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Zeros in scattering amplitudes and the structure of non-Abelian gauge theories
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Some scattering amplitudes in non-Abelian gauge theories exhibit remarkable factorization properties.
They can lead to the presence of zeros in the angular distribution which are in principle experimentally
observable.

I. INTRODUCTION

Recently Mikaelian et al. ' found a specific angle
for which the cross section qq -y 8' vanishes,
where 8" is the weak boson of the Weinberg-Salam
model. It was pointed out that this characteristic
phenomenon may be useful for checking the frac-
tional charges of quarks. This zero actually ap-
pears in the amplitude. ' It is a consequence of a
factorization property of the qq annihilation amp-
litude; similar factorizations exist in the ampli-
tudes for quark annihilation into gluons, annihila-
tion of scalar fields, and gluon-gluon scattering. '
We will discuss this problem in more detail. In

Sec. II we formulate the problem of factorization
of scattering amplitudes in gauge theories in gen-
eral and discuss the conditions under which the
factorizations hold. We shall then investigate the
various conditions under which one can actually
observe a zero direction connected with these
factorization properties. This is done in Sec. III.
Some specific processes where we can observe
the zero direction are given in Sec. IV. Finally,
in Sec. P we make a few concluding remarks.

Here T' and f,~, are, respectively, the generators
and structure constants. We express the Feynman
rule, following Cvitanovic, ' as a product of two
parts. One contains a purely gauge group factor;
the other is purely dynamical. It is more conven-
ient and explicit in this way to see the group-theo-
retical structure of S-matrix elements.

Let us calculate the matrix elements for the fol-
lowing processes:

P, PP-A'A

P, g&-A'A',

A'A" A'A .

In the tree-diagram approximation the corres-
ponding Feynman diagrams are shown in Fig, 1.
The kinematic invariants are defined as

t=(p, -q, )', u=(p, -q, )', s=(p, +p, )'.
We express the amplitude of channel p (= t, u,

or s) in this way:

(5)

II. FACTORIZATION

In non-Abelian theories the amplitudes of some
processes can be written as products of two
parts. ' One part includes a certain combination
of generators of the gauge group and kinematic
invariants; the other part corresponds to the ac-
tual amplitudes of the Abelian fields. Zeros are
associated with the first part.

This factorization is special to non-Abelian
gauge fields. We will write down the factorization
formulas for the annihilation of scalar fields,
spinor fields, and for the scattering of gauge
fields. We list for completeness the Feynman
rules' ' in Table I. Our metric is that used by
Bjorken and Drell. ' The replacements to intro-
duce gauge fields are

8~5 &" =-8 "5 +igT' A ";
then the strengths of gauge fields a,re

Here G~ is the group factor, D~ is the dynamics
part, and C~ is that part of the denominator due
to propagators. T~ could be called the dynamic
residue. The total amplitude is

GI,T&

Cp

We give the results for all processes in Table
II. Note the kinematic relation

C~+C„+C,=/+@+8=0

and the group-theoretical relation

We also have
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TABLE I. Feynman rules of non-Abelian gauge theories. (1) The vertices of four external lines ax'e divided into sev-
eral terms. This implies that the whole vertex is equal to the sum of products of the corresponding group factor and
dynamics factor. (2) If we set T=1,f=0, then we get the usual Feynman rules of @ED. (3) The differences between
our Feynman rule and the ones generally used (Ref. 4) consist of a minus sign in the vertex of three gauge fields and the
order of the subscripts of the generator in the spinor-gauge-field vertex is inverted.

Diagram Hule Group factor Dynamics factor

Propagator
of gauge
field A

Propagator
of scalar
field Q

Propagator
of spinor
field $

Propagator
of ghost
field C

a, v b, p

(ejiOOSyOOOO)

1 3

k

quqp

q u q
g „— 2 (1-a) ~ab

i
k2 2 kj

i( +m)
p2 2 ij6

g

ab6

&ab
-i " quq~

g» —
2 (1-a)

k —m2 2

i( +m)
p'- m2

Vertex of
three gauge
fields AAA

a, h, ,p c,v, r

b, p, q

gfee cCX&PP, 0, r)

C~u (»q r) =(p-q) g~u

+(q —r)),g
+(r- p)ugly

-ifab c

igCgu„(p, q, r)

=ig~(p- q)u g~u

+(q- r) ~u, +(r- p)u g„xl

Vertex of
four gauge
fields AAAA

-ig ~fabef cue(gal g'uo gXagu&~

+facefvaeigXp gvo gXogpv)

