yield the spatial dependence. Indeed, Eq. (2.8)
is readily integrated to

BpP= —
2 e -g- ~g +AR

8mp= 2 e + gg2 —A

(2.2)

(2.3)

( r' tA" &4 5rl A'
l,
~ —„0&I „+I,—,—„.&I

„=e0,

-2ge~)(l —b(t)e" "~}=s„~R'

(2.12)

(2.13)

03 8~( 03 &g03 )+ g031

R13 = -«&13.
(2.4)

(2.5)

where ~ is the cosmological constant, and a dot
denotes &/St. This justifies the assumption of
homogeneity in the rotation to first order. To
first order in , the Ricci tensor components
which involve ~ are

where +p ls a separation constant, and for a given
cosmological background b(t) is found without
quadrature from Eq. (2.13). Equation (2.13) deter-
mines A(r).

(ii) For ~(r, t) =A(r, t) =A(r)e " '", which cor-
responds to "perfect dragging, " Eq. (2.13) deter-
mines the separation parameter to be zero and
Eq. (2.12) again determines A(r).

(iii) For the right-hand side of Eq. (2.11) to be
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a function of r alone, 0/ =a(r)e """and the equa-
tion of state must be chosen to yield ge'=Co
(constant}. In this case,

(1 —
2 (A'+

~

——,[A'+D, A =D, a(r), '( r2} (4

take &o=o. If one of the integer conditions is sat-
isfied, then A can be expressed in terms of poly-
nomials by using Eq. (2.18}or

5 5

A(r) A (1 z)&6/»-0-6 g

where

(2.14)

z(l —z)A„+ (-', —Sz}A,—
S 2

A =0.
4

(2.15}

(Initially, we consider z & 1, which is the case for
closed Friedmann models. ) The Gauss hyper
geometric function I' is defined by"'"

z(1 —z)F„+[y—(1+n+P)z]F, nPE =—0, (2.16)
1

and the general solution is given by

F =A 0E(n, P; y; z)

+a, z' "F(i —y+ n, 1 —y+P; 2- y; z),
where Ao and Ijo are arbitrary constants,
yw0, 1, 2, . . . , and

F(n, P;y;z)= (a), (P)2 2.=o ~t y~

where

(2.17)

(2.1S)

4
Do= —

2 +2Co.
A

These are the only possibilities which are com-
patible with Eqs. (2.7) and (2.8}.

For case (i), the homogeneous hypergeometric
equation (2.12) which is to be solved can be ex-
pressed in standard form by defining a new vari-
able =zr/ ~R-'~ (R finite):

(2.21)

where Eq. (2.19) has been used. Some explicit
solutions are as follows.

(a) F(2, 0, —,', z) = 1. In this case, P = 0 and hence
s,R'=0. A(r) =A„which yields &}(r,t) =A, e "/'",
and so i.& is in fact a function of t alone. This,
however, can be removed by a coordinate trans-
formation and so does not correspond to a phy-
sical rotation,

(b) E(4, -2, —,', z) =1 ——", z+ —", z'. Here a=4,
P.=-2, spR =-32, and so

Il(r t) A (I ~6 z y 16 z2)e-(3/ ' 1

(c) For a= —,', p=-—„s,R'= —5,

F(n, P, P, z) =(i -z}"'

g(r t) A (1 z)1 /2 e-( 3/2& 2

For open models A'&0, and the solutions we
have given in terms of hypergeometric functions
satisfy the field equations with z replaced by -z
and so replaced by -so. However, these solutions
are convergent only for ~ &1. For solutions regular
outside s =1, one must consider solutions found in
the neighborhood of the remaining two singular
points of the differential equation, namely 1 and

19

For critically open models, R = and the space-
dependent part of the equation becomes

(X),=1, (/1), = = ~(~+1) ~ ~ ~ (/ +}2-1),I (X+0)

k=1, 2, . . . .
The radius of convergence of Eq. (2.21) is unity

and if one of n, p, y —n, y —p is a negative in-
teger, then the series of Eq. (2.18}terminates.
E(n, P;y;z) can also be given as

E(n, p;y;z)=(1-z)" "E(y n, y p-;y;z)-

4
A r A

This can be solved immediately to give

1
A (r) = —,— s0(ae ~&&" + pe 0 ")

1e

Ws 0 (ac~30 r p~~sp r)

(2.22)

(2.23)

(2.i9)

