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Neutrino masses in SU(2) U(1) theories
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We analyze SU(2) )&U(1) theories, denoted by (n,m), in which there are n neutrinos belonging to isodoublets and
m neutrino isosinglets. The charged-, current weak interactions are described by a rectangular matrix K which we
explicitly parametrize. The neutral-current neutrino interactions are described by a square matrix P =K+K. This
has the consequences that neutrinos may decay into three lighter ones and that neutrino oscillations involving
neutral-current interactions should exist. The general formalism for the latter situation is given. Associated material
on parametrization of unitary matrices and the quantum theory of Majorana particles is also briefly discussed.

I. INTRODUCTION

Recently there has been a great deal of interest
in the possibility that neutrinos may in fact be
massive particles. On the experimental side this
is in part due to the work of Reines et al. ' on neu-
trino oscillations. Actually the earlier experi-
ments of Davis on solar-neutrino flux were also
interpreted as evidence for neutrino oscillations.
The whole subject is nicely reviewed by Bilenky
and Pontecorvo. ' On the theoretical side this
interest is due to the fact that many of the sym-
metry groups which unify SU(2)~ x U(1) with strong
interactions require massive neutrinos' for self-
consistency. '

In the present note we will discuss the question
of how the weak interactions involving massive
neutrinos should be parametrized. That this is a
nontrivial question can be seen by referring to the
Kobayashi-Maskawa (KM) parametr ization~ of
weak interactions involving massive quarks.
There (in addition to the quark masses) four mix-
ing angles are needed. In a certain sense we may
think of these mixing angles as representing the
"kinematics" or "geometry" of the theory. Now it
is immediately clear that the parametrization de-
pends on the particular model adopted. Since al-
most all theories of present interest are consid-
ered to reduce to SU(2)~x U(1} (Ref. 5) effectively
at low energies it seems reasonable to work in an
SU(2}~x U(1) framework. To give a logical struc-
ture to our presentation we will demand that the
theory be natural, ' in a sense to be spelled out
precisely. As we shall see, the lepton mixings
are inevitably more complicated than the KM
scheme.

We consider a natural theory to be one in which,
once the particle content is specified, the Lagran-
gian is the most general local one consistent with
proper Lorentz invariance and renormalizability.
The latter requirement includes the cancellation
of anomalies and hence rules out certain particle
assignments. It should be stressed that no as-

[N, is neutral, E, is negatively charged, and I,
means (1+y,)/2 projection] with 1'= -1, and n
two-component (right-handed) fermion SU(2)~ sin-
glets E,„with Y= -2. n is the number of "genera-
tions" which we will allow to be arbitrary. Note
that all fermion fields are two-component spinors
which can be considered to be van der Waerden
spinors. Introducing four-component Dirac
fields, while convenient for computation, is some-
thing of a "mystification" in a theory where no as-
sumptions about P, C, and T symmetries are
made g priori. If one wishes to get massive neu-
trinos without introducing any new fermion fields
in the theory, it is necessary to add a complex
Higgs triplet with Y= 2. The triplet may be put
into a 2 & 2 matrix,

~
I (+) I (++) &

p(0) I (+) (1.2)

sumption about the P, C, and T symmetries is to
be made at the beginning. Whether or not and to
what degree these symmetries hold should emerge
from the theory itself. This is a sense in which
the parametrization of the theory is related to its
"geometry. " Note that by the initial assumption the
CPT theorem' will hold, so CPT is automatically
a, good symmetry. We are aware that if SU(2)~
x U(1) is embedded in a larger unifying group G,
the criterion of renormalizability for the SU(2}~
x U(1) subgroup by itself is too restrictive Nev. -
ertheless, it seems to be the most reasonable
first approach. In any event, the main part of our
analysis is independent of this assumption.

Now let us discuss in a step-by-step way how the
usual SU(2)~ x U(1) model of leptons can be modi-
fied to include massive neutrinos. The usual the-
ory' contains a complex SU(2)~ Higgs doublet with
weak hypercharge Y= 1, n two-component fermion
SU(2) ~ doublets

N,
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and the Yukawa terms in the weak Lagrangian look
like

a, b

f -1
ggbpL C p~b+ Hoc. ) (1.6)

or can develop Dirac masses in combination with
the N, ~ of (1.1) from a Yukawa term,

a, b
g b y2 Cp~b+ H. c. (1.7}

Note that in a theory which is natural in the pres-
ent sense both (1.6) and (1.7) must exist One ca.n
also contemplate neutrinos which belong neither to
SU(2)~ singlets or doublets. This would bring into
the picture unusual leptons (and quarks) and will
for simplicity be neglected.

