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Experimental constraints on possible lepton and quark substructure are analyzed and expressed in terms of a

general formalism for describing composite particles in terms of their constituents. In particular, the measured

gyromagnetic ratios may very severely restrict possible internal structure of light leptons (electrons and muons) in

some models. Simple expressions for hadronic g values and electromagnetic radii are given in terms of their quark-

gluon infinite-momentum-frame wave function. The contribution to the anomalous moment of a fermion due to
internal structure is shown to vanish as the mass or inverse-size scale of the internal state becomes infinitely large.

I. INTRODUCTION

Quarks and leptons are presently viewed as
pointlike constituents of matter. Direct tests of
quantum electrodynamics in high- energy elec-
tron-positron collisions at center-of-mass en-
ergies up to 32 GeV have confirmed the absence
of lepton structure in processes probing distances
as small as 2 X 10 "cm. ' The behavior of large-
momentum-transfer lepton-hadron interactions is
also consistent with the interpretation that point-
like quark constituents, as analyzed in pertur-
bative quantum chromodynamics, are the local
carriers of the weak and electromagnetic cur-
rents within hadrons. However, as the number
of generations of quarks and leptons grow, and
as the mass ratios between the different gen-
erations increases to very large values, for ex-
ample, mourn, -3600, the postulate that the quarks
and leptons themselves may be composites of a
smaller number of more fundamental units be-
comes theoretically more appealing. ' Indeed, it
would be very attractive on fundamental theoretical
grounds to unify quarks with leptons in terms of a
small number of common constituents.

In this paper we wil. l be concerned with experi-
mental constraints on lepton and quark substruc-
ture, which we will express in terms of a gen-
eral formalism for describing composite par-
ticles. The higher-energy accelerators and
storage rings now being built or planned will per-
mit experiments which can probe for evidence
of structure at momentum transfers up to -10'
GeV, corresponding to a resolution scale of -10 "
cm. However, a.s we shall show here, the very
(almost incredibly) precise measurements of the
electron and muon gyromagnetic ratios g, and

g„put exceedingly restrictive limits on the pos-
sibility of lepton internal structure. The critical
point is that the lepton g values are very close to
the Dirac value of 2—and there is no a Priori
reason for g-2 in the case of composite fer-

mions. ' The relationship of the anomalous mag-
netic moment a =

~2
—2) =E,(0) of a fermion to its

general relativistic composite structure will be
discussed in detail in Sec. III.

If the electron or muon is in fact a composite
system, it is very different from the familiar pic-
ture of a bound state formed of elementary con-
stituents since it must be simultaneously light in
mass and small in spatial extension. For a typical
nonrelativistic system such as an atom or nucleus,
the size R is given roughly by R-(MEn) "'&At ',
where M is the mass and E~& M is the binding en-
ergy. A simple bag model for nucleons built of
elementary quarks leads to a size R-M '. How-

ever, for the electron we know that the intrinsic
size of any constituent structure is limited by
R~ 10 "cm, which is much less than its brompton
wavelength m, '-4 && 10 "cm.

It is a special challenge for a composite model
of the electron or muon (and presumably for the
quarks, too) to explain why its mass is so light
on the scale of its size I/R2 100 GeV. It is nat-
ural to look for a chira, l symmetry in the under-
lying dynamics in order to explain the occurrence
of massless fermions or the suppresssion of con-
tributions to their self-energies. As we will see,
such dyna, mical symmetries can have a major
effect on the predicted value of the magnetic mo-
ment of a composite fermion.

It is simple to think of a fermion as having a very
small spatial extension because it is a very tightly
bound structure of internal constituents of a much
larger mass en*» m, . Let us ignore for the mo-
ment the possibility of cancellations or suppression
factors due to symmetries in the underlying dy-
namics that might account for the very small mass
I, of the composite lepton itself. In this case we
find that the contribution to the anomalous moment
is linear in the mass ratio'

"'( )

22 2236



ANOMALOUS MAGNETIC MOMENT
I

AND LIMITS ON FERMION. . . 2237

~5a.
~

~ 5 x 10-» .
If we assume the linear parametrization of Eq.
(1), and define

i5a, [= „' =-m, R„ (2)

we find

rn*& 10' QeV=10' TeV,
]0-2o cm

This bound is almost four orders of magnitude
smaller than the present high-energy limit. Thus,
paradoxically, one of the lowest- energy experi-
ments' in physics yields the highest-energy bound
on elementary- particle substructure. For the
muon the bound is comparable, since

—20 x lp-'&a'"~ —a'"&26 x lp '. (95% conf. )

This implies by Eq. (2) that

re*~ 2 x 10' GeV,

B c 10-2o cm.

