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Evolution of radiating fluid spheres in general relativity
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A general method to obtain models of nonstatic radiating fluid spheres is given. Through a certain parameter the
models are continuously connected to static solutions of Einstein s equations. The procedure leads, with a minimum

of additional hypothesis, to a system of three first-order differential equations for quantities evaluated at the surface
of the sphere. An integration of this system allows one at once to obtain the profile of the physical variables inside

the sphere. A criterion to predict the bounce of the surface appears in a natural way. As illustrations, we have

integrated numerically the equations for two different models: The first is derived from the Schwarzschild interior

solution and the second from Tolman's solution VI. In the first case bouncing of the surface is impossible but in the
second model the bouncing may occur if certain conditions are satisfied.

I. INTRODUCTION

The extent to which a general-relativistic cal-
culation of collapse' ' could be of any use in the
study of different stages of stellar evolution is
conditioned by the number and character of the
s implifying assumptions made when integrating
the field equations and also when choosing the
equations of state. Unfortunately, integrating the
Einstein equations, for realistic equations of state,
without any further simplification other than spher-
ical symmetry is extremely difficult. It seems
useful then to consider nonstatic models which
are relatively simple to analyze but still it is
hoped that they may contain some of the essential
features of a realistic situation.

We propose in this paper a general method to
obtain models which describe nonstatic radiating
spheres. Besides the usual boundary and regularity
conditions, our models are restricted by a heuris-
tic condition imposed on the density, pressure,
and radial velocity of matter.

As a first result one obtains a set of three
first-order differential equations for quantities
evaluated at the surface of the sphere. This sys-
tem (hereafter referred to as surface equations)
can be integrated (eventually by numerical meth-
ods) to give all the information needed to deter-
mine the march of the physical variables, modulo
the field equations.

Thus, one obtains different families of nonstatic
radiating spheres depending on the specific heuris-
tic condition mentioned above. As we shall see,
the models reduce to static solutions of the Ein-
stein equations when no radiation is present and
the velocity at the surface of the sphere vanishes.

The paper is organized as follows. The field
equations and the general conditions, as well as
the conventions used, are included in Sec. II. In
Sec. III we describe the method to obtain the

models. The surface equations are analyzed in
detail in Sec. IV. In Secs. V and VI, two examples
are explicitly worked out to illustrate the pro-
cedure. In Sec. VII the results are discussed.
Some details of intermediate calculations are
included in Appendices A and B.

II. THE FIELD EQUATIONS AND CONVENTIONS

For the sake of completeness we include here a
brief resume of Bondi's approach to study the
evolution of gravitating spheres, ' which is our
starting point.

I et us consider a nonstatic distribution of
matter which is spherically symmetric. In radia-
tion coordinates, "the metric takes the form

d s' = e'8[(V/r)du' +2du dr] -r'(d8'+ sin'9 d P'),

-SENT~, = ——,(e —V, +2P, V),
1 28 (2)

-8vT„= 4p, /r, -
-am 7 = -8m' 3

=-e (2po, —2r '[rv» —2p, V

+2r(p„V+ p, V,)]). (4)

where P-0 as r- ~. Both P and V are functions
of u and r. Here u =—x is the timelike coordinate,
r -=x' is a null coordinate, and 8 and Q

—= x ' are
the usual angle coordinates.

In these coordinates the components of the
energy-momentum tensor are distinguished by a
bar, and differentiations with respect to u and x
are denoted by subscripts 0 and 1, respectively.

Thus, Einstein's equations are

Vo —2po V V 28-8~7„=-, ——,(e' —V, +2p, V), (l)
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To] = (Tpp + Tpy)e

,8 fr
T« =e

~

— (T»+T„+2T„),
(V

T 2 =T 3=T33 =T 2
3

Next one assumes that for an observer moving
relative to these coordinates with velocity ~ in
the radial direction, the space contains

(a) an isotropic fluid of density p and pressure
P,

(b) isotropic radiation of energy density 3a,
(c) unpolarized radiation of energy density e

traveling in the radial direction.
For this moving observer, the covariant energy

tensor is

p+38+E'

P+0+&

0 0

P+0 0

0 P+o

Following Bondi, local Minkowski coordinates
(t, x, y, z) are introduced by

d t = e 8[(V/x) "'du + (r/V)'"dr],

dx=es(r/V)"'dr, dy =rd8, dz =r sin8dp.

