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The calculation of the moments of the photon structure function using perturbative quantum chromodynamics is
briefly reviewed and extended with special emphasis being placed on the large magnitude of the next-to-leading-
order corrections with respect to the leading-logarithm calculation. In addition, the moments are inverted in order
to study the detailed x dependence of the structure function. It is found that even for large values of Q? the
structure function is not positive definite when the next-to-leading-order corrections are included, indicating the
unreliability of the calculation. This result is insensitive to the scheme used to define the coupling constant g% A
brief discussion of a vector-dominance estimate of possible background terms is also included.

I. INTRODUCTION

For some time it has been known that the point-
like nature of the photon-quark interaction yields
the unique result that the most significant part of
the photon structure function can be calculated to
leading-logarithm accuracy with the strong-inter-
action @2 scale A being the only required parame-
ter.!"* It would seem, therefore, that a measure-
ment of the photon structure function should pro-
vide a good test of quantum chromodynamics
(QCD). However, this test is limited by the fact
that A is not specified by a leading-logarithm cal-
culation® and, therefore, the normalization of the
structure function at finite values of @2 is not pre-
dicted by such calculations, although the shape of
the structure function can be predicted. In order
to determine A, and hence the overall normaliza-
tion, it is necessary to include next-to-leading-
order contributions. Such a calculation has been
carried out in Ref. 6. The results of that calcula-
tion showed that the next-to-leading-order contri-
butions to the even-n moments of the photon struc-
ture function F} were large and negative. There,
too, an approximate inversion of the moments was
given for the region 0.4< x< 0.8. This inversion
was performed using only the even moments in the
range 4 <5 <20,

We have repeated the analysis of Ref. 6 and ex-
tended the results to include both odd-» values and
n=2. Using the moments in the range 2<#n <10-
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20, the x dependence of F} has been obtained over
the full x range for a variety of Q2 values. The
new main result presented here is that the large
negative corrections to the leading-logarithm re-
sult yield a structure function which is not posi-
tive definite in the region x< 0.2.

In the next section the formalism for the next-to-
leading-order calculation is reviewed and new re-
sults for the »=2 moment are presented. In Sec.
III the inversion of the moments is discussed and
the results for the x dependence of F}, are pre-
sented. Section IV contains some brief remarks
concerning a vector-dominance-based estimate of
possible backgrounds to the above calculation. Our
conclusions are given in Sec. V.

II. FORMALISM

In order to avoid a large number of formulas
and definitions, we shall adopt directly the nota-
tion of Ref, 6 unless stated otherwise below. We
have found that the full expression for the mo-
ments of F} (v, Q? is simplest when a basis is
chosen such that the one-loop anomalous-dimen-
sion matrix is diagonal. Thus, given

NICR 7((;0(51)" Yc(:oz/ll)"
yzzoél)n 7’;501/51)"
in the G,y basis, we transform to the +, — basis

using
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YO =UT SOy, 4,554, —5 a,b=G,y

where Ug, =U;_=1, and
U _d; —dge Uy- _4_—dgg
Y+ d ’ d ’
GY Gy

with
d,=v (0)"/230 s

where y " are the eigenvalues of y ",
we define (NS denotes nonsinglet)

dns =7i"/28,,

Ry ns =K% /2B, ,

H, s =K8% /28— B.K s /284,
G, ns =Vine/280 = Bry s /28”5
Gy =y /(yOn =y On4 28,

with G_, obtained by interchanging + and — in the
last line. A superscript » should be understood on
each of the quantities U, d, h, H, K, and G. Here
we have used

Similarly,

K On=UT G KO0", i=+, =5 a=G,y

where K{>V" K{V" are defined as in Ref. 6 ex-
cept that we omit all electric charge factors (e?)?,
(e*) from the KV" and include them explicitly in
our final equation. Finally, if we define

]

h_G,_

bz[Bh +(£+__ h.G,
" li+d, \d, d.(1+4,)

hnsG

+ [éﬂsius_+ Hys _hnsGns
dns (1+dns)

l+dys  dns

For n=2 we have

k.G
a';(-f;*- -H_+h_G )Uw_(e2>2, (2.5)

and the second ¢2)? term in Eq. (2.4) is replaced by

[B_h_+ (h_G_+(—}{*-_-G—d’:*)—2)Uw-](ez)2- (2.6)