To summarize the preceding discussion, we will
consider the class of natural SU(2)~ x U(l) theories
labeled' by (n, m), n being the number of gen-
erations and m being the number of SU(2}~ x U(l}
singlet fields. We call the general case, in which

Higgs triplets are present, theories of type I,
while theories without Higgs triplets will be called

g g,~tt, C 'T,h(~+ H. c. ,
a, b

where C is the charge-conjugation matrix of the
Dirac theory and g„are coupling constants. Neu-
trino masses proportional to g„(h'0') will be gen-
erated. It is mell known that the coupling of h
above to the gauge fields will alter the famous re-
lation between W and Z masses. Now one has

m'(Z) 1
( )m'(W) cos'8~

where 5 (assumed small) is the ratio 2(h"')'/
(P,)', (P,) being the vacuum value of the usual
Higgs field. If we consider the coupling constants

g„ in (1.3) to be of the same order of magnitude
as the coupling constants in the Yukawa terms
which generate charged-lepton masses, we are
then led to expect the order-of-magnitude relation

neutrino mass
charged-lepton mass

Since neutrino masses are presumably small one
might not expect an experimentally significant de-
viation from the Z-to-Ã mass ratio.

Another way to generate neutrino masses is
simply to add a number m of Y=0, SU(2)~-singlet
left-handed spinor fields p~,. Since these fields
mould not couple to the gauge bosons they could not
contribute to any anomalies. The condition of re-
normalizability thus does not say anything about
the number m, although on esthetic grounds one
might want m = pg. These fields can have Majorana
mass terms such as

type II. Note that there are no theories with mas-
sive neutrinos which are natural under SU(2}x U(1)
and also conserve lepton number. This is because
(1.8) and (1.6) both violate lepton number conser-
vation.

We shall see that, in general, theories which are
natural under SU(2) x U(1) contain a fairly large
number of "kinematical" parameters. This is the
price that must be paid for generality. If one con-
siders theories which are natural under some
larger unifying group G in which SU(2}x U(1) is
embedded, the number of kinematical parameters
will be restricted, at least in an approximate
sense. Nevertheless, we consider it worthwhile
to initially analyze the situation just on an SU(2)
x U(1) basis. The discussion of how the param-
eters become restricted when specific unifying
groups G are assumed and of detailed applications
of our results to experiments will be taken up
elsewher e.

In Sec. II we discuss a convenient parametriza-
tion for unitary matrices which will be used later.
As an application, the EM argument is repeated
for the case of yg generations. We also review the
Lagrangian for a massive Majorana particle in
two-component spinor language by choosing a spe-
cific representation of the ordinary Dirac ma-
trices and dividing the Dirac equation into two
pieces. In a related Appendix we discuss in a
simple way the relationship between the Dirac and
Majorana quantum theories.

The determination of the form of the charged-
and neutral-current weak interactions in the gen-
eral (n, m) theory is discussed in Sec. III. The
analog of the KM matrix for the charged-current
weak interaction in the lepton case is a rectangu-
lar matrix which we denote by K. In this case the
neutral-current neutrino interactions are not diag-
onal and the associated matrix is a projection op-
erator P=K~K. We also count the number of inde-
pendent parameters in the rectangular matrix K
for the general case and supply a specific realiza-
tion which has exactly the right number.

A consequence of K being rectangular rather than
square in general is that the usual formalism for
neutrino oscillations" must be modified. This is
done in Sec. IV, where it is noted that the proba-
bility factors for associated electron a going to
associated electron h in a neutrino beam I«(a- b)
no longer obey

in general. Two other consequences of P being
nontrivial are that decay modes, "heavy" neutrino- 3 lighter neutrinos, are allowed and that oscil-
lation phenomena for neutral-current interactions
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should exist. The probability factor for the lat-
ter is simply

QI„(a-b),

Let g, ~» be a columnvector (in generation
space) ofbare downquarks and g,~, ~ be a column
of up quarks. The charged-current weak-interac
tion term is

when K is real. The neutrino decay mode just
mentioned is expected to affect neutrino oscilla-
tion phenomena only if one neutrino has a mass
greater than about 2 MeV.