+faaefvec4Xvgpo gaygvo)1'

fabef cue

facefbde

fadefcbe

ig (gzv guo gulag»)

ig (gkpgvo gkogpv)

ig'(g~. gu~- g~ug~a)

Vertex of
scalar and gauge
fields Q*QA

3

a, A.

iOOOOO'

k

-igT,'-&(k, +$2) & -ig(k j + km) y

"Seagull"
Q ~|It)AA

ig (~ ~ kj gxp

— 2[(TbT')„+(T'Tb);~g&„

(T T')~~

(TaTb)"

ig ggu

tg ggu

Vertex of
spinor and gauge
fields gfA

' &Oiiiii ' -igT &0'x

Vertex of
ghost and gauge
fields ccA

q & a,
&OOOeei
I

Ici

gfa beg X &fabc -igqx
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t' fg(q, zq, „—q, ~q, „)q,"q," (for scalar),

fg~p(P )[fp& (P —~) —I(p2 -~)o&„+q2„y& —q&&y„]u(P&)E E~2 (for spinor),

g (g [(P2 Pl)xqRp qlk(P1 P2)p ] Box[ Pj. (P2 qlg) (P2 ql) q2p ]

+g., I(2P2 —qx). qi~+Pi. (2Pa+P. ) ~l+g. ~IP..(P. + q.), + (P. +qi). q., l

+g. , [-P..(P. +P.).+(-2Pi+q.).q.~]

+g~„[P„—2q, ), + (—P, + 2q,),q„g e, e2I'e,' c4 (for gauge field) .

(10)

x=0

and then

T -T =T. (12)

From (6), (7), (8), and (12) we obtain at last the
factorization formula

G)T G T" G T'

= Gm".

Here

Using the physical conditions of vector fields
and equations of motion of spinor fields, we obtain
the result

In the conclusion of this section we emphasize
several points:

(a) Obviously this factorization is characteristic
for a non-Abelian gauge theory. In some other
processes we also could have factorization (see
Sec. IV).

(b) This factorization is a result of kinematics,
gauge invariance, and dynamics [conditions (7),
(8), (12)l.

(c) At least one gauge field must be massless;
otherwise, relation (7) breaks down and factoriza-
tion no longer holds.

(d) This factorization also holds in some crossed
processes such as spinor-gauge-field scattering.
The only thing we need to do is to make certain
substitution of invariants t, u, and s.

and

C„G,+C,C „
-C S

A 0 I T T"
m" =D'+D"=—+—.

C, C„

(14) III. ZEROS IN THE ANGULAR DISTRIBUTION

First of all, we emphasize that zeros can only
be associated with the group-theoretical factor.
The Abelian amplitude, indeed, always gives a
positive contribution to the cross section. We have

~a + b.y, q2

aAA H&

i, p,

(2)

In the scalar and spinor case m" is just the Abe-
lian amplitude (QED). seem'8 m'g '

g'8 1 — - +
' (for scalar),

ut ~t
2

g Im I'=(g'3 + 1- - (for spinor),
Dt 'gt tw

,(1g'4 1+s'I —,+=, (for gauge fields).
I(,u

(16)

4, cr b, p. As usual, the notation Z„„stands for averaging
over initial and summing over final spins. In
the center-of-mass frame we have

(4) (4')

a,X
2 I

1+ ( I p ( '/m') sin' 8* (17)

FIg. 1. The solid lines in the first three diagrams
represent all kinds of fields. For the annihilation of
spinor fields only the first three diagrams are present;
for scalar fields or gauge fields we must add diagram
(4) or (4'), respectively. From the Feynman rules we
notice that diagrams (4) or (4') can be separated into
several parts and put into corresponding diagrams (1),
(2), and (3). After such a procedure we only need con-
sider three diagrams in any case.

(8* is the angle between q, an p, ); therefore, (16)
is always positive without any zero. Zeros must
come from the group factor G.

Let us analyze in general where we can observe
zeros in the differential cross section. In scatter-
ing processes such as AP-AP the group factor
is given by
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TABLE II. Matrix elements of annihilation.

Scalar field Spinor field Gauge field

Cs

Gs

Tt

ys

t=t-m 2

u=u-m 2

(gbZ a)

(ran'&„.

