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The calculation of the moments of the photon structure function using perturbative quantum chromodynamics is
briefly reviewed and extended with special emphasis being placed on the large magnitude of the next-to-leading-
order corrections with respect to the leading-logarithm calculation. In addition, the moments are inverted in order
to study the detailed x dependence of the structure function. It is found that even for large values of Q' the
structure function is not positive definite when the next-to-leading-order corrections are included, indicating the
unreliability of the calculation. This result is insensitive to the scheme used to define the coupling constant g .A
brief discussion of a vector-dominance estimate of possible background terms is also included.

I. INTRODUCTION

For some time it has been known that the point-
like nature of the photon-quark interaction yields
the unique result that the. most significant part of
the photon structure function can be calculated to
leading-logarithm accuracy with the strong-inter-
action Q' scale A being the only required parame-
ter. ' ~ It would seem, therefore, that a measure-
ment of the photon structure function should pro-
vide a good test of quantum chromodynamics
(QCD). However, this test is limited by the fact
that A is not specified by a leading-logarithm cal-
culation' and, therefore, the normalization of the
structure function at finite values of Q' is not pre
dieted by such calculations, although the shape of
the structure function can be predicted. In order
to determine A, and hence the overall normaliza-
tion, it is necessary to include next-to-leading-
order contributions. Such a calculation has been
carried out in Ref. 6. The results of that calcula-
tion showed that the next-to-leading-order contri-
butions to the even-n moments of the photon struc-
ture function I ~2 were large and negative. There,
too, an approximate inversion of the moments was
given for the region 0.4S g s 0.8. This inversion
was performed using only the even moments in the
range 4 & n & 20.

We have repeated the analysis of Ref. 6 and ex-
tended the results to include both odd-n values and
pg= 2. Using the moments in the range 2 ~~ ~10-

20, the x dependence of g& has been obtained over
the full x range for a variety of Q' values. The
new main result presented here is that the large
negative corrections to the leading-logarithm re-
sult yield a structure function which is not posi-
tive definite in the region ~s 0.2.

In the next section the formalism for the next-to-
leading-order calculation is reviewed and new re-
sults for the yg

= 2 moment are presented. In Sec.
EEI the inversion of the moments is discussed and
the results for the x dependence of /~2 are pre-
sented. Section EV contains some brief remarks
concerning a vector-dominance-based estimate of
possible backgrounds to the above calculation. Our
conclusions are given in Sec. V.

II. FORMALISM

In order to avoid a large number of formulas
and definitions, we shall adopt directly the nota-
tion of Ref. 6 unless stated otherwise below. We
have found that the full expression for the mo-
ments of F~ (x, Q') is simplest when a basis is
chosen such that the one-loop anomalous-dimen-
sion matrix is diagonal. Thus, given

/ (0, 1)n (0,1)ng
(0, 1)n (YGG YG tp

1~

(0, 1)n (0, 1)nf

in the G, p basis, we transform to the +, —basis
using
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where U~, =U~ =1, and

—cfgt
'

Gg Gg

with

d, =~,'""/2P. ,

where y,~'~" are the eigenvalues of p~"". Similarly,
we define (NS denotes nonsinglet)

dNs =r~s'"/2P. ,

ht, NS a, NS/ Po

Ha, Ns +t,Ns /2PO Pl+a, Ns/2Po

Ga, NS Ynnpg/2ps p.ra, NS/2po'

(&)n/( (0)n (o)n+ 2p )

with t", obtained by interchan'ging + and —in the
last line. A superscript n should be understood on
each of the quantities U, d, p, II, K, and Q. Here
we have used

EC&'""=U ' K"')" =+ — s=G Pia a

B, =B",U„, i=+, —; a=G, )t)

16s P, (16m' P, )t Q'
(2.2)

Note that our definition of the structure function
/~2 lacks a factor e' as compared to Ref. 6. Thus
our definition is more in analogy with hadron
scattering. In Eg. (2.1) we have, for N~ 2,

Ug+h, Ug h,

with the coefficient functions B~, B& as given in
Ref. 6, then we find that the moments of the point-
like part of the photon structure function may be
expressed as

1

M„~(Q ) = dxx" F~(x, Q')
0

poR' po g -s
n+ g6 2 bn+&n, 2 a g6 2

P0g F 7T

(2.1}

where (in order to avoid a lnln Q' term) we obtain
g' by solving numerically

where K&~"~", K~~" " are defined as in Ref. 6 ex-
cept that we omit all electric charge factors (e'&',
(e4& from the K&o')" and include them explicitly in
our final equation. Finally, if we define

~ NS

while, for n»,

(2.3)

B,h, (H, h+G+ h G+-
U (s&s Bh H hG hG,

d+(1+d, ) d, (1+d } s' .1+d d d (1+d ) d (I+d+))