The special treatment required for &, results from
the vanishing of y©" for »=2 as a result of energy
conservation. Our equations for a,, b, agree nu-
merically with the values given in Ref. 6. Our ex-
pression (2.6) is new. Furthermore, we have used
the analytic values for the two-loop anomalous di-
mensions y " given in Ref. 7 to compute b, for odd
values of n.°

Since the anomalous dimension y 9" vanishes for
n=2, there is actually an additional contribution to
MY ,(Q? at the level of b,, namely, that contribu-

- Ve e+ [F (Z_‘ FRETR

B,=B"T,

ais LTH, =

; a=G,y

with the coefficient functions Bf, B as given in
Ref. 6, then we find that the moments of the point-
like part of the photon structure function may be
expressed as

1
M@= [ drx"F(x,Q
0

(2.1)

where (in order to avoid a Inln Q% term) we obtain
2° by solving numerically

167° E"'-ln(-!-ﬁli —B‘-> —1n9—?— (2.2)

BOEZ - B 2 802-.2 BOZ A2 .
Note that our definition of the structure function
FY lacks a factor e¢? as compared to Ref. 6. Thus

our definition is more in analogy with hadron
scattering. In Eq. (2.1) we have, for n=> 2,

Ughe Uy h_\, .o,
B°<1+d HEVTR )<e )
Bol+ i (e =, (2.3)

while, for n>2,

- adi) - e

]((e") —(e%)?) + 6B"(e*). ‘ (2.4)

tion due to the matrix elements of the quark opera-
tor with photon states.!'® This contribution reflects
the hadronic components of the photon. We shall
discuss an estimate for the effect of this contribu-
tion in Sec. IV. )

We have found that the moments M (Q?) are more
easily inverted if we separate them into parts pro-
portional to {¢*) and {e?)%. This separation corre-
sponds roughly to the usual valence-sea decompo-
sition of hadronic structure functions. This is
most clearly demonstrated by considering the cal-
culation of the structure functions according to
diagrammatic techniques.®3 We note that in the
leading-logarithm approximation, just those graphs
of the form shown in Fig. 1(a) contribute terms
proportional to (¢*). These diagrams we call va-
lence diagrams since the struck quark originated
directly from the target photon. Graphs of the
form of Fig. 1(b) we call sea diagrams since the
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(a)

‘66_‘...

(b)

FIG. 1. Typical leading-logarithm contributions to (a)
the valence or {(¢!) and (b) the sea or {(e?)? components
of the photon structure function.

struck quark did not originate directly from the
photon. Such diagrams clearly contribute terms
proportional to {¢Z)2. The utility of this decompo-
sition rests upon the fact that the shapes in x of
the valence and sea parts are distinctly different.
Furthermore, we have found that in the leading-
logarithm approximation the sea contribution is
small and very sharply peaked near x =0, while
the valence contribution is large and vanishes at

TABLE I. Numbers necessary to compute M}(Q?)
using Egs. (2.1)=(2.6). In addition, a5=0.3911. We
have used four flavors and the MS scheme of Ref. 9.

N al(eh a5, (eh? by (eh b3 (e)?

2 1177 0.6764x107! —2.064 0.9327

3 0.7052 0.5649x1072 =1.240 =—0.1735

4 0.5026 0.1473x1072 =0.9523 =—0.7541x107!
5 0.3895 0.5713x1073 =0.7930 —0.4443x107!
6 0.3171 0.2738x1073 =0.6858 ~=0.3002x107!
7 0.2667 0.1497x1073 —0.6063 —0.2198x107!
8 0.2296 0.8967x10™% =—0.5441 —0.1697x10!
9 0.2012 0.5741x107¢% —0.4936 —0.1361+107!

0.1787 0.3867x107% —0.4517 =0.1123x107!

[ury
(=]

x=0, in analogy with results from hadronic tar-
gets. When we include the terms b, in Eq. (2.1)
we are going beyond the ladder approximation,
but the valence-sea decomposition remains equally
useful.

We write the valence and sea parts of g, and b,
as

a, = aiie*) + ai(e®)?, 2.7)

b, =bnle®) +bule™)?.

Of course, a, contributes only to the sea. We give
in Table I the values of a%(e*), aS(e®)?, b¥e*),
bi(e?)?, and aj, for 2 <x <10 computed assuming
four flavors. We have followed Ref. 6 in using the
modified minimal-subtraction (MS) scheme?® for
calculating Bj, and Bg. The value of Ayg appro-
priate to this scheme is known from deep-inelastic
hadron scattering to be approximately Ayg=0.5
GeV.%'° We discuss in Sec. III the effect of chang-
ing our choice of scheme.