II. SOME PRELIMINARIES

It seems helpful to first establish some notation
for unitary matrices and also to remind the reader
how the Dirae equation is taken apart into two-
component spinors.

Define the n' generators" Ab of unitary transfor-
mations as the matrices A., with ij matrix ele-
ments,

(A.'), =6„.6., (21)
An arbitrary diagonal unitary matrix may be writ-
ten as

&u,(n)=expign, A', , n, =n,*,
a=1

(22)

and an arbitrary "complex" rotation in the ab plane
withparameter g„= ~g„~e@o& is

Zg~;4.(3 my, (-ipse+

U(2/3)fU(-1/3)
L L (2.8)

is then an arbitrary matrix which we parametrize
by(2. 6). We may take detC=1 by appropriately
choosing an overall relative UL-DL phase. Once
the quark mass matrices are in diagonal form we
may still make the redefinitions

~r, a ~o(n. )~c,a

Uz a=wo(y —n)U~ z, (29)

2

where DL and UL are the columns of physical down
and up fields. The unitary matrices UL "and
UL' "are to be considered arbitrary in a natural
theory since they arise from bidiagonalization of
arbitrary mass matrices in the charge —,

' and
charge -3 sectors. The KM or generalized Cabib-
bo matrix

cos~q»~ e"~asin~q»~ 0 . . .
-e '~'sin~/, p~ cos)q„~ 0 0 ~ ~

11~ ~

(u(q, „)=exp(q„A,' —q~, A;) (a~5).

For example the rotation in the 12 plane is

(2.3)

(2.4)

gn, =gy, =o

without changing the form of the free Lagrangian
Putting(2. 9} and(2. 6) into(2. V) gives the weak-
interaction term

—W;U~y, &u,(n) &u(q„)&u,'(n)D',
a&b

so that using the identity(2. 5}we have the effective
C matrix

The following identity is useful: C.„=' '~(~q.„~exp[i(n. +8
a&b

(2.10)

(u,(n)(u(~q„~e ~~)a)ot(n)

=(o(~q„~exp[i(n, +8„—n, )j). (2.5)

%e parametrize" an arbitrary unitary matrix U

by the product

~=4&,(y)„., &(~,&),
a&b

(2.6)

where the v(q„) are tobe written in someparticu-
lar (but unspecified) order. The parametrization
(2.6} is a slight modification of the "canonical co-
ordinates of the second kind" of Pontryagin" and

is expected to cover a finite neighborhood of the
identity. As an illustration of the usefulness of
this approach we can give a very simple yet essen-
tially rigorous discussion of the quark weak inter-
actions for an arbitrary number n of generations.

(n-1) of the n, 's are at our disposal(noting
Q, n, =0) so they may be used to eliminate any

(n —1) of the phases 8,» in(2. 10). For n=3 this is
of the famous KM form, ' with two real planar ro
tations and one complex planar rotation. Further-
more, noting that CP invariance requires the ma
tr~ elements of C,« to be real and accepting the
parametrization(2. 6), we see that every remaini' phase 8„ is an independent CP-violating pa-
rameter.

In what follows it will be convenient to work

with a particular (y, diagonal) representation of
the Dirac algebra:

o ' '=
a o '= o
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The matrix C which satisfies -y~ = C 'y, C, C
=-C, C-'=C~ «s

-02 0

0 g2~
(2.12)

In this representation write the Dirac field opera-
tor gas

, o,Q
(2.13)

Then, an examination of the equations of motion
of p and X show that they both transform in the
same way under the group SL(2, C) (as contravari-
ant, dotted spinors'). We shall work entirely with
spinors which transform in this way. Comparison
with (2.13) shows that X (and hence also p) can be
considered a left-handed field of the usual type.
It is interesting to rewrite the free-particle La-
grangian Z= -g(y„s, +m)g in terms of Q and y.
Using the above and neglecting symmetrizations
we find

igloo-~8~/ -xylo, s X —mgrop. -mxta, p*,

can no longer be- done. Also note that the invari-
ance of the ordinary Dirac equation (2.14) under
the U(l) phase transformation (-e' g is reflected
in the invariance of (2.1'i) under the rotation

p

i P2

cos Q s«nQ p

g -sino| cosQ ' i p2

In the Appendix we shall discuss the quantum the-
ory of (2.18}. Actually we should really consider
(2.18) to involve quantum fields from the very be-
ginning since p 02p vanishes unless p is an anti-
commuting quantity.

