
PHYSICAL REVIE% 0 VOLUME 22, NUMBER 9 1 NOVEMBER 1980

Syectrnm of absorption strengths in diffraction scattering
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The attenuation of a hadron passing through nuclear matter is characterized by a spectrum of absorption strengths,
corresponding to the eigenvalues of the absorption matrix. Analysis of nucleon-nucleus total cross sections shows
that this spectrum (i) is broad, (ii) is skewed towards large values, and (iii) broadens with increasing energy in a
manner consistent with the scaling of all eigenvalues.

I. INTRODUCTION

As a fast hadron passes through hadronic or
nuclear matter, the amplitude for it to remain un-
scattered suffers an attenuation Q =exp[ —J U(r}da],
where U is the local absorption strength or optical
potential. If U(r) is proportional to the matter
density p(r),

U(r) =ttp(r),

then

An attractive method for discussing all these
effects is to go to a basis in which u becomes dia-
gonal. "Let the basis states Ift& have eigenvalues

Then the differences among the various X„'s will
give rise to diffraction dissociation, ' multistep
processes, and inelastic screening. In particular,
the attenuation of state ~i& through a thickness t is
now given by

where

pl cfz

I

is the thickness of hadronic matter traversed.
Such a picture of diffraction has provided valuable
insights into the distribution of matter inside a
hadron. '

The existence of diffraction dissociation implies
the necessity of a multichannel approach': u must
now be replaced by a (Hermitian) matrix u in the
space of states that can be diffractively produced
from a given hadron. Such a generalization
affects even diagonal processes. For example,
a hadron ~i& may pass straight through a piece of
nuclear matter, with attenuation but no transition
[Fig. 1(a)]; or it may make a transition to a dif-
ferent state

~ j&, which propagates and later changes
back to ~i& [Fig. 1(b)]. The latter process, some-
times called "inelastic screening, " increases the
transmission and thereby lowers the cross section,
especially in large nuclei. It accounts fairly well
for the departure of measured hadron-nucleus and
even photon-nucleus cross sections from calcula-
tions using single-channel Glauber theory. '

Even in diffraction dissociation, multistep pro-
cesses may be quite important, 4 and the conven-
tional Kolbig-Margolis formalism, ' which retains
only the lowest-order off-diagonal terms, is open
to considerable doubt. '

L

(b)

(c}

FIQ. &. Passage of a hadron through a nucleus (a)
without transition, (b) by inelastic screening, (c) high-
er-order inelastic contr ibution. ,
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~=&tie "'lt) vided each nucleus is assigned a suitable average
value of t":

where

g~gn

dXPX e (4)

u. =()).——.'(A'), (t) +.'(t "),(t ) +

where

() ) fd'=bb(b) ""».»~ f d*bb(b)e b'.

(7)

P(~) = Q i&flu) I'6(&. —&)

is a normalized, non-negative weight function
which we shall call the spectrum of absorption
strengths. (Its dependence on i is suppressed. )
A knowledge of P(X) is obviously crucial for the
proper understanding of diffraction. Our object
here is to show that total cross sections of hadron-
nucleus scattering contains information on the
moments of P()() and to use the available data to
determine the first few moments in the case of a
nucleon passing through hadronic matter.

II. FORMALISM

Analysis of the data directly using the exact at-
tenuation factor (4) is, of course, complicated.
But suppose, for a given thickness t, we try to
replace (4) by the single-channel formula (2) with
an effectivt! absorption coefficient u, :

(8)

Equation (7) is the basic formula we shai]. em-
ploy. We take neutron-nucleus scattering from
34-273 GeV/c incident momentum as an example. "
For each nucleus and at each incident momentum,

u, is calculated from the total cross section o by

g =Q Q Q 1 —g "e~(b)

where t(b) is given by (3) and p(r) is assumed to
be a Woods-Saxon density

p('r) =
( a&g R =R A

1 +8

The values of the parameters are taken to be"

Ro =1.12 fm, s =0.545 fm,

and p, is determined by normalization

dXP()()e "' =e "d' . (5)

Let ( ) denote an average with weight P, e.g. ,

( )=bf dl VP(b),

and let

Then by expanding both sides of (5) about (A.)~, we
find that u, is given (for each t) by

u, =(~), —,'(a,~'), t+ ~(aX—'),ta+. .. . (6)

So by fitting data to the single-channel formula
(2) and studying the thickness dependence of the
resultant absorption coefficient u„ the moments
of P(X) can be determined. Note that the second
term in (6) tends to decrease the effective absorp-
tion coefficient, in agreement with the increased
transmission due to inelastic screening alluded to
earlier.