+NS~ NS +
+NS

~+ +NS ~NS dNS(1+dNS}
((e'& —(e'&'} + 6B",(e'& . (2 4)

For n=2 we have

and the second (es&s term in Eg. (2.4) is replaced by

(2.6)

The special treatment required for b, results from
the vanishing of y

~'~" for n= 2 as a result of energy
conservation. Our equations for p„, b„agree nu-
merically with the values given in Ref. 6. Our ex-
pression (2.6) is new. Furthermore, we have used
the analytic values for the two-loop anomalous di-
mensions y

' " given in Ref. 7 to compute Q„ for odd
values of n. '

Since the anomalous dimension y~ ~" vanishes for
n= 2, there is actually an additional contribution to
M~, (Q'} at the level of 1) „namely, that contribu-

tion due to the matrix elements of the quark opera-
tor with photon states."This contribution reflects
the hadronic components of the photon. We shall
discuss an estimate for the effect of this contribu-
tion in Sec. IV.

We have found that the moments M„" (Q') are more
easily inverted if we separate them into parts pro-
portional to (e4& and (e')'. This separation corre-
sponds roughly to the usual valence-sea decompo-
sition of hadronic structure functions. This is
most clearly. demonstrated by considering the cal-
culation of the structure functions according to
diagrammatic techniques. "We note that in the
leading-logarithm approximation, just those graphs
of the form shown in Fig. 1(a} contribute terms
proportional to (e4). These diagrams we call va-
lence diagrams since the struck quark originated
directly from the target photon. Graphs of the
form of Fig. 1(b) we call sea diagrams since the
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TABLE I. Numbers necessary to compute M&(Q~)

using Eqs. (2.1)-(2.6). In addition, a2=0.3911. We
have used four flavors and the Ms scheme of Ref. 9.

ar &e4) ae
&

bv (e4) bI (e2)2

2 1.177
3 0.7052
4 0.5026
5 0.3895
6 0.3171
7 0.2667
8 0.2296
9 0.2012

10 0.1787

0.6764 x 10 i

p.5649x1p '
p.1473x1p '
0.5713x10 3

0.2738x10 3

0.1497x10 '
p.8967x 1p 4

0.5741x.10 '
0.3867x10 '

-2.064
-1.240
-0.9523
-0.7930
-0.6858
-0.6063
-0.5441
-0.4936
-0.4517

0.9327
-0.1735
-0.7541x1p ~

-0.4443x 1p ~

-0.3002x 10 ~

-p.2198x 10 '
-0.1697x 10-1
-0.1361+10 i

-0.1123x 10

x= 0, in analogy with results from hadronic tar-
gets. When we include the terms b„ in Eq. (2.1)
we are going beyond the ladder approximation,
but the valence-sea decomposition remains equally
useful.

We write the valence and sea parts of g„and 5„
as

a„=a"„(e )+a'„(e')',

b„=b„"(e')+ b'„(e')'.

O

s

if

FIG. 1. Typical leading-logarithm contributions to (a)
the valence or (u4) and (b) the sea or (u2)2 components
of the photon structure function.

struck quark did not originate directly from the
photon. Such diagrams clearly contribute terms
proportional to (e')'. The utility of this decompo-
sition rests upon the fact that the shapes in x of
the valence and sea parts are distinctly different.
Furthermore, we have found that in the leading-
logarithm approximation the sea contribution is
small and very sharply peaked near z = 0, while
the valence contribution is large and vanishes at

Of course, a', contributes only to the sea. W'e give
in Table I the va, lues of a"„(e'), a'„(e')', b„"(e'),
b„'(e')', and a', for 2 &n ~10 computed assuming
four flavors. We have followed Ref. 6 in using the
modified minimal-subtraction (MS) scheme' for
calculating B& and B~. The value of A~ appro-
priate to this scheme is known from deep-inelastic
hadron scattering to be approximately A~ = 0.5
QeV. '" We discuss in Sec. III the effect of chang-
ing our choice of scheme.

Finally, we recall that Witten's original result, '
which is equivalent to the J.eading-logarithm ap-
proximation, "is obtained by keeping only the a„
term in Eq. (2.1) while setting P, =0 in Eq. (2.2).
Also, the parton-model (PM) result is simply (for

f flavors)

e' 12(n'+ n+ 2)
(Q )IpM

p + n( +1)( +2) f(e ), (2.8)

where the magnitude of g~„' is uncertain. For
definiteness we shall use the same A. for all of our
calculations and we also take gpM' = 16w'/p, 1n(Q'/A').