III. THE (n,m) MODELS

The n neutrinos belonging to SU(2)i doublets
are described by two-component spinors p„.. ., p„
and the m neutrinos which are SU(2)i singlets are
described by two-component spinors p„„,..., p„, .
The four-component objects which go into the var-
ious interaction terms of the theory are related to
these by [see (2.13)]

(2.14) Per. = 0, ~ (3.1)

where

o,=(o, -i).
Now make the unitary change of variables,

(2.15)

We adopt the convention that Greek generation in-
dices run from 1 to n+ m = N while Latin ones go
from 1 to n. The quadratic part of the neutrino
Lagrangian is a generalization of (2.18),

(p2+ipa) i
2 (2.16)

g= Q [-iso„s p —2(p o2M ~~+ H. c.}].
(3.2)

1
~p (P2 apl) s The matrix M in (3.2) must evidently be symmet-

ric:
and note that the Dirac Lagrangian falls apart into
two separate pieces,

2

ipto, &„p,+ 2 p, o,p, +H.c.
i

. (2.1'I)
a=1 i

It can be decomposed as

(3.3)

Each of these pieces by itself is a consistent
SL(2, C)-invariant Lagrangian representing a
Majorana particle. Note that the mass terms in

(2.17) are of the same kind as the ones in (1.3)
and in (1.6). Thus a Lagrangian describing a sin-
gle spinor,

8=-ip o„& p — —p o,p+H. c. i, (2.18)

is a desirable building block for the general the-
ory. By itself it describes a Majorana particle
and together with a twin brother of equal mass it
describes a Dirac particle. Note that the phase
of m in (2.18) can be altered at will by the redefi-
nition p= e'~i p' without affecting the kinetic term.
However, once interaction terms are added this

Mi D

I. a' M, . ' (3.4)

p= Uv, UU = U~U= 1, (3,5)

The n && n M, block comes from (1.3), the m xm M2

block from (1.6), and the D piece from (1.7). Na-
turalness implies that M is a completely arbi-
trary, symmetric matrix. The most general case
is type I. In type II cases, M, should be set to
zero.

Our first task is to find a transformation which
will bring the mass terms of (3.2) to a standard
form which we take to be real, diagonal. Since
we do not want to destroy the form of the first
term of (3.2) we take the transformation to physi-
cal fields p to be unitary:
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in an obvious matrix notation. We then require

U MU=X,

K has N columns and n rows. It satisfies

KKt= 1. (3.10)
(3 6)X g= 5 ~Xg, X~=X~+.

Since U rather than U ' appears in (3.6), there
is no immediate guarantee that there exists a U
fulfilling (3.5). We now show that this must be
the case. First, note that the counting is right
since M has 2N real parameters along the diagonal
and N(X -1) real parameters off diagonal for a
total of N'+¹ This exactly matches' the N pa-
rameters of X plus the N' parameters of an arbi-
trary U. Since the product MtM is Hermitian we
can always find some unitary matrix U such that

UtMtMU= C = real diagonal.

However KtK does not equal the unit operator.
The basic charged-current weak interaction is
then, in matrix notation,

S=ig2"'~'W „e~y Kv~+ H.c. (3.11)

Zg-
2 g p, PaL71 PaL,Sln w

Because K is in general (unless m = 0) rectangular
rather than square, the neutral-current (Z gauge
field) interactions of the neutrino require a ma-
trix for their parametrization. The appropriate
term in g is

Note that we can multiply U by a diagonal matrix
of phases, without changing C. Taking the com-
plex conjugate of this equation yields

V LP g ae UagVPL

The parametrizing matrix here is

(3.12)

8= Q [-iV~&gsgV~ —g (Vo(T2VN E~ + H.C.)] .
(3.'I)

Note that because v rather than vt appears in the
second term we cannot make separate phase
transformations on the v„without changing (3.7).
This is different from the situation with charged-
fermion fields.