Finally, we recall that Witten’s original result,!
which is equivalent to the leading-logarithm ap-
proximation,?? is obtained by keeping only the a,
term in Eq. (2.1) while setting g, =0 in Eq. (2.2).
Also, the parton-model (PM) result is simply (for
f flavors)

e 12(n%+n+ 2)
BoZem® nln+1)(n+2)
where the magnitude of gpy?® is uncertain. For

definiteness we shall use the same A for all of our
calculations and we also take g, = 167%/8, In(@%/A%).

My (Qz)lm = fe*, (2.8)

III. x DEPENDENCE

The method chosen for inverting the moments
was to first parametrize a function of x and then
to fit the moments of this function to the theoreti-
cal moments of F}. Both even and odd moments
were fitted over the interval 2 <un <%, where 7y,
was chosen to be sufficiently large that the fitting
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results were stable under small variations of 7 4,,.
The results shown here are stable for 10<n,,,
<20. As discussed in the previous section, the
shapes for the valence and sea functions are quite
different. Therefore, it is advantageous to fit the
two functions separately and then-add the results
to obtain F}. For both the valence and sea terms
in the leading-logarithm case, and for the valence
term in the next-to-leading-order case, the fitting
function was chosen to be

4
F(x)=x*(1=x)8) C,x".

This function is perfectly adequate except for x
very near unity, where the moments M} (92 of Eq.
(2.1) become negative for sufficiently large ». This
particular breakdown of perturbation theory is not
an issue discussed in this paper. The sign change
in the moments of the sea term in the next-to-
leading-order calculation results in a negative
function over most of the x range with a sharp
positive spike at small x. The fitting function
chosen for this case was

F(x)=[x*(1 - x)®(nx/a)/ lna]z C,x".

In Fig. 2 the results for the leading-logarithm
calculation are shown together with the separate
valence and sea contributions. Also shown for
comparison is the result of the parton model [ see
Eq. (2.8)]. These results are in agreement with
one’s intuition in that the QCD corrections have
softened the x dependence of F} and built up a spike
at small x. This spike comes entirely from what
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FIG. 2. The valence and sea components of the leading-
logarithm contribution to F}. Also shown for comparison
is the parton-model result for F}, which is purely
valence in our language. '

we have called the sea term, as one would expect
since it results from quarks which have been pair-
produced from the gluons which, in turn, were
radiated from the valence quarks. The structure
is entirely analogous to that observed for the nu-
cleon structure function.

In Fig. 3 the results are shown for the next-to-
leading-order calculation at @%=3 (GeV/c)2
Again, the separate sea and valence contributions
are shown together with the leading-logarithm re-
sult from Fig. 2. As in the leading-logarithm cal-
culation, the valence piece is positive (except for
x very near to unity) and provides the bulk of the
structure function except for small x values. The
sea term, however, is negative for all but very
small x values and it is large enough in size to
cause the structure function itself to be negative
for 0.025 x= 0.2. This situation is clearly un-
physical and signals a breakdown in the perturba-
tion-theory expansion. This point is further rein-
forced by comparing the results with the leading-
logarithm curve. The next-to-leading-order cor-
rections are large, particularly for large and
small x. Clearly, the perturbation series is con-
verging slowly, if at all, in these regions of x for
this value of Q2. :

The rate of convergence of the expansion depends
somewhat on the scheme used to define the coupling
g2.%11-1% We have so far used the MS scheme. We
can change schemes by changing b, and A according
to

bn"b:tzbn+ 5an ’

A=A =Ae¥?.
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FIG. 3. The valence and sea components of Fj including
the first nonleading corrections at Q%=3 (GeV/c)2.
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For example, one obtains the minimal-subtraction
(MS) scheme® by choosing 5=y, — Indr =~ ~1.95,
whereas the choice §=1.55 yields the momentum-
space (MOM) scheme.''~** One can render all the
b,’s positive for » <10 by choosing 6=2.6. This
latter scheme corresponds to a large A 2 1 GeV®?
and would imply very large perturbative correc-
tions to deep-inelastic hadron scattering, yet even
this 5=2.6 scheme still yields a negative F}, for
x<0.2 and @2~ 3 (GeV/c)®%. Infact, F} is very
stable under a change in scheme for g® over the
entire range of x.