&fabc &ji
-~g'~(2pf - qf& p.(q2- 2P2) p

-tgXp~ ~ f~2
X P

-ig $2pf —q,)„(qf- 2p2) g

Mgxp)-~i ~(

&g ~ (pf p2) $(2qf +q2)„

+(pi- p &„(qi+2q»

+(u- t)gy&]~f &2

t=t-m 2

Q=Q m 2

(T'T')„;

(g ag b)

-&fabc7' gs

-~g v(p2))'p(pi 6+m)

xy&g(pf) ef e2X

-~g'~V»)&UP'i-6+m)

x) p(i &) e& e&

-sg'~(pq))

x C~~&(- (qt+qg), qi, q~)

x„(p,)e

(F'I" ')gc =-fbd, efaec
a bF + )(tc= f'adefbec

&fabe+gc =fabef etc

g'~C„&(-P2,P2- q2, q2)

xQ „x(pi—qf, —pf qf)

+ t(g& gy —gy&g ) l

X Q "~"~'6f 2 3 4

~g ~erg~ p2 P2 q f q f&
2

XC'v„(pf-q2 -pf q2)

+~(gyvgpa- g) I
gva)~

x gXgP~
f 2 3 4

&g ~&ovr(-P2~-pi~pi+P2&

xC y (-(q)+qg}, qg, qg}

+ ~(gaol v
—gzv gpa) ~

x e~&"e"&f 2 3 4

uG, + $G„ factor is

To get a zero, we must have G=O. But we know
that u and $ have opposite signs in the physical
region. Therefore, G, and G„are required to have
the same sign. G„G„and G„are some kind of
charges (electric charge, isospin, color, etc).
For integral or half-integral charges we often
have ~G, (

= ~G„~. The requirement for a zero is

G G
u+$

GS t S &

1

and therefore the zero cannot appear. It is of
course possible to find a zero if G, and G„have
the same sign but are not equal.

If one of the scalar or spinor particles is
chargeless, then G„vanishes, with

G=G,=u

uG, + tG„
~$

Because u and t have the same signs, we will
get a zero if G, and G„have opposite signs. We
expect a zero at u = i; i.e. , 8"= ml2 when particles
with opposite charges annihilate. In addition, it
is possible, as in the scattering case, to have a
zero in the forward or backward direction when
one of the massless scalar or spinor particles
has no charge.

Next, we investigate the effect of gauge-group
indices on the zero direction. We shall call these
indices gauge polarizations. For simplicity we
only consider annihilation. We denote the process
illustrated in Fig. 1 as (ij -ab) and the corres-
ponding amplitude as m(ij - ab). The group factor
in the cross section can be written as

and a factor u'G, '/t ' appears in the cross section.
From (16) we know there is only. a single pole
in the Abelian cross section if the fields are mass-
less. So we get a zero atu=0; i.e. , 8*=m. The
differential cross section vanishes in the back-
ward direction.

In annihilation or its inverse process the group

F= P(G(

A (u ' ut+» —"- I+C .&$'.) t t )

Then the condition for a zero to exist is

(20)
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TABLE III. Reactions with zeros. Processes are symmetric under j i, b a. v* is the incident velocity of the
particle in the center-of-mass frame. v~=1, if we ignore the mass.

Gauge
group . j 8g

Gauge
group j 8g

SU(2) 1 1 1 2 SU(3) 1 2 4 6

2 - 2 1 2 1 2 4 7

1 2 1 3 j-7r
2 1 2 5 6

1 2 2 3

SU(3) 1 1 1 2 &x
2

2 2 1 2

1 2 1 3

1 2 2 3

2 6

2 7

4

3 5

2 3 1 4

2 3 6 7

1 3 4 8

1 3 5 8

2 3 6 8

1 1 1cos8*=-—
0

1 1 1cos8*=-—
0

1 1 1cos8*=-—0 3 0Ic 3

2 3 1 5

2 3 2 4

2 3 2 5 i

2 3 3 6

2 3 7 8
1 1 1cos8*=-—3v4 3 2 3 3 7

C&0, a&-vC, B = (T'T )), /(T'T')~, ,

C =B2. (23)

(~2 C)1j2
t

(22)

We only have one zero.
Let us discuss various alternatives separately:
(a) All gauge polarizations are observed. Then

We have one zero when 8 = -v C, but there are
two zeros if 8 & —v C. When C = 1, these two zero
directions 8,* and 82* are mutually complementary;
i.e. , 8,*=a -8,*. An alternative condition for a
zero is

We have one zero direction provided that (T'T')&,
and (T'T')&; have opposite signs. In Table III we
list all reactions that possess zeros; we also list
the corresponding angle 8,* for SU(2) and SU(3).