We next use (3.5) and also an arbitrary ~ x g
unitary transformation on the column of physical
electron fields e»

g = Ae, AAt= AtA = 1,
to express the charged-current weak interaction
in terms of physical quantities,

Z=ig2 '~'W„Q E,~y„p,~+H.c.
a=l

=ig2'~'W„g e»y O,*,U, v ~+H.c. (3.8)
a, b, e

We define the rectangular matrix K, which is the
analog of the KM matrix for the present case, by

K~„=Q (Qt)~, v, (3.9)

C'= C= V'M'Mt'V'= V'MM'U',

where we have used (3.3). Defining X-=UrMU we
then have

Xrt= C=xtx.

From these we easily verify" that X must be diag-
onal. The freedom to multiply U by a diagonal
matrix of phases shows, by using (3.6), that the
elements of X can be always adjusted to be real,
positive, for example. Thus we can always find
a suitable U to bring (3.2) to the form

n

P g=Q Ut, v,~.
a=1

(3.13)

It is a square X-dimensional matrix. From (3.9)
we note that

n

g n,.K..= V,.
a=1

so that P may be simply expressed as

P=ztK. (3.14)

Thus once the charged-current interactions are
specified by K, no new parameters have to be
introduced to describe the neutral-current inter-
actions. In matrix notation the neutral-current
neutrino interaction is finally

$g
g

~ Vg PVL ~

ssn w
(3.15)

P= Pt, (3.16)

and, using (3.10), is seen to be a projection op-
erator,

P2 (3.1'I )

It is desirable to develop a parametrization for
the rectangular matrix K. Putting indices into
(3.10) gives

The fact that PW 1 is a statement that the Glashow-
Iliopoulas-Maiani (GIM) mechanism is unnatural
(unless m = 0) for lepton theories with massive
neutrinos. It has the physical consequences, to be
discussed later, that heavier neutrinos can decay
into three lighter ones and that neutral-current
interactions should also show oscillation effects
as a neutrino beam evolves. Note that P is Her-
mitian,
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n())+ 2m —1) (3.18)

real parameters. One's first thought about giving
an explicit representation of K might be simply to
use a matrix such as (2.6) with the co,(y} factor de-
leted and to truncate the last m rows. However,
this would involve more than the number of inde-
pendent parameters (3.18}. An easy way to pro-
ceed using the elementary (complex) planar rota-
tions (2.3) is as follows. Define the basis vectors

e8
(e) (3.19}

Then the first rom of K can be represented by the
transpose of

(3.20)

which has 2(n+ &)) -1) real parameters. The sec-
ond row is taken to be the transpose of

(3.21)

This adds 2(n+ ))) —2) real parameters. Similarly
the third row is taken to be the transpose of

(3.22)

and so on. These vectors form an orthonormal set
as required: &"'&"'=6". For example,

, N

X(1)QX(2) & (1 &) (d()} )e (2)
&

&& )te 0&, 0
2g t

/=3

(3.23}

since (d()4~}e"&= e"&, for p& 2. Refer to (2.4) and
note that K is now being parametrized by a. set of

n

g (n+m —a}= &n(2m+n —1)
a=&

complex parameters ~)},~ ~

e'8a(. Thus, exactly

e=a

so the rows of K form a set of n (complex) ortho-
normal vectors, each with N entries. Before ap-
plying any restrictions we see that K is described
by 2n(m+ n) real parameters. From this should
be subtracted n for the normalizations of the rows
and n(n —1) for their orthogonalizations. This
gives a total of n(n+ 2m) real parameters. Now we
still have the freedom to multiply the z electron
fields by arbitrary phases as in {2.9), for example.
However, the neutrino fields cannot be multiplied
by phases, since (3.V) would not then be invariant.
So altogether the general (n, , )))) models of type I
are described by a rectangula. r matrix K, with

half of the parameters —the 8„'s—may be inter-
preted as CP-violating phases. The description
of K given above is practical rather than just for-
mal since it merely involves the multiplication of
matrices with nontrivial 2 x 2 subblocks.