HI. x DEPENDENCE

The method chosen for inverting the moments
was to first parametrize a function of x a,nd then
to fit the moments of this function to the theoreti-
cal moments of /~2. Both even and odd moments
were fitted over the interval 2 & g &'~ where ~
was chosen to be sufficiently large that the fitting
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results were stable under small variations of g
The results shown here are stable for 10 ~ pz

~ 20. As discussed in the previous section, the
shapes for the valence and sea functions are quite
different. Therefore, it is advantageous to fit the
two functions separately and then add the results
to obtain +~2. For both the valence and sea terms
in the leading-logarithm case, and for the valence
term in the next-to-leading-order case, the fitting
function was chosen to be

Z(x) = x"(1 —x) 'g C„x".
n=0

This function is perfectly adequate except for x
very near unity, where the moments M~ (Q') of Eq.
(2.1) become negative for sufficiently large n Thi.s
particular breakdown of perturbation theory is not
an issue discussed in this paper. The sign change
in the moments of the sea term in the next-to-
leading-order calculation results in a negative
function over most of the x range with a sharp
positive spike at small x. The fitting function
chosen for this case was

4

E(x) =[x"(1 -x)'(lnx/a)/ina)Q C„x".
n=0

In Fig. 2 the results for the leading-logarithm
calculation are shown together with the separate
valence and sea contributions. Also shown for
comparison is the result of the parton model [see
Eq. (2.8)]. These results are in agreement with
one's intuition in that the QCD corrections have
softened the x dependence of /~2 and built up a spike
at small x. This spike comes entirely from what

we have called the sea term, as one would expect
since it results from quarks which have been pair-
produced from the gluons which, in turn, were
radiated from the valence quarks. The structure
is entirely analogous to that observed for the nu-
cleon structure. function.

In Fig. 3 the results are shown for the next-to-
leading-order calculation at Q'= 3 (GeV/c)'.
Again, the separate sea and valence contributions
are shown together with the leading-logarithm re-
sult from Fig. 2. As in the leading-logarithm cal-
culation, the valence piece is positive (except for
x very near to unity) and provides the bulk of the
structure function except for small x values. The
sea term, however, is negative for all but very
small x values and it is large enough in size to
cause the structure function itself to be negative
for 0.02S xs 0.2. This situation is clearly un-
physical and signals a breakdown in the perturba-
tion-theory expansion. This point is further rein-
forced by comparing the results with the leading-
logarithm curve. The next-to-leading-order cor.-
rections are large, particularly for large and
small x. Clearly, the perturbation series is con-
verging slowly, if at all, in these regions of x for
this value of Q'.

The rate of convergence of the expansion depends
somewhat on the scheme used to define the coupling
g'. ' "" We have so far used the MS scheme. We
can change schemes by changing b„and A according
to

b„-b„'=5„+5a„,
A- A' =Ae"'.
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FIG. 2. The valence and sea components of the leading-
logarithm contribution to I'~&. Also shown for comparison
is the parton-model result for E2", which is purely
valence in our language.
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FIG. 3. The valence and sea components of F2 including
the first nonleading corrections at Qt= 3 (GeV/e)t.
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dimensional-counting rules and also by requiring
that

dx G„/p+ x, ' —G-„],+ x, ' =1.

In addition, the sea has been normalized so as to
carry 10%%u~ of the momentum of the p. The results
are (the x and Q' dependence has been dropped for
notational convenience)

G /p0 Gg /p0 Gg /p0 Gg /p0

3 1 1
(1 -x)+ (1 -x)'

tribution to E, is shown in Fig. 5 together with the
next-to-leading-order result and the total of the
two. For reference, the leading-logarithm result
is also included. It is clear that the vector-domin-
ance contribution provides a negligible background
in the large-x region.

Formally, of course, we are only required to
include the g = 2 moment of the vector-dominance
contribution in Eq. (2.1). In this circumstance we
find that the predicted F~ (x, Q') is still negative
for xs 0.2. In any event, however, the pointlike
contribution to Eq. (2.1) should always be positive
definite on its own.

10 y O=G&y 0= (1 x)10x

A possible charm-quark contribution has been ne-
glected. Inserting these expressions in Eq. (4.1)
yields

eg xG, =0.417 Wx(1 -x)+ 0.133(1-x)'.
f

For the vector-dominance coupling the value f '/4g
= 2.2 was chosen. These estimates for G„areq]/p
assumed to be valid at some input value of Q'= Qo'.
For different values of Q' the distribution functions
can be calculated, assuming ordinary QCD scaling
violations.

In order to compare with the results of the pre-
ceding section we assume that the above estimates
are valid for Q'= 3 (GeV/c)'. The resulting con-

V. CONCLUSIONS

In this analysis we have reviewed and extended
the calculation of the next-to-leading-order cor-
rections to the photon structure function. The
main conclusion is that the large negative correc-
tions to +", yield a function which is not positive
definite. This indicates that, at least for x& 0.3,
the calculation is not reliable. Furthermore, for
x& 0.8 the corrections are so large as to render
the final result meaningless. In such circum-
stances the perturbative agreement for 0.4 ~ x
& 0.7 might be fortuitous.
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