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Perturbative quantum-chromodynamic corrections to the hadronic decay width
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Using the operator-product expansion it is shown that perturbative quantum-chromodynamic corrections to the
hadronic decay width of the Higgs boson can be calculated without encountering mass singularities. The result is

given in terms of the "running quark mass" of the renormalization group and calculable corrections in powers of
1/1n(M'/A'). The next-to-leading-order correction amounts to about 35% for the Higgs-boson mass M = SO

GeV.

I. INTRODUCTION

The successful SU(2) x U(1) model for the weak
and electromagnetic interactions' as well as other
theoretical possibilities of unification make it
urgent to explore Higgs bosons experimentally. '
Recently Braaten and Leveille calculated gluon
radiative corrections to the Higgs-boson decay
into a quark-antiquark pair. ' They found mass
singularities which invalidate the perturbative cal-
culation. By summing leading logarithms they ob-
tained the decay rate formula in which the quark
mass is replaced by the running quark mass eval-
ulated at the Higgs-boson mass.

The purpose of this paper is to show that per-
turbative quantum-chromodynamics (QCD) correc-
tions for the hadronic decay of the Higgs boson
can be calculated unambiguously without encounter-
ing mass singularities. I will give a precise for-
mulation in terms of the operator-product expan-
sion and the renormalization- group equation, and
present the result of the next-to-leading-order
QCD correction. The correction is about 35% for
a 50-GeV Higgs boson.

In the next section I formulate the renormaliza-
tion-group equation for scalar-current correlation
functions and present the leading- and the next-to-
leading-order perturbative QCD results for the
Higgs-boson decay width. Section III is devoted
to a brief discussion.

II. RENORMALIZATION-GROUP EQUATION

(2)

II=i dxe'~0 J x J 0 0,
whose imaginary part gives the Higgs-boson decay
width

I' = — ImII
M

(4)

Similar to the vacuum polarization due to the
electromagnetic current, "II requires subtractive
renormalization. It also needs multiplicative re-
normalization because the scalar current is not
conserved in contrast to the electromagnetic cur-
rent. The renormalized II in 4-& dimensions is
obtained from the bare one mo,
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where M is the Higgs-boson mass and the color
factor 3 is included. This formula can be obtained
from the imaginary part of the quark loop diagram
in Fig. 1, which is very similar to the well-known
process e'e -qq. One can easily recognize that
perturbative QCD corrections to the hadronic de-
cay of the Higgs boson can be treated almost anal-
ogously t'o the e'e annihilation into hadrons using
the operator-product expansion. ' '

Let us introduce the correlation function of
scalar currents with the four- momentum q ",

The standard SU(2) x U(1) model' gives the inter-
action Lagrangian of the decay of the Higgs boson
Q into a pair of quarks g as

where p, is the renormalization mass scale and
the subtractive counterterms are given as a sum
of simple poles in & in the minimal-subtraction
scheme'

where gY and J are the Yukawa coupling and the
scalar current. The lowest-order decay width for
each quark flavor of mass I is given by

K(g, e) =g K'(g)/e', L, (g, )=geI.'(g)/e'.
i=1 i =l

(6)

The renormalized QCD coupling constant g, quark
mass m, qua. rk field g, and Yukawa coupling gr
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where the P function and anomalous dimensions
are given, as usual,

FIG. 1. The lowest-order diagram for the correlation
function II of scalar currents.

8
p = -gl/. —lnZ,

8p,

are related to bare ones (with subscript 0) by re-
normalization constants as

8
y =- p,—lnZm 8p m& (10)

p, "2g=Z, 'g, , rn =Z 'rn0, (7)

(8)

(
8 8 8+re +2r H(q»g»m» p)

8g 8'
= q'Z(g) +m'T(g), (9)

&
= &Za&o» p"'gr =groZr 'Zo .

Neglecting nonperturbative effects, ' II is nothing
but the coefficient function of the unit operator in
the operator-product expansion of the T product
of scalar currents.

Following the standard procedure, ' the renor-
malization-group equation for II is obtained from
the p, independence of II for fixed g„mo, and e:

(

8y=- p —ln(Z„/Z, ),

and inhomogeneous terms are given in terms of
I/e pole terms of the subtractive counterterms
in Eq. (6),

If(g)
sg'&'(g) ~( )

sg'L '(g)

Using dimensional analysis and the solution of the
renormalization-group equation, II at q' can be re-
lated to II at q =—q e

II(q'e", g, m, tu) =e"II(qo,g, me ', I/e ')

t=e" IIq', g t, m. te ', p. At — dt'q'K gt' +m2t'e" gt' t"
0

(12)

where

t = —,
' ln (q'/q'),

= p(g(t)), g (0) =g,

em(t)
=m(t)y (g(t)), m(0) =m,

t
A(»)=ex»(»f »(d(»'))d»') .

0

(13)

(14)

(15)

(16)

(16 &)& P&

y (g) =r(g) =16+r, + 16,. r, +"

2

Fc(g) =z,+,z, + ~ ~ ~,
16@2

2

f (g) =f o+16 .L»+' " .16'

(19)

The running quark mass m(M) at M is defined by
the solution of Eq. (15) for t =InM/p,

m(M) =m(t = InM/I/, )

Let us evaluate the asymptotic behavior for
q'- -~ fixing q' =- p,2. Leading contributions
come from the inhomogeneous terms K0 and I.0
similar to the e'e case,

1nM/ ft

ex»» x„(d(»')ld»') .
0

(17) P go p Ppr/ff' t
11(q',g, , p,)--q' 16, 2t

Since I am interested in the lowest order in g~2