It should be emphasized that any model-of heavy-
fermion constituents which leads to Eq. (1) and the
above estimates for 5a would be expected, on di-
mensional grounds, to lead to a large first-order
contribution to the fermion self-energy; i.e.,

This result reflects the fact that the natural scale
for the magnetic moment p, is eR, where R-1/
nz* is the scale size of the system. ' In contrast,
a quadratic dependence on R'- (1/m*)' is char-
acteristic of vacuum- polarization corrections.

To explore the significance of (1) consider the
agreement between theory and experiment for the
electron's g- 2 value. The most precise published
experimental value for the anomalous magnetic
moment of the electron is'

a4~ =1159652200(40)x 10 '2

The prediction. of quantum electrodynamics through
order (n/n)', including uncertainties in the value
of the fine-structure constant and of the numerical
integration of the n' contributions, together with
small, weak, and hadronic corrections, is'

aos =1159652570(150) x lp "
Aside from possible eighth-order contributions now
under study, ' the possible extra contribution from
an electron i@ternal structure is thus limited to

auin —a4"v =(370+155)x 10"

6m, -O(m*) .

However, the observed lepton masses are very
small, effectively vanishing on the scale m*
»m. . Hence we have two choices: Either (3) must
be cancelled by a large bare mass —or, more
naturally perhaps, (3) itself must be suppressed,
either by a chiral symmetry, or another special
selection rule of the theory. From this point of
view, the challenge of building a composite model
of leptons and quarks is to make the contributions
to both 5a and to pnz simultaneously very small.

The simplest possibility' for accomplishing this
is to introduce a second, and still larger, mass
scale, and describe the leptons as bound states
of a fermion of mass nz& and a much heavier boson
of mass ~; the boson may itself be nothing but a
massive state of two bound leptons. In this case
(m&'«A') (gee Secs. II and III)"

a -o( „', *).

The resulting bound && (m&/&) x 10' GeV for com-
posite electrons is clearly not very restrictive for
m&'/A'«1. Choosing the fermion mass mf small
in this model also implies that the lepton mass
can be kept small.

A more natural possibility, which we discuss
further in Sec. II, is to design the couplings so
that both left- and right-handed constituent fer-
mions of large mass m* appear with equal weight
in the state wave function of the composite lepton.
This is a chirally invariant model with the prop-
erty that the symmetry of amplitudes under the
transformation m* —m* removes the linear
dependence of Eq. (1); thus we can obtain a small
effect, 5a-(m, '/m*'). Also, the perturbative con-
tribution to the lepton mass vanishes in such a
chiral model. The chiral symmetry of such a
model requires an effective doubling of the num-
ber of constituents and leads to as yet unobserved
leptonic states of anomalous parity.

In the following section we consider some very
elementary models of composite leptons in order
to illustrate the dynamical effects which control
the anomalous moment. In Sec. III we give a gen-
eral analysis of composite system which shows
that the above estimates for 5a are applicable to
the extent that there are specific spin states of
the constituents which can couple to leptons with
both S,=+ —,

' and S, =- —,'. We also show in the
Appendix how the sum rule4 which relates the
square of the lepton anomalous moment to po-
larized photoabsorption cross sections leads to
complementary constraints on lepton composi-
teness.
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The message of Eq. (1) is that one proceeds
at peril when introducting lepton structure on a
mass scale lower than 10' TeV. Indeed, if (1)
is applicable, it leads to the conclusion that at
least for the foreseeable generation of accelerators,
which will reach into the -1 TeV energy range,
electrons and muons will behave as elementary
point particles. In the following we will explain
the basis for Eqs. (1) and (4), which leads to this
conclusion.

II. MODELS OF LEPTON SUBSTRUCTURE

We consider first a simple prototype model
for a composite lepton —the two-particle system
represented in Fig. 1(a), where m~ is the mass of
a heavy fermion (mf» m, ) which carries the lepton
charge and ~ is the mass of a heavy boson con-
stituent which we take as vector or pseudoscalar.
In particular, this X boson may be viewed as the
bound state formed of two heavy fermions of mass
nz&. In this simple model we shall assume a ver-
tex function with simpLe Dirac structure Q(k)y"
or Q(k)y'. In order to insure finite wavefunction
normalization, we also assume that the square
of the vertex function falls off as some arbitrary
power of the boson propagator:

x2
qP(k)~A' &, (~ k), . 5&0.

We then fix g0' to normalize the total charge of the
bound state to e.