Denoting the Minkowski components of the energy-
momentum tensor by a caret we have

2s lT„=7„ r )

V = e'8[r —2%(u, r)]. (12)

Substituting (12) into (1) to (4) and using (6) to
(9), one obtains

p +Pe' r
+E' =—e Too1

—A,e '8+ m, , (13)4zr p —2m)

p —Ph) 2 g
— 82~=e

1+ca ' 4'' ' (14}

1 —(u(
)

V 2s— r —2m
1+v r " 2pr' (15)

+—1 —
I 2P„+4P,'-~~

477 8p r ) r ]

3P,(1 —2m, ) rn»—
+

8~r
(16)

As emphasized by Bondi it is to be noted that,
given P(u, r) and A(u, r), Eqs. (13) to (16) allow
the calculations of v, P, p, and e.

In this paper the choice of functions P(u, r) and

8s(u, r) will be restricted only by the conditions"

p ~ 0, -1«u& 1, 8&& —,'r, P, &0.

where A is a function of integration depending on
u. This function is the same as the "mass aspect"
defined in Ref. 10. In the static case it coincides
with the Schwarzschild mass.

Inside the matter, the function m(u) is genera-
lized to A(u, r) by putting everywhere

» V p+Pco 2

TOO e
1 21 —co

(6)

T, =e'8 (p —P(u),
1 +co

(7)

T =e'8 — (p+P},
V 1+~ (8)

Then a I orentz transformation readily shows that As a boundary condition at the outer surface
[say r = a(u)] of matter one has P = 0." Also, since
P =0 for r&a, and P should be a continuous func-
tion across r = a(u), one imposes P =0 at r = a(u) —0,
The same is not true for m„since there may be
a discontinuity of density, and so 8s, c0 atr =a(u)
-0.

Finally, the appearance of P», P», and A» in
(16) would lead to unacceptable 5 functions unless

T2 =Ts =-P,2 3

where

(9} 2A 1%,-p e '8+ 1 — P ———'=0 at r =a-0.
~ 2-'

„1+(d
p =p+30, . P =P+0,

1 —co

dr V
ding r 1 —+

Outside the matter, Eqs. (1)-(9) show that

(10)

P =0, V=r —2m(u), e =—,(11)8E0

4'(r —2m) '

Note also that from (5) the velocity of matter in

the radiative coordinates is given by

(17)

In fact, the left-hand side of (17) is zero at
r = a+0 and so, requiring it to be zero at r = a —0,
we guarantee that its r derivative across r = a
does not present a 5 behavior. But- the r deriva-
tive of the left-hand side of (17}gives exactly the
combination of second derivatives of P and m
which appears in (16).

As stressed by Bondi, it seems extremely diffi-
cult to choose P and A, so that for each piece of
matter, the relations between P, p, and energy
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4''p A, (18')

(1S')

Thus, A and P are expressed in terms of p andP
in the nonstatic case in the same way they are in
terms of p and P in the static case.

These considerations suggest the following pro-
cedure to obtain models of radiating contracting
spheres.

(1) Take a static interior solution of the Ein-
stein equations for a perfect fluid with spherical
symmetry and with given

p.t:.=Q(r), P.t.t;. =P(r)

(2) Assume that the r dependence onj and P is
the same as the P,~,;, and p,~„., but being careful
with the boundary condition, which now reads, be-
cause of (21),

P~ = -(dg p~.

From now on the subscript a indicates that the
quantity is evaluated at the surface.

(3) With the r dependence of P and P and using

(18') and (19') one gets m and P up to three func-
tions of u, which will be specified below.

(4) For these three functions one has two dif-
ferential equations, one of which is (17) and the
other is

P, =0 or (T~.„),=0.

Another u-dependent equation can be obtained
evaluating (11) at r = a+0. Thus

E(u) =- [s4sr']„„,=;

Thus one has three differential equations for four
unknown functions of u.

(6) Given one of the functions, the system may
be integrated for any particular initial data.

(6) Feeding back the result of integration in
the expressions for p and A, these two functions
are completely determined.

(7) Using (13)-(16), p, P, u&, s may be found.