A purely technical complication is that nature
provides the experimenter with nuclei whose thick-
ness t is not a constant but a function of the im-
pact parameter b. However, as far as the total
cross section is concerned, it is sufficient if (5)
holds when integrated over the impact parameter.
Then it is easy to show that (6) remains valid pro-

TABLE I. (t) and (t ) for various nuclei used in Eq.
P).

(t 2)

g 4)

H
D
Be
C
Al
Fe
Cu
Cd
W
Pb
U

0.05
0.09
0.24
0.28
0.40
0.52
0.54
0.63
0.69
0.70
0.71

0.004
0.01
0.08
0.11
0.24
0.41
0.45
0.62
0.77
0.81
0.85

Since u, - ()(.)|, as (t ")- 0, by making an extrapo-
lation to A-0, (X)p is estimated to be 2.1 fm' and
this is used in (8) to calculate (t") for each nucleus.
These are listed in Table I. (For this purpose an
accurate value of ()(.)~ is not required. ) Roughly
speaking, (t") is proportional to R" for small R,
but never exceeds order P)~ " even for large
nuclei, since the exponential in (8) prevents large
thicknesses from being sampled.

The result of such an analysis may be summar-
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ized by a plot of u, versus (f) at each incident mo-
mentum. Typical results are shown in Fig. 2.

The error in M, (bu, ) arises through (at least)
three sources. (i) The experimental error in o:
Typically a 1% error in v will cause a 6u, of
0.02 fm' for H, 0.03 fm' for Fe, and 0.07 fm' for
U. (ii) We assume R, may be in error by 0.02
fm. " This leads to 4u, of 0.001 fm' for H, 0.04
fm' for Fe, and 0.15 fm' for U. (iii) We also as-
sume an error of 0.02 fm in the nuclear skin
thickness s, resulting in the following hu, .' 0.0o7
fm' for H, 0.04 fm' for Fe, 0.06 fm' for U. The
errors shown in Fig. 2 are obtained by directly
adding (ii) and (iii), and combining with (i) quad-
ratically. For large nuclei, the large thickness
[P)~f(b}»1]at all b&'R implies o= 2'', i.e. , o
is sensitive to R (and in fact also s}but not to u„
and this is the reason for the very large hu, in
these cases.

. The use of a %oods-Saxon density for small
nuclei (e.g. , H and D) may be questioned. For-
tunately, however, from (9) it.can be seen that
for small nuclei,

(a}

v =2 d'bu, t b +0 t'

=2m, &+0(f ')

so that the determination of u, is insensitive to
the shape chosen. This can also been seen from
the very weak dependence of u, on RD and s quoted
in the case of H.

Besides the multichannel generalization, our
formalism differs from the usual Glauber theory
in one way. Since the thickness t is nonzero even
for a hydrogen target, multiple scattering is pos-
sible (though numerically not very important as
far as total cross sections are concerned). Thus
the "elementary" scattering process is not nu-
cleon-nucleon scattering but parton-parton scat-
tering. In this way, the formalism used here
embodies the compositeness and finite spatial
extension of hadrons. '

III. RESULT AND DISCUSSION

Figure 2 also shows the curve obtained by fitting
u, to (7). From such a fit, (X)~, (AX')p, (hX')~
can be determined for each incident momentum k.
Note that (7) is not a quadratic since (t') «(t)'.

First moment
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The values of (X)~ thus obtained are shown in

Fig. 3. (Errors are about the size of each dot. )
Clearly, (X)p shows an increase by about 5% over
the interval 34-273 GeV/c. It should be noticed
(e.g. , see Fig. 2) that (X)~ is larger than'the ef-
fective absorption coefficient for hydrogen by a
few percent, indicating the effect of multiple
s cattering in this case, and providing an estimate

E~22-
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(t) (fm2}

FIG. 2. Effective absorption coefficient u, versus
average nuclear thickness (t) at incident momentum {a)
80 GeV/c, {b) 240 GeV/c. The nuclei are H, 0, Be,
C, Al, Fe, Cu, Cd, %, Pb, U.
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FIG. 3. Energy dependence of (X)z. Horizontal scale

is linear in {ink)2.
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of the error that would be involved if nucleon-
nucleon scattering were used as the "elementary"
amplitude in Glauber theory.