In the problem at hand, y = & and hence the gen-
eral solution is

A( ) A p (a), (p), z

k-p ~ i (2)2

where s„a, and P are constants. For case (ii)
the equation to be solved for A (r) for finite R is

z(1 —z)A„+ (-,
' —Sz}A,=O. (2.24)

In addition to A = constant as in case (a), this has
the following solutions:

R, , /, ~ (a —2), (P 2),z"-
(2.20} A(z) =Ep(1 —z)'/ ., /2 + 1/2 +E„when R &03g'"' 38"'

Since the second term is not regular at ~ =0, we (2.25)
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A(r)= ', +k, .y' (2.26)

E, and k, can be chosen to be zero in Eqs. (2.25)
and (2.26).

For case (iii), Eq. (2.14) with finite A is also
a Gauss hypergeometric equation but now with
an inhomogeneous term D,a(r) A.s before, a(r)
embodies the differential rotation of the model
universe. In principle, it could be determined
by the physical conditions of the universe. Thus
far, only the case a(r) = const has been solved.
This represents a uniformly rotating model. For
this case, Eq. (2.14) can be transformed into a
homogeneous form by the appropriate substitution
A A + const.

For 8 =~, the equation to be solved for A(r)
becomes

A«+ —A'+2C, A. =2C, a(r) . (2.27)

Again, only the case of uniform rotation, a(r)
=ao (const), has been found. For this case, Eq.
(2.27) can be written as

4—4"+ —A'+2C A = 0
y' 0 (2.28)

where A =A —ao. The solution for Eq. (2.28) is the
same as that of Eq. (2.23) with s, replaced by

2Cp fo r C, W 0. When C, = 0, the solution is given
in Eq. (2.26). Note that the solutions in Eqs.
(2.23), (2.25), and (2.26) are not regular at the
origin. Hence, these solutions could, at best, be
used in regions away from the origin and joined
continuously to other solutions which are regular
at the origin. "

At this point, we recall that type-(iii) models
are only compatible with equations of state which
yield g e =Cp. This is readily integrated with the
substitution y =e '" and yields

I+C,=,/, -in~2(C&}'~'+ 2cy —2Co ~, C &01 Cl/2

where X-=Cy'- 2C,y,

A(z)=«(1+z)'~ (—,«-+ —
I )+E„w eh w«'&0

where E, and &, are arbitrary constants. For
A =~, from Eq. (2.12) with so=0,

III. GEODESICS OF THE PERTURBED METRIC

It is of interest to consider the motion of test
particles in the perturbed metric with regard to
the possibility that the rotation might not be an
intrinsic characteristic of the solutions but rather
a coordinate effect. This is particularly the case
with regard to the choice &=. It might at first
appear that if the angular velocity of the matter
is precisely coupled to that of the frame dragging,
the rotation cannot be intrinsic. Geodesies mill
be considered both for test particles whose initial
conditions match the motion of the fluid and for
those which are given an additional radial velocity.
For the latter, if there were no intrinsic rotation,
the test particle would intercept fluid elements
at different radial positions, all of which occupied
the same azimuthal angle as that of the test par-
ticle when it was released.

The equations of motion are

du' +I" u'u'=0
ds (3.1)

and the Christoffel symbols are computed from
the metric in Eq. (1.1). To first order in 0,

du

ds
(3.2)

du' . ~ 0, 2Q=(&g+«)(w')'+ . +@) 'w'
ds y'

where C and C, are constants of integration.
It is interesting to note that for the equation

of state corresponding to incoherent dust as well.
as that corresponding to radiation, the g function
does not satisfy g e'= const. Hence for these cases,
which we expect to approximate the present and

early stages of the universe, respectively, case
(iii) rotations, which include uniform rotation,
are not allowed by Einstein's field equations.
Note also that for the special value 2ge'=4/R',
A(r) is given by Eqs. (2.25) and (2.26), ir-
respective of the value of &. However, this case
corresponds to the physically uninteresting equa-
tion of state P=-p.

1, g](I+C, = C1~,-sinh ~~(,),&, ), C&0, C, &0
0

, (2cy -2C,t+C, = — sin '
~,v'- C 0

c&o, c,'&o, ~cy-c,
~
&c,

~ 0 3
2&&2) (u } -gu u ——u u .