The standard cal.culation of the lepton vertex

sx„=mtt+q)I&. &(s')+
4 ld, &J&(s')I~9~
4m,

from Fig. 1(b) then gives integrals of the form

E,(q' =0) ~g,' dz(1 —z)z' dv'z', ,
0 0

where, in the limit (m, /mz)-0,

c(z) =z&'+ (1 —z)mq',

N, =mz'+ —,'v', N, =4m, mzz (vector),

N, =m&'+ —,'x', N, =- 2m, m&(l —z) (pseudoscalar) .

Thus we immediately have

E,(0) ( m, m, ~'= F'(0) "~,m'+'P)

where K =(1/5)c(z) is the mean value of the intrin-
sic momentum. Equation (5) indicates the linear
relation as in (1) for a massive internal fermion.
For example, for 5=1 and A.'=mf', a=m, /m& for
the vector case and a =- 2m, /'m& for the pseudo-
scalar. Note that for very large internal mo-
menta, or for a very massive boson, such that
K &m&' the anomaly a vanishes quadratically rather
than linearly, as in Eq. (4). Similar results are
obtained if the boson has nonzero charge.

Let us next enhance this prototype model by
including two equal amplitudes in the lepton wave
function, one containing a meson of mass m&
produced in a state of positive chirality (I +y,)u(k)
and the other with negative chirality (1 —y, )u(k)
as illustrated by the graphs of Fig. 2. Since, in
this model, the transformation m&- —m& is an
invariance operation, the numerators R, in Eq.
(5) vanish and there is no contribution to a that
is linear in m, /m*. The absence of linear mass
terms in such a model al.so implies that the lepton
bound state will be massless.

III. THE FORM FACTORS OF GENERAL
COMPOSITE SYSTEMS

In order to analyze the consequences of lepton
substructure in greater generality, we will de-
scribe the lepton wave function and its electro-
magnetic form factors using the light-cone (in-
finite-momentum-frame) Fock-space descrip-
tion. ""We choose light-cone coordinates with the
incident lepton directed along the z direction (p'
=-P +P') (see Ref. 14):

ITI g

X +
(b)

FIG. 1. (a) Simple composite model for lepton with
a charged fermion and neutral boson constituent struc-
ture. (b) Calculation of electromagnetic form factors.

FIG. 2. Chiral model for lepton constituent structure.
The cancelling contributions of the left-handed and
right-handed fermion constituents eliminates anomalous
moment contributions linear in the internal fermion
mass.



22 ANOMALOUS MAGNETIC MOMENT AND LIMITS ON FERMION. . . 2239

M
dpi) P d e )0&. Ik)

1'0 2a"P-
0

p
&qL

where q' =- 2q P = —q,' and M =m [ is the mass of
the composite system. The Dirac and Pauli form
factors can be identified" from the spin-conserv-
ing and spin-flip current matrix elements (J'=J
+J'):

J' 0
I& ~= p+e~& + p~& =2&i O',

I]= 0+q) & e P) & =-2(qk-fq2)
J'(o) . F,(q')
p'

(8)

where 0 corresponds to positive spin projection
S,=+ ~ along the z axis.

Each Fock-state wave function in) of the incident
lepton is represented by the functions

and thus 0&x,.&1. The amplitude to find n (on-
mass-shell) constituents in the lepton is then
P&"& multiplied by the spinor factors u ~ (0,)/
(0;)'i' or v~. (k,)/(0;)'" for each constituent fer-
mion or antifermion. " The Pock state is off the
"energy shell":

The quantity (k„'+m&')/x, is the relativistic anal-
og of the kinetic energy p,.'/2m, . in the Schrodinger
formalism.

The wave function for the lepton directed along
the final direction p+q in the current matrix ele-
ment is then

y&"&, , (x., k„,S,.),

where [see Fig. 3(a)]&'

k',
&
=k,&+ (1 —x,.)cl,

for the struck constituent and

k '+m'

specifies the light-cone momentum coordinates "

of each constituent i =1, . . . , n, and S,. specifies
its spin projection S,'. Momentum conservation
on the light cone requires

Qk„=0, Qx,.=1,

k'f =k
f
- xfq

for each spectator (i ej). The k', are transverse
to the p+ q direction with

k,'f =0.