Finally let us consider the theories of type II in
which no Higgs triplets are present. The mass
matrix (3.4) now has an n x n block of zeros in the
upper left corner:

0 D

D M

It is easy to verify that an arbitrary matrix of this
type has an ()) —m)-dimensional null space. Since
the rank of a matrix is preserved" under the
transformation (3.6) we conclude that X~ in (3.6}
has ()) -)))) zeros, which we take to be the first
()) —m) entries. Then, there is the additional pos-
sibility of making a U(n -m) transformation,
thereby deleting (z -m)' parameters on the p
without affecting (3.7). Thus, in our parametriza-
tion of K it would be reasonable to delete (d()},~)

factors associated with this subgroup and also
eliminate (n -m) other phases 8,~. Note that the
counting for ()), m) II theories with n- m is the
same as for (n, m) I theories. Clearly, for m=0
all (n, m) theories give square K matrices.

Let us now illustrate the counting in some sim-
ple cases. The usual three-generation model with
massless neutrinos is, in our notation, called
(3, 0), type II. By the above we see that there
are no mixing parameters since a full arbitrary
SU(3) transformation can be made on the neutrino
fields.

Equation (3.18) shows that the (2, 0) I case is de-
scribed by one complex parameter as opposed to
a real one for the GIM model. The (3, 0) I case is
described by three complex parameters as op-
posed to two real and one complex in the KM case.
Thus CP vioj.ation begins at the two- rather than,

the three-generation level for (n, 0} I models.
The most popular model' would seem to be (3, 3).

Either the type I or type II case is described by
12 independent complex parameters. In an attempt
to reduce the number of parameters one might
consider, for example, (3, 1) I, described by 12
real parameters, or (3, 1) II, described by 12 —4
= 8 real parameters. In any case it is clear that
realistic theories which are natural under SU(2)~
x U(l} involve a large number of kinematical pa-
rameters. A larger unifying group G will tend to
reduce this number, so a reasonable approach
might be to see what constraints follow (as ap-
proximation or exactly) when SU(2}~x U(1) is em-
bedded in G. This question will be taken up else-
where.
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IV. NEUTRINO OSCILLATfONS

This topic was both pioneered and reviewed by
Bilenky and Pontecorvo. ' It has been the subject
of much recent literature. " %e would like to
stress that the theory for the (u, m) case when m
4 0 has some significant differences from the usual
one.

In the first place, it is now possible to have the
decay modes"

(a- b) = Q K, K,*,K~,K ~~

Oyl

x exp[i(E' -E )t--2(I' + I',)t].
(4.6)

In the usual case, E is a square matrix and the I'
are zero. Then the unitarity of K implies that
Z„Icc(a-b)=1. Here even when the I are set
to zero we have

V~ Vy+ Vy+ Vg y (4.1) QI„(a-b) & 1 (4.9)

if energetically allowed. Equation (3.15) shows
that they will be mediated by a four-fermion inter-
action proportional to

Gz(viPy. vi )'. (4.2)

Assuming (in the most "optimistic" case) the ma-
trix elements of P to be of order of magnitude

unity, the lifetime of a heavy neutrino v' may be
roughly estimated as

v'(v Sv)=, v(p- &vv) .m(p) '
V

(4.3)

In order for this to have any observable effects,
y should be less than the order of 10' sec (sun-
earth travel time). With (4.3) this implies that we
should only expect physical effects for a "heavy"
neutrino mass m(v') satisfying

m(v') & 2 MeV. (4 4)

K, iv &. (4.5)

In the course of time this will evolve to the state

%e shall now set up the neutrino oscillation for-
malism for the (n, m) theories. Consider a beam
of neutrinos produced in association with an elec-
tron of type a. From (3.11) we observe that the
neutrino state produced will be a mixture of physi-
cal states given by

QK„exp[-i(E, —iI', /2)t] T~, . (4.11)

The probability factor for instigating a particular
hadronic neutral-current reaction is the magni-
tude of (4.11) squared summed over spins and also
over the unobserved neutrinos P. This result can
be very much simplified if it is assumed that E,
and hence P, are purely real. Then the probabil-
ity factor for a neutral-current reaction is simply

unless m= 0. The physical reason for this is that
the set of neutrinos which couple to the electrons
do not span the complete set.