An additional ambiguity in the »=2 moment of F},
is apparent in Eq. (2.1). The a), term contains
Ing?, and clearly a rescaling of g® will generate
‘modifications to b}. This ambiguity results from
the mixing between the hadronic and photon =2
operators. We have determined that this ambiguity
does not appreciably affect our results, since the
value of b} affects only the height of a very narrow
positive spike in F} very near to x =0 (this spike
is not shown in Figs. 3-5). The unphysical be-
havior of the sea contribution for x< 0.2 is caused
entirely by »> 3 moments.

In order to illustrate the Q* dependence of the
next-to-leading-order results, Fig. 4 shows the
results at @%=3 and 20 (GeV/c)? together with the
leading-logarithm curve. Even at the larger value
of Q2 the corrections to the leading-logarithm re-
sult are still large.

The observable FY (x,Q? will contain contribu-
tions other than the pointlike contribution we have
so far discussed. We will estimate the hadronic
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FIG. 4. The Q2 dependence of F} including nonleading
corrections.
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contribution in the next section. Our main conclu-
sion, however, is that the perturbative corrections
to the pointlike part of F} are much too large to be
reliable except, perhaps, in a small region around
x=0.6. Therefore, measurements of F}, at high-
energy e*e” machines will nof be particularly
critical quantitative tests of QCD.

IV. VECTOR-DOMINANCE ESTIMATE

It is well known!'® that the photon matrix ele-
ments of the quark and gluon operators contribute
a term to b, for n=2, but for n> 2 the contributions
are down by a factor (InQ%/A%~Y. In order to com-
plete the discussion presented in Secs. II and III
it is necessary to give an estimate of the contribu-
tion of these terms. For this purpose, an argu-
ment based on vector dominance will suffice. The
estimate presented here is similar in spirit to that
given in Ref. 3.

According to the vector-dominance model the
photon structure function can be written as

F}(x,Q% =E ;mzx > e;*xG,, , (¥,Q%),
v Vo

where ¢; is the fractional quark charge, 4na/f,? is
the coupling of the photon to the vector meson Vv,
and G, ,, (x,@?) is the distribution function for the
quark ¢; in the vector meson V. For real photons
this sum is dominated by V=p° The p° distribu-
tion functions can be estimated by employing the

(4.1)
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FIG. 5. A comparison of a vector-dominance estimate
for F}, with the QCD contribution including nonleading
corrections. Also shown for comparison is the leading-
logarithm result.
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dimensional-counting rules and also by requiring
that

fdx [Gu/‘,+(x Q ) G;,/,,+(x Q )]=

In addition, the sea has been normalized so as to

carry 10% of the momentum of the p. The results
are (the x and Q% dependence has been dropped for
notational convenience)

Gyu/po= Gy/p0=Ga/p0= Gd—/po
_3 1

3T (1--x)5

— (1 =-x)+ =
and

1
Gy/0= Gs/p0= m(l -x)°.
A possible charm-quark contribution has been ne-
glected. Inserting these expressions in Eq. (4.1)
yields

Ee xG q{/V

For the vector-dominance coupling the value fp2/411
=2.2 was chosen. These estimates for G, , are
assumed to be valid at some input value of Q%=@ 2%
For different values of @2 the distribution functions
can be calculated, assuming ordinary QCD scaling
violations.

In order to compare with the results of the pre-
ceding section we assume that the above estimates
are valid for @2~ 3 (GeV/c)?%. The resulting con-

V(1 =x)+0.133(1 -x)°.

tribution to F} is shown in Fig. 5 together with the
next-to-leading-order result and the total of the
two. For reference, the leading-logarithm result
is also included. It is clear that the vector-domin-
ance contribution provides a negligible background
in the large-x region.

Formally, of course, we are only required to
include the »=2 moment of the vector-dominance
contribution in Eq. (2.1). In this circumstanceé we
find that the predicted F} (x,@? is still negative
for x<0.2. In any event, however, the pointlike
contribution to Eq. (2.1) should always be positive
definite on its own.

V. CONCLUSIONS

In this analysis we have reviewed and extended
the calculation of the next-to-leading-order cor-
rections to the photon structure function. The
main conclusion is that the large negative correc-
tions to F} yield a function which is not positive
definite. This indicates that, at least for x<0.3,
the calculation is not reliable. Furthermore, for
x> 0.8 the corrections are so large as to render
the final result meaningless. In such circum-
stances the perturbative agreement for 0.4 <x
< 0.7 might be fortuitous.
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