In the above we have outlined the general pro-
gram for the attainment of models. In the next
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la
a 2aP„

Here m =-A, is the "total" mass of the object.
Using now Eqs. (14) and (15) we arrive at

a = (1 —2m/a) (22)

IV. EQUATIONS AT THE SURFACE

A. The equations

In this section we show how to construct, with
some relatively mild additional assumptions, a
complete set of dynamical equations which control
the evolution of the physical variables at the sur-
face of the sphere.

To begin with let us consider Eq. (17) and show
that it gives no more information than Eqs. (10)
and (11) taken at r =a. In fact, near the surface

A =- a/m(0),

M -=m/m(0),

u/m(0) -u,
and to define

F =1 —2M/A,

(23)

(24)

(25)

We have found it convenient to scale the total
mass m, the radius a, and the timelike coordin-
ate u, by the initial mass m(u =0) =—m(0),

then

P(r, u) = P„(r —a)+ ~ ~ ~, 0 =-
1

1-(d, ' (26)

Po. = aPi. — da
with a=——.

dg

Equation (22) can then be written as

2 =Z(n —1). (27)

Thus Eq. (17) reads A second equation relates the total mass-loss
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(28)

b a ealing to the conservation(14}, and (15}or by appe
' tion

=0. This last equation toge erequation 7"~I'.
&

=

Eqs. (20) and (21) leads to

-(e"P), +[(s"~/V)(p+ I') l.
Z =-(4vr's). .

nl theE uation ~2 ~ canj 8~ be rewritten so that on y
~ ~

and Q appear. This issurface variables A, , an
s. (25) andobtained through combination of Eqs. an

(27) with (28}, and reads

E 2E + (1 —F}(Q —1)
(29}

A

neral andEquations &2V o( ) t (29) are completely gener
ll sm-a3id for any model of a spherxca y ytherefo e vah or

tive d namical situa ion.
the dynamics completely for any se ini i
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P 3 V 8 2V
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'
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P P+- aP
l —28' r 0 Br

4v~P+ . I
=-, (P I') (2—1)-.'1-2e /r

his e uation is the generalization of the usual

We stress the conspicuous role played by the e-
fective variables p, P.

At the surface, where P, =—,p„=-co, Eq.
duces to
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oe &~& a

and

(p +P), = [(P +p)„=,] = a (P +p)„

=,'P. (32)

on which we shall elaborate in what follows. Con-
sider first the time derivative in Eq. (32). We
have

=""'"' (;..P-.)~... (33)
&1 —2''t /r „F aF'

=[P.(1 —~.)f.—a(P+tl), .
Combining these three last equations we arrive

at

2& oa

. 2(J„+p.) (P+t)),.—a ~ 'fpl~g +
aF ' I

but

0 ~ a&a (34)

(36)

m and a can be eliminated through the use of (27)-
(29) and we ge't

—+—-a
~

—(0 —1)(1—F)/a —F(A —1) ' ~„+(P+p)„/F (37)

if p, O. If the density at surface is zero, the ex-
pression is

= -(0 —1){P+P),.
oa

To give a compact form to (31) we found it useful

to define the quantity

BI P+p
A(u) -=—+ 4srP +—,

srr

(1 —2m/r) r' (39)

which is a function of time whose structure de-
pends ultimately on the equation of state. Then if
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If P, =O, then Eq. (31) reduces to

[QS, +(Q —1)p,],=P,.=0. (41)

To proceed further we obviously need more de-
tailed information about the relation of the physi-
cal variables p, P and their dependence on u and

The possibilities are of course very ample and
so in the following sections we shall limit our-
selves to a detailed study of two relatively simple
models. For these two models the effective den-
sity is separable, i.e. , p =f(u)h(r) and so

p, is not zero, Eq. (31) can be written, after
multiplying throughby —QF/p, and do.ing some re-
arrangement, as

E 0 p, O'FA
F 0 p, p,

+( —1) 4, (3Q 1) —3+F QE t —0 (40)
Pa

FIG. 13. The quantity h(x) =x(3-14x)-SE with s =M/A
for E= 0.01 in the Tolman VI-type model. Bouncing can
occur only within the dashed region.