The interaction of the current J'(0) conserves
the spin projection of the struck constituent fer-
mion (u~, y'u~)/k. =25~~. . Thus, from E&ls. (7)
and (8)

E,(e')=-,'kk(i= ge, .I.[dx][d'k, jd;.'"'i(x, k'„S) )d(x(, k„d), (9)

—
i '2M '

i&.(q') = l~&t&] = pe; [dxl[d'k, ]y'„&,"&&(x,k;, S)y~&"t(x, k, S),
2M )

(10)

where e& is the fractional charge of each con-
stituent. [A summation of all possible Fock states
(n) and spine (S) is assumed. ] The phase-space
integration is

I

Equation (9) evaluated at q' =0 with E,(0) = 1 is
equivalent to wave- function normalization. The
anomalous moment a =E,(0)/E, (0) can be deter-
mined from the coefficient linear in q, —iq, from
the coefficient linear in q, —iq, from p~„ in E&l. (10).
In fact, since"

and

(12)

g~„=-- Qx& (13)
eq f gg elf

(summed over spectators), we can, after inte-
gration by parts, write explicitly
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P~S =+ p+q S =I/2

any spin- 2 system.
As an example, in the case of the electron's

anomalous moment to order o.' in QED, " the con-
tributing intermediate Fock states [see Fig. 3(b)1
are the electron-photon states with spins !

—„1)
and !-,', -1). The wave functions are (k, and x
are the momentum coordinates of the photon}:

e/vx
M'- (k,'+ ~')/x —(k,'+ m')/(1 —x)

k, —k, (!, !, )
xg (16)

p, s = —I/2

(b)

P+q ~ Sz I/2 and
e/vx

M' —(k,'+ X')/x —(k,'+ m')/(1- x)

FIG. 3. (a) Calculation of the electromagnetic vertex
for a general coxnposite system in light-cone (infinite-
momentum frame) perturbation theory. (b) C alculation
of the u/2x contribution to the electron anomalous mo-
ment in light-cone perturbation theory.

(1-x)—m (, !, )
x( 1 ~X

2
(k -ik. )

X

The quantities to the left of the curly bracket in
Eqs. (16) and (17) are the matrix elements of

(14)
Q Q

(p+ k+)1/ 2 ~ e (~+)1/ 2

The wave-function normalization is

dX dk' t &P )= dX dk'

A sum over all contributing Fock states is as-
sumed in Eqs. (14) and (15).

%e thus can express the anomalous moment in
terms of a local matrix element at zero momentum
transfer. It should be emphasized that Eq. (14}
is exact; it is valid for the anomalous moment of

respectively, where e = e
& «, -—+ (1/~2 (x ~ iy),

E ~ k=0, e'=0 in the light-cone gauge for vector
spin projection S,=+1 (see Refs. 12 and 13). For
the sake of generality, we let the intermediate
lepton and vector boson have mass m and ~, re-
spectively.

Substituting (16) and (17) into Eq. (14), one finds
that only the !—a, 1) intermediate state actually
contributes to a, since terms which involve dif-
ferentiation of the denominator of P» cancel. We
thus have

d'k, ' [m —(1 —x)M]/x(1 —x)
16'/ [M —(k +m')/(1 —x) —(k,'+ li')/x]' ' (18)

or

a ' M [m -M(1- x)]x(1- x)
it c m x+li. (1-x)-M x(l-x) '

(20)

which, in the case of QED (m =M, X =0) gives the
Schwinger result a = n/2ir.

The general result (14) can also be written in
matrix form:

2M-=- ge/i [dx][d'kJg'S, K,p,
(

I

where S is the spin operator for the total system
and L, is the generator of "Galilean" transverse
boosts"" on the light cone, i.e. , S, L = (S,l.
+S f, ,)/2 where S, = (S,+ iS,) is the spin-ladder
operator and

L, = X,. Wi (21)

(summed over spectators) is the analog of the an-
gular momentum operator p x r. Equation (14) can
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( g ~2xlgg ek„)
We thus find that, in general, any Fock state

~n) which couples to both (f and g& will give a
contribution to the anomalous moment. Notice
that because of rotational symmetry in the x, y
direction, the contribution to a =E,(0) in (14)
always involves the form (a, b =1 ~ ~ n).

(22)

also be written simply as an expectation value
in impact space.

The results given in Eqs. (9}, (10), and (14)
may also be convenient for calculating the anom-
alous moments and form factors of hadrons in
quantum chromodynamics directly from the quark
and gluon wave functions g(k„x, 8). These wave
functions can also be used to construct the struc-
ture functions and distribution amplitudes which
control large momentum transfer inclusive and

exclusive processes. ""The charge radius of a
composite system can also be written in the form
of a local, forward matrix element":

p

Sq=-I/2~
P

$z = I/2

FIG. 4. Example of a contribution to the anomalous
moment of the nucleon in the quark model if a gP
coupling of scalars is present. The + indicate the spin
projection S» of the quarks.