(b) If we do not measure the gauge polarization
of one particle in the initial or final states, the
situation is the same because of the symmetry of
the theory. So we directly consider the case where
the gauge polarizations of two particles are not
measured.

(b1) We do not measure polarizations of one in-
itial state (i) and one final state (a). Then we have
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(24)

(n —1)5;,
(n - 2)+ 5( ~

'

C=1.
(35)

Here the matrices are

L(ee 2(T eT eT eT e)

~ee 2(zazeTeZe)

For SU(2),

(26)

The situation is the same as SU(n).
(c) It is easy to deduce that we cannot find any

zero direction if we do not measure any gauge
polarization. Actually, in this case we have

a=1--~,1C
2C

~(2b & be
&e lJ

1D'„e q)= e(25'e -1),
B=1, C=1.

(26)

(27)

The condition that guarantees the zero direction is

8& -1.
For SU(2),

8=25gb -1.
So when a4 b, we get a zero at

7reg
p e

2

(29)

(3o)

(31)

This means all zero directions of case (a) re-
main.

For SU(3), we have

7 (32)

There is no zero direction here.
(b3) If all gauge polarizations of gauge fields

are not observed, then

1 e.e, e. ( (&&Pl(&e(&'(s+ ~4 T'(&TJP"(()

&. . .& ~pa ig a«l
(33)

., (T~eT„T (T„)
e,e, e, ( (I"geI"(P'a(2'(()b b a a

Using pro]ection formulas, we can calculate (33).
For SU(n) we get

So there is no zero in this case. For SU(3) there
is a zero direction (Table Dj').

(b2) If we do not measure all gauge polariza-
tions of initial states, then we 'have

rD~Ab

ab

(28)

C=1.
Here C~ and C„are the eigenvalues of the quadra-
tic Casimir operators for the fundamental and ad-
joint representations, respectively. The condition
B ~ -1 cannot hold for ordinary simple or semi-
simple Lie groups [SU(n), SO(n), Sp(2n), G„E„
E„E„F,] because

C~- SCz.

To summarize this paragraph, we emphasize
that the best way to observe the zero direction
is to leave gauge indices exposed; if all gauge
polarizations are hidden, there is no way t;o find

the zero direction. This is similar to polarized-
beam experiments. Vfe know that the scattering
process ve- v,e has a zero direction if we mea-
sure the helicity of the electron. But if we do
not measure the polarization of any electron state,
the zero direction disappears (in the Weinberg-
Salam model).

IV. PROCESSES VfITH A ZERO

IN THE DIFFERENTIAL CROSS SECTION

Mikaelian et aE. have provided two examples
of processes. One is p+ p -S'+y+X; the other
is v,e- S' y. In the subprocess q;q,.- 5' y the
vertex SWy is equivalent to a three-gauge-field
vertex when we choose an anomalous magnetic
moment of the 5' boson to be ~=1, as is the case
in the steinberg-Salam model. The photon is

TABLE IV. Reactions with zeros of SU(3) gauge sym-
metry. The gauge polarization of one initial and one final
state are averaged.

(n' -n)5((
n(n - 2)+ 5(q

'
(34)

'The condition 3+ -1 cannot be satiated. For
80(n)
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massless; therefore, condition (7) is satisfied
(s=s -m~'). The corresponding group factors
are

Gg =gg;Qg, Gt =gg;Q; G.=logy; (38)

u gfi
( q fq )-s -s (39)

There is a zero when

and therefore, condition (8) also holds because of
charge conservation. We have factorization and
the group factor in the amplitude is p'fI, p p

KK0-p p',
(44)

(and their charge-conjugated processes) develop
a zero at

mesons and nucleons. In such models some pro-
cesses will develop zeros in the differential
cross section. These zero directions only appear
at 8,*=0, w j2, or v, because the isospin is in-
tegral or half-integral.

(1) The processes

01

(40) 7
gg

0 (48)

0 q

For ud- 8' y,
j.

COS~0 = -3 ~

(41)

(42)

The amplitudes of these processes can be fac-
torized when we ignore the mass of the neutral
p meson. The group factor is

u(T T'),„+t (T'T )„
-s

For the case v,e- 8' y, the situation is the same-
the zero direction is at

cos80 = 1 . (43)

It should be pointed out that there is factorization
in this model if and only if one uses a three-gauge-
field vertex, as Ref. 1 has shown no zero unless
K= 1.