Then

+ k(a)E(Q —1),p
1 —E (43)

where

k)a) = —. )n — ' drr'k(r)/k(a)) .d 1
dQ 0 (44)

—+(1 —F)—=G(E, Q, A),
F 0

where
Q' S(& -F) „-

Pa

0
Substitution of this into Eq. (40) provides the

third dynamical equation for the surface variables.
It takes the form

a

A = —,'a(1 —E) =f(u) 4sr'h(r) dr
0

a
= p, 4sr'h(r) dr/h(a) .

0
(42)

+(F -1)(Q -1) (3Q -1)p.

(3+F) QF
+ p,.+k(a)E .20 Pa

(46)
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A =F0,
which together with Eqs. (29) and (45} gives

~ ~ 2@1A=-
1 —E A) (47)

All quantities are to be evaluated at the extremal
point. Two immediate consequences follow from
Eq. (47). The first one is that a positive flux of
energy tends to decrease the radius of the sphere,
i.e. , it favors the compactation of the object,
which is easily understandable. The same happens
when G&0. Of course, the opposite effect occurs
when these quantities have the opposite signs. A
second general consequence is that a radiating
sphere can only bounce at its surface when

G(E, 0=1,A)&0. According to (46) this is equiva-
lent to

R(Z, A-, n =1) -0. (48)

A physical meaning can be associated to this
equation as follows. For nonradiating, static con-
figuration, R, as defined by Eq. (39) when &u =0,
consists of two parts. The first term which rep-

In Eq. (45) the fact has been advanced that for
the models considered below, G can be expressed
solely in terms of the surface variables I', Q,
and A. This implies that Eqs. (27}, (29), and (45)
constitute a complete set of coupled nonlinear dy-
namical equations for the surface variables. The
models considered below are such that all the
dynamics is contained in these surface variables
which control then the behavior of the different
pieces of matter inside the spherical body.

B. Bouncing at the surface

Some interesting conclusions can be obtained
even at this level of generality. One of these con-
clusions concerns the possibility of bouncing at
the surface of the body under the combined action
of gravity and incoherent radiation. This, of
course, is related to the occurrence of a mini-
mum of the object's radius A during the evolution.
According to Eq. (27) this requires, as expected,
Q=1 and we have

V. THE SCHWARZSCHILD-TYPE MODEL

Let us now illustrate the method presented
above with a very simple model inspired by the
well-known Schwarzschild interior solution.

With this aim we take

f(u), r ~ a(u)

0, r& a(u)
(49)

where f is an arbitrary function of u and a(u) de-
fining the radius of the sphere.

The expression for P is

p+1
= (1 —

w wpr')"'0,
p+p (50)

where k is a function of u to be defined from the
boundary condition

(51)

Thus, (50) and (51) give

resents the hydrodynamical force and the second
which is of course the gravitational force. The
resulting force in the sense of increasing r is
precisely -R. If this is positive a net outward
acceleration occurs and vice-versa. Equation
(48) is the natural generalization of this result for
general nonstatic conf igurations.

In the next section a nonstatic radiating general-
ization of the internal Schwarzschild model will
be studied. This model is such that for +, =0
(0 =1) the material finds itself in an equilibrium
configuration irrespective of the value of the
other parameters I', A, etc. This is so because
R =-0. In this case, the only driving force is the
radiation flux and of course the bouncing of the
surface is impossible. In the opposite case, when
R is not identically zero, although the surface is
momentarily at rest when Q =1, the system finds
itself in a nonequil, ibrium configuration which
cannot per s ist even if no r adiation is pr esent. A
model of this last situation will also be studied
below.

(1 —3(o,)(l —ws wfr')'" —(1 —(v, )(I —ws wfa')'"
3(l —(o,)(1 —ws wfa') "' —(1 —wBwfr2)'" (1 —3 (u, )

(52)

Using (18') and (19') it is very easy to obtain ex-
pressions for P and m:

I3(1 —' fa')'" 1
I 1 (o')

k ( 8 )x 2

wwfr', r & a(u)

fwfa', r & a

In order to write down explicitly the surface
equations for this model, observe that

0, r&a (53)
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for any value of f(u}. Next, using (44) and (46) one
gets

VI. TOLMAN VI-TYPE MODEL

2
k(u) =-

a

G = -3(1—E)'(Q —1)(2Q —1)/2aQ

so that Eq. (45) takes the form

Q 3(1.-E)'(Q —1)(2Q —1)
F 0
—+(1 -E)—+

2AO
=0. (55)

3g(u)P= (56)

As a second example we shall investigate in
this section a model- obtained from the Tolman VI
solution. " Unlike the Schwarzschild-type solution
this model can present bouncing at the surface
since R 40, and so one expects new interesting
situations.