Second moment

We find (t),X')»=2. 9 fm4, corresponding to o.
-=b,X,/(X)» = 0.8. Thus the spectrum of absorption
strengths is quite broad, and in particular extends
to very small values (existence of "transparent
states").

This has crucial implications on the matter den-
dity of a nucleon in the context of the Chou-Yang
model. ' This has been discussed in some detail in
Ref. 8 by using a specific model for P(X). Here we

simply wish to note some general features. Ex-
pand the attenuation factor (4) in powers of t:

E
N
E].7-

rC
&l

&.6-
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q =1 —P)»t+-,'(X')»t' —.. . .

The scattering amplitude T(q) is then

T =1 —Q =(X)»t —a(X )»t t+ ~ ~ ~,

where a tilde denotes a Fourier transform and

is a convolution. As is well known, the location of
the first dip in the differential cross section is
determined largely by the cancellation of the first
two terms. However, our results on the second
moment imply that the usual single-channel for-
malism errs in the second ter'm by a factor
QP)»/(X)»' = I+a'= 1.65. Fairly large effects on
the matter density deduced from T(q) should there-
fore come as no surprise. '

Energy dependence

Figure 4 shows that the width of the spectrum,
4X „ increases with incident momentum k, but
o. =EX,/(X)» is apparently constant. In other

words, the spectrum broadens, but in a manner
consistent with the scaling of all eigenvalues X„:

~„(u) =(~(u)),f„
or, in terms of the distribution p,

1

p(&)) I)(&(&)),) '

Third moment

The upward bend of the curves in Fig. 2 indicates
a positive value of (6X')», i.e. , the spectrum is
skewed towards large value. Unfortunately, the
determination of (M, )» is sensitive to the values
of u, for the larger nuclei and these .cannot be
determined with great accuracy, for reasons dis-
cussed earlier. Moreover, the neglect of (Ad)», . . .
introduces systematic uncertainties. Thus the
fitted result for (b,X')» can only be regarded as an

V~08 ))
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FIG. 4. Energy dependence of (a) 4X~ and (b)
c=&X~/(X)». Horizontal scale is linear in Qnk)t.

estimate. The result is most conveniently ex-
pressed in terms of P=—())))X~)»'~'/(X)» and we find

P= 0.8-0.9 and consistent with being constant with
respect to energy.

The usual inelastic screening [Fig. 1(b)] is es-
sentially an O(bX'} correction to the single-channel
approximation. The fact that P is by no means
small shows that higher-order contributions [Fig.
1(c)]are not always negligible.

The estimate of the moments of P(X} is, of
course, dependent upon the nuclear parameters
R, and s, for which there are two possible types
of errors. First, these errors could be uncorrela-
ted from nucleus to nucleus (e.g. , fluctuations
about an A'" law). The error bars displayed
(about 5% for both n and P) have already taken this
into account under assumption that 8, and s may
each be in error by 0.02 fm. Secondly, there could

by a systematic error in Ro or s. To estimate
the effect of this, we have performed the analysis
by changing Bo by 0.02 fm for every nucleus,
which results in changes of 0.2% in (X)», 1% in n,
and 5% in )8. Likewise, changing s by 0.02 fm for
every nucleus results in changes of 0.4% in (X)»,
3% in u, and 1% in P. None of these are at a level
which would bring our qualitative conclusions into
doubt.
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IV. CONCLUSION

We have obtained, in a model-independent way,
the first three moments of the spectrum of ab-
sorption strengths. The spectrum is broad and
skewed, and moreover broadens with energy in a

manner consistent with "scaling. " A more ac-
curate characterization of the spectrum (e.g. ,
higher moments) would be possible if nuclear
densities wege known with greater precision.

It would be interesting to apply these model-
independent results to calculate the matter density
in hadrons.
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