In this model the photon couples to the electric
charge of quarks in a pointlike manner, so the
scattering channel yp - W'n does not have a zero
direction. ' But there is a zero in the backward
direction if we think of a photon interacting with
the nucleon as a whole point particle (Fig. 2). The
recent observations of prompt photons are sup-
porting the pointlike interaction of photon-quark. '
If so, observing no zero in yp- 8"n will present
further evidence.

Until now we have not found the S'boson.
It would therefore be desirable to find some ex-
perimentally accessible processes to check the
theory.

The best candidate of a non-Abelian gauge field
among existing particles is the p meson. There
are models'" that describe the p meson as a
SU(2) gauge field which couples to pseudoscalar

1u-t
p

Here &' (a= 1,2, 3) are isospin matrices, T' =—T'
+iT'. The zero direction is fixed at 8,*=v/2.

(2) Consider the processes

Ppg ~ 71' p, p, 7t'

gg 2'
(47)

In most models the m meson interacts with the
nucleon by a pseudoscalar coupling. The process
N,.Nz-m'p also factorizes if we ignore the mass
of the p meson. The Feynman diagrams are illus-
trated in Fig. 3, and the amplitude is

m(N;Nq-v'p )= ' " m" .a a uG, +tG„
(48)

Here

1m" = -ig, g,u(p, ) =r„(p', -g +ms)r2 t g 1 1

1
+ —y, (p', f,+ m„)y u—(p, )e,'

Q

(49)

pb

FIG. 2. Feynman diagram for the reaction yp -5"g, Fgo. 3. Feynman diagrams for Pf~g& —7t' p~.
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and g, and g, are, respectively, the pseudoscalar
and vector coupling constants. For j5n w p',

So 8,*=m/2 is a zero direction.
(3) Consider the processes

gp= 28' ~

m 2=2m 2
p F

The amplitude is

2tG„+uG,
m(N, N -v'm') =ig, ' " 'm" .

(55)

(56)

pn-yp,
K K'-yp,
80 =m.

(50)
7r

8g
2

(57)

Here s = s —m, '= (p, +p, )' —m, '. From the con-
dition of Eq. (54) we predict a zero direction at

These processes are similar to Mikaelian's pro-
cess involving quarks and a W. If we consider
that the p meson has an anomalous moment 4 = 1,
or introduces the electromagnetic interaction as
in the Weinberg-Salam model, the aboveprocesses
can be factorized. Because of the integral charges
the zero direction necessarily corresponds to for-
ward or backward scattering.

(4) Scattering processes

for the process pn-~ m'.

If the group factors in process (53) satisfy

G„= -G (56)

m 2=2m 2.
p t

Indeed for pn-w w' we have

(59)

(e.g. , pn- m n') the process has another kind of
zero, provided that

ye 5" v, ,

yp- pn,
yK' p'K

have zero at

(51) g ~

m( pn -«')
~

'

, [(u —m. ')(t —m, ') —m. 's]t2
(su)'

8*-n
0

These processes are the crossed reactions of the
previous set. The argument is therefore the
same. Indeed for yp- p'n we have

[m[ =;
Here

u't2
x ]

1+"=
i
- q'"=

t) (60)

(61)
Sou=0 or 80 =@ is a zero direction. Of course,
we have to ignore all masses of p, K, e (high-en-
ergy approximation).

(5) Consider the process
We can see that there are zeros when

Pn~w (53)
u (q' -1i +-(q -4)

( 2 j 2
(62)

The Feynman diagrams which describe the process
and

N;Z~ m m' (54)

are illustrated in Fig. 4. Different from other
processes, this process has no gauge field out-
going, but it also can be factorized if we assume

(63)

The case q= 2 is like the one discussed above. It
is interesting to note that we have two zeros when

q& 2, and these two angles are mutually comple-
mentary, 8,*=m —8,*, as we have mentioned in
Sec. III. In the limit q - , these directions be-
come collinear —forward and backward.

FIG. 4. Feynman diagrams for the reaction N&N&

7t a~O

V. REMARKS

Non-Abelian gauge theories have many attractive
features. Some of them are universal; some of
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them may be specific to certain processes. We
think that factorization and the existence of zeros
in some annihilation or scattering processes belong
to the latter. We have mentioned a few candidate
processes to check the theory. They are not easy
to explore experimentally because quarks, gluons,
and W bosons have not been observed and the p
meson is unstable. In addition, we only calculated
in the tree approximation and our tests require
high energies. We therefore emphasize the theo-
retical rather than the experimental significance
of our work. To study more processes, perhaps

in higher order, could possibly deepen our un-
derstanding of non-Abelian gauge theories.
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