Following the scheme of Sec. III, let us take

This last equation, together with (29) and (27),
constitutes the differential system for the surface
in this model. In order to obtain information
from it, we must specify one function of u and the
initial data. Specifically we choose the product
FE to be a Gaussian so that the total radiated
mass is ~ of the initial mass. As for the initial
data the following cases were considered:

(a) Q „=1, A~„, =5, E(„,=0.6,
(b) Q „=0=0.83333, A~„,=5, E~„0=0.6,
(c) Q „o=1, A~„=3.33333, E~„,=0.4.
The integration was done numerically for values

of u between 0 and 30 for this set of initial data
(this specific interval was suggested by the march
of the variables themselves).

Figures 1-3 show the evolution of the radius A.
It is seen immediately that the system tends to a
situation of constant radius for the initial data
chosen above. For very compact objects A"
~ 3.3333 and very high inward (initial) velocities
If~/du ~„,~ 0.1, the object will collapse and/or
the equation of state will be of the type P ~ p.

Feeding back the numerical values of A, F, and
Q in (53) and (54) we obtain the complete specifica-
tion of P and A for any value of r. This gives us at
once, using the field equations, the functions p,
e, P, and ~ for any piece of the material. Spec-
ifically, we calculated them for the values r/a
=0, 0.2, 0.4, 0.6, 0.8, and 1. Further details
of these calculations are included in Appendix A.

Figures 4-7 give the profile of the variables
versus the timelike coordinate for different pieces
of material and for the initial data (b). [Note that
instead of &u, we work with the quantity v =dr/du,
as defined by Eq. (10)j.

The evolution can be briefly described as a
transition from a nonstatic configuration to a
Schwarzschild solution.

Also observe that although there is no bounce at
the surface, some inner regions do bounce as
indicated in Fig. 6.

For the initial data (a) and (c) the results are
very similar, but in these cases the initial con-
figuration corresponds to a Schwarzschild interior
solution.

g(u) 1 —9D (u)r
r' 1 —D(u)r

where g and D are functions of u.
Substituting (56) and (57) into (18') and (19'),

one gets

and

8' (1 Dr)'r—
(1 —24wg) (1 —D a)'a. ln

(57)

(58)

(59)

It is useful to express the function D in terms of
the more physical quantity ~,. Taking into account
the boundary conditions

p 3(d g (60)

and comparing it with (57) evaluated at the surface
one gets

D=- 1 +3+)g
3a(3+a),)

' (61)

Using (39), (44), (46), and the expressions for
P and p above, one obtains

R= 1 (1 —E)(4 —7E)
64 wa O'I"

k(a) =2/a,

G =—(1 —E)E(4Q —3)(4Q —1)—(1-E)'
8A 2OA

(62)

(64)

Feeding back (64) into (45) one gets one of the
surface equations for this model; the other two
equations, as already mentioned, are (27} and (29).

These surface equations were numerically inte-
grated for the following set of initial data (we
choose the product FE to be the same as in the
Schwarzschild-type model):

(a) A „o=6.666667, Qi„0=0.857143, Ei„o=0.7,
(b) A „o=5, Qi„0=1, Ei„o=0.6.

As for the previous model we performed the inte-
gration for 0 &g ~30.

Figure 8 shows the evolution of the radius of the
sphere for the initial data (a). Figures 9-12 give
the profiles of the matter variables versus the
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timelike coordinates for the same initial data (a)
and different pieces of material.

The fact that bounce at the surface may occur
should not surprise, since A is not identically
zero. As can be seen from (62), -R) 0 if F) v4.

In this case F =1 —24mg= 1 —2M/a, and the con-
dition reads g ( I/56m or M/a(~. This is in

accord with the equilibrium value given by Tolman
and confirms the expectation that bouncing may
only occur when the gravitational potential is
small. Figure 13 depicts graphically the region
where a bouncing occurs in terms of the "surface
potential" x =M/a.