Another different phenomenon in a natural
SU(2)~ x U(1) theory is the possibility of oscilla-
tions for neutral-current reactions. Using the
field expansion (A4) of the Appendix and the neu-
tral-current interaction (3.15), we find that the
matrix clem. ent for a physical neutrino of type a
to produce one of type P by Z„exchange with had-
rons is proportional to

T~
= [i(imP~ )u-y, u+(ReP~ )uy„y,u]S, , (4.10)

where N and u are ordinary Dirac spinors, and

S, is a kinematical factor. In a neutrino beam
produced at t= 0 in association with an electron of
type a, the spin-dependent amplitude for producing
a type P neutrino off hadrons is then proportional
to

QK. exp[-i(E, -il'„/2)t] ~v ), (4.6) I„c(a-v's)= Q K,~K, .Pg P~ ~

Oy (I ~g

where E is the energy eigenvalue of ~v ) and I"

its laboratory-frame width. The usual approxima-
tion is E = E+ m /2E. The probability amplitude
for having a neutrino interaction with emission of
an associated electron of type b is proportional to
the overlap of (4.6) with the state Z~(v~ ~K,*~ and is
then

x exp[i(E, -E )t- —,'(I' + 1",)t) .
(4.12)

Using (3.1'I), (3.16), and (S.14) we note

P~~P~N, = Po~, = Eq~, Eq~.

Comparing (4.12) with (4.8) finally gives

amp(a- b) ~ QK, K f exp [-i(E -iI', /2) t] . I„c(a-v's) = +Ice(a- b), (4.13)

This yields a probability factor

(4. I )
which holds for real K. In the usual case the
right-hand side of (4.13) is just unity so no oscil-
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lation is possible. In general, however, oscilla-
tion effects are expected. We may check this for
the simplest (one-generation) case (n, m) = (1,1).
Then the matrix K (assumed real) is simply

K=(cose sin8),

where 8 is some angle. Substituting this into (4.8)
and (4.18) gives (neglecting neutrino decay) &„(p)=—[~,(p}+f,(p)]

2

+ e ii v(r )(p}At(p) ]

(1-1)= f„c(l- ))'s) = 1 —sin'28 sin'. , (~, -~.)f
1s

which clearly shows the oscillations. Here the
ratio of charged-current to neutral-current events
is constant, but this feature does not hold in gen-
eral.

The formalism developed here can be applied to
many situations of interest. This will be consid-
ered elsewhere. In the present paper we have
pointed out the existence of possible new neutrino
oscillation effects and provided a general frame-
work for their analysis.
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(A similar expression holds for p, .} Note that the
anticommutation relations for the a's and 5's im-
ply

[X„(p),X„'.(p') ],= 5„„,6;~;„etc. (A5)

t 8X=- p' —p+ H.c.
2 et

(A'l)

Equation (A6) was used in obtaining (A7). Note
that (A6) and its conjugate imply that p satisfies
the Klein-Gordon equation

Thus we expect that relabeling p,- p in (A4}
gives the proper quantum theory of (2.18}. lt is
seen from (A4} that a convenient set of wave func-
tions for this theory are the left-handed projec-
tions of the usual massive Dirac wave functions
I and v. To convince ourselves that (A4) is in
fact correct we examine the energy operator, es-
sentially following Case. The canonical procedure
applied to (2.18) gives the equation of motion

zo'~e~p= -Bio'2p

and the energy-density operator

APPENDIX (-Cl+ ~))) ~')p=0. (A8)

[eit xg (p~)M ir )(p)
m '~'

Mv;„
+ e ""&'(p)~'"'(p)]

=(p +m ) and the phase conventions

(Al)

The quantum theory of (2.18) was discussed a
long time ago by Case." Here we would just like
to point out that we can get it in a simple way by
noting that the ordinary quantization of the Dirac
equation gives it to us tzeice. With conventional
notations, the Dirac field is expanded (in a box of
volume V} as

Substituting (A4) into (A't) gives, after some stan-
dard manipulations,

d3~~ = m g [&,'(p)&„(p)~&'(p)~",(p)
ptrtr

+ A„'(p)A„.(p) v"'(p) v" (p) ]
+ zero-point energy. (A9}

Now the factor in the first term u~t(p)u~(p) can be
rewritten as

u"'"(p)u" (p) —u„"'(p)u„"(p)= 5"'"Ei)/I —y~'(p) v ~(p) .
&'")(p) = ci'& )(P).

Using (2.13) we note

(X 1+5's
p (0 1+'Y5 CP'

(0 2 ' (0 2

Focusing on p, for definiteness we have

(A2)

(AS)

Putting this back into (A9) gives immediately

(A10)e= Q z,xt(p)a„(p),
y, r

so it is legitimate to consider A„(p) ~0) as a one-
particle state, for example.
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