To simplify the computation, attention is restricted
to test particles with small velocities and hence
only those terms which are linear in a velocity
are retained. Thus,



22 ROTATIONAL PERTURBATION S OF FRIEDMANN UNIVERSES 232l

du ~-- = -gu
dt

O'M =0,

du ~
' o

dt
=Ag+A -gu

The integral of Eq. (3.4) is

u'=0 e ~,

which can be used to find r =r(t). From this,
Eq. (3.6) can be integrated as

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

of the cosmological model, viz, u'=u'=0, u'=~
at t=0. From Eqs. (3.4) and (3.5),

du' du'
dt dt

and hence u' and u' remain zero for t &0. From
Eq. (3.6),

u'=~+0, e ~

and from the boundary condition u' = u& ~, „
&i =~o- ~o

and hence

u' = Q+ (eo —Q, )e d.
u'=Q+k, e d-k, e 'F(t),

where

F(t)= ftt'dl= f 't(()ee"t'"dt,

(3.8)

t
e ""I"dt

0
(3.lo)

where r =r(t) is found from Eq. (3.7).
However, the fluid element at x=7', which was

at the same azimuthal position as the test par-
ticle at t =0, will have shifted by

(3,II)

which, in all but the most exceptional circum-
stances [e.g. , Q=Q(f), which also implies ~
= (d(t)], will differ from («f&)„,«„, Thus the.
test particle will deviate from the radial path
that it would follow in the event that the rotation
was not intrinsic. It should be noted that this is
the case even under the special restriction A=co.
It is thus natural to ask what is the precise sig-
nificance of A as a dragging of inertial frames.
To answer this, consider a test particle that has
precisely the same initial conditions as the matter

and where the final integral is evatuated using
r=r(t) from Eq. (3.7).

At t=0, the test particle is given an initial
angular velocity equal to that of the Quid:

u'(f = 0) = &o (r, 0) = Q (f = 0) + k, e '"' —k, e '"'F(0) .
(3.8)

If the metric is normalized so that g(0) =0, k, is
the initial test particle velocity in the radial di-
rection. Equation (3.S) then determines k, in
terms of known quantities. From Eq. (3.8), we
find that at the time t when the test particle has
reached r =7; it will have shifted in azimuth by

t t

(&$),a„„„= Q(r, t)dt+ k, e d'd) dt
0 0

This determines the angular velocity of the test
particle for subsequent times. Clearly, with the
test particle determining the local inertial ref-
erence frame, it is seen that 0, while playing a
role in that determination, is not in general the
actual measure of the angular velocity of the local
inertial frame. However, the remaining ar-
bitrary constant in Eqs. (2.20), (2.25), and (2.26}
can be chosen to make ~,=Q,. Then Q(r, t) is
precisely the measure of dragging of the local
inertial frames.

IV. SUMMARY AND CONCLUDING REMARKS

I'erturbations in the form of differential ro-
tations of Friedmann cosmologies have been
analyzed and the restrictions which the field equa-
tions impose upon the angular velocity of matter
co have been found. Various solutions have been
expressed in terms of the Gauss hypergeometric
function, which in turn could be expressed in
terms of elementary functions. To first order
in the metric rotation function 0, the field equa-
tions reduce to Eqs. (2.7) and (2.8) for Q(r, t) in
addition to the unperturbed equations for pressure
and density. Equations (2.7) and (2.8) restrict
the possibilities for (d and imply that Q(r, f)
=A(r)e "'. Thus, rotational perturbations decay
for expanding models where g(t) is an increasing
function of time.

It has been shown that for closed Friedmann
models with incoherent dust or radiation (P = 0,
P = p/3), a certain class of solutions which in-
cludes uniform (i.e. , nondifferential) rotation as
a special case is incompatible with the Kins'tein
field equations. The motion of test particles which
characterize the local "compass of inertia" have
been considered to ascertain the intrinsic char-
acter of the rotation and to elucidate the sig-
nificance of Q. Although 0 plays a role in the
"dragging" of local inertial frames, it is not the
angular velocity of these frames except for the
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special case when it coincides with the angular
velocity of the matter co. It is noted that even in
this special case the rotation is still intrinsic
provided it is differential. However, it is noted
that the arbitrary constants in A(r) can be chosen
such that Q(r, t) is precisely the dragging of local
inertial frames for all solutions.

The geodesic equations show that when a test
particle is initially comoving with the matter, it
remains comoving. The intrinsic rotation is

demonstrated by noting that for a test particle in
radial motion, the change in azimuthal position
is not one which would follow the path of elements
along the line of original radial velocity.
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