$z = l

several ways.
(a) There can be strong cancellations between

the contributions of different Fock states. An

example of this is the chiral model of Sec. D.
(b) The parameter p, can be minimized. For

example, in a renormalizable theory this can be
accomplished by having the bound state of light
fermions and heavy bosons. Since p. ~ I, we then
have a ~ O(M'R' ).

Mt/r f gx,. g&- phd p(k; ~ k,'),
i&2 ~i

(23)
Op OA tX I fll (s& m*2)

and

gf|('t -k; k', p(k; ~ k,)

compared to the integral (15) for wave-function
normalization which has terms of order

S I

z 2

(c)

St=-pI

p, 'p(k; k') (24)

Here p is a rotationally invariant function of the
transverse momenta and p, is a constant with
dimensions of mass. Thus, in order of magnitude

~ ~ ~ (s«m*2)

a=o
p,2+(kP}&

(25}
(b)

summed and weighted over the Fock states. In
the case of a renormalizable theory, the only pa-
rameters p. with the dimension of mass are
fermion masses. In super-renormalizable the-
ories, p, can be proportional to a coupling con-
stant g with dimension of mass. '

In the case where all the mass-scale parameters
of the composite state are of the same order of
magnitude, we obtain a =0(MR) as in Eqs. (11)
and(12), where R =(k,'} '~' is the characteristic
size ~ of the Fock state. On the other hand, in
theories where p, '«(k, '), we obtain the quadratic
relation a=O(pMR ) as in Eq. (4}.

Thus composite models for leptons can avoid
conflict with the high-precision measurements in

~ ~ ~ (S«%+2)

(c)

FIG. 5. Calculation of the anomalous moment squared
(6a) from the DHG sum rule. {a) Contribution (6a~'n-@ )
from internal structure s»m*: 6a-0(('mu) aim*).
{b) Interference contribution (2 (5a '~~pa ) due to
internal-structure corrections to the QED calculation.
(c) QED contribution {6a + ) from &cr- (7(0. /z) (G./27r).
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(c) If the parameter p, is of the same order as
the other mass scales in the composite state,
then we have the linear condition a =O(MR) and

the strong constraints of .Sec. I must be satisfied.

IV. CONCLUSION

M' " ds
g =

2
— 0'p S —(T~ S

2F Q S8th
(A1)

(for any spin) can be based on the Drell-Hearn-
Gerasimov (DHG) sum rule. For spin-a sys-
tems,

We have seen that the g- 2 value poses a con-
straint on the form of possible models of com-
posite structure for leptons and quarks. In parti-
cular, the contribution of a massive .charged
constituent with spin —,

' will be of order (m, /m*)
unless suppressed by a selection rule such as
chiral invariance of the theory or by a large ratio
of constituent boson to fermion masses. " In
each case the self-energy corrections are also
suppressed. For a chirally invariant theory there
arises the problem of parity doubling of the leptons.
Other possible models are considered in Ref. 2.
'The simplest alternative may be that the leptons
are in fact pointlike "elementary particles. "

where o~&» is the total photoabsorption cross
section with parallel (antiparallel) photon and
target spins. This sum rule follows from the low

energy theorem and the existence of an unsub-
tracted dispersion relation for the forward spin-
flip Compton amplitude. If the lepton has a sub-
structure at short distances, then there will be
new resonance or continuum contributions to 0~
and a„beyond a new threshold s,„=m~' associated
with the mass scale of this substructure. Barring
special cancellations, we thus have

cs —v„-e' „—,f(m*'/s) .

ACKNOWLEDGMENTS

We are grateful to G. P. Lepage, J. Sapirstein,
M. Weinstein, L. Susskind, J. Bjorken, S. Cole-
man, and T. Huang for helpful discussions. 'This
work was supported by the Department of Energy
under Contract No. DE-AC03-76SF00515.

APPENDIX: SUM-RULE ANALYSIS
OF ANOMALOUS MOMENTS

An alternative, but equivalent formulation of
the analysis of a particle's anomalous moment

The contribution to the sum rule from the region
s & m*' then yields a contribution to the anomalous
moment (5a"'" )'- (M'/m*') in agreement with
Eq. (1). Notice that the contribution to o~- o„
from the lepton and photon final states at s «m"
yield the standard contribution" (5a )'
=(ct/2m+ ~ ~ ~ )'. In addition, as illustrated in Fig.
5, the interference between QED and non-QED
amplitudes yield the expected 2(5a~ )(&a"'" e

)
contributions. Thus the QED and composite struc-
ture contributions to the anomalous moment are
additive.
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