The bouncing situation obtained from the initial
data (a) presents another interesting aspect,
namely, for a long interval of time after the
bounce the inner zones continue to contract. The
evolution can be pictured as an expanding envelope
containing a contracting radiating core (see Figs.
10 and 11).

questionable, because the energy-momentum ten-
sor [Eqs. (6)—(9)] will not be valid. Moreover, in
those cases the condition P~, =0 no longer holds,
since there exists a discontinuity of the radiation
flux across the surface. "

Finally, we would like to mention two possible
extensions of the method proposed in this paper.

(1) Instead of giving the function FF. to solve the
surface equations one could give Q, A. , or J de-
pending on the kind of phenomena one would like
to describe.

(2) The r dependence for the variables P and p
could be inferred from a different heuristic argu-
ment than the one we have used.
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APPENDIX A

VII. CONCLUSIONS

We have seen so far that with relatively mild
assumptions it is possible to construct a differen-
tial system at the surface which allows one to des-
cribe the dynamical situation inside the radiating
sphere. The critical assumption in our method

appears when identifying the dependence of P and

p with the corresponding dependence of the static
case. Although this identification is based on a
heuristic argument, two remarks are in order:

(1) In the limit ur-0 the identification is ob-
viously true so that for small velocities the
method may always be expected to work.

(2) In the examples examined above, at least
some of the results are close to what one could
intuitively expect.

. The next thing to do should be to construct
models fitting the observational data of some as-
trophysical phenomena [in this sense, note that
our initial data in the two models above was sug-
gested by supernova data (n =0.1; total radiated
mass =0.1 m(0))].

In relation with this point there is an important
question which remains unanswered in the context
of the present work, namely, what is the source
of the radiation emitted by the models. For the
Tolman VI-type model it seems reasonable to
think as if the radiation were produced at a sin-
gularity at the center of the model. In genera1,
the answer to this question requires the considera-
tion of a specific microscopic process which could
fit the conditions and characteristics of the differ-
ent models.

Also, it is worth mentioning that solutions which
do not radiate to the outside (E =0) are physically

2rZ= 1 —(1 —E)—
(Al)

It is now easy to obtain

S(1-F)WF (r
Pim(0)= 4 Zs, ay~ I —,

(1-F)~E
A

(A2)

x Zs/2Y —3 1 —Z —P — Z P20

(AS)

Poim (0) =- SF+&Q+ Vg,

with

(A4)

(S -2Q)(Z-F)
4Q YZ 5/2g 4PQ Y

T
S(F/Z)'"(I —F) S[1—(F/Z)'"]

4ZYAQ' . 2g Y

-SVF(1-F) ' (3 —2Q)(Z —F) r
2QZ' YA' g 4y'QY g

S(1-F)' S I
4QZ'I"A' 2Q (F/Z)'" a

3y'
m = ——(1-F)1 2

(A5)

I

Once the surface equations-are integrated for
the Schwarzschild-type case it is useful to intro-
duce the following dimensionless auxil. iary quan-
tities:

,8 I S F'"
Y-=e +Q ——

Q 2 S 2
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m~ 2( )
3(l F)

A
(A6)

ancl

Feeding back (Al) —(A6) into (16) gives P. Then
using the field equations one gets

3(1 F)—(F/~)'"
1'0[3(1—F) +P8mA') '

3(1 —F)(1+(d)
p=—

8 2 +ISO q

(A7)

(A8)

((-~)(&) (i+a~']

where P-=Pm'(0), p =— pm'(0): e =-em'(0).

(A9)

APPENDIX 8

In the Tolman VI-type case, one arrives at the following expressions:

m, = -,'(1 F), -
A„-O,

(1 —F) 1 ——', [(40 —3)/(40 —1)](r/a) ' r
3F 1 ——', [(40 —3)/(40 —1)] a

P,m(O) = (1 —F) (40 —1)- (40 —3)(r/a)
FA(r/a) 3(40 —1) —(40 —3)(r/a)

(E —() 1 —-,'[(4A —3)/(40 —1)](x/a) + —'[(4() —3)/(4Q —1)]'(r/a)I
3FA'(r/a)' [1—~(40 —3)/(40 —2)(r/a)]'

(al)

(a2)

(a3)

(a4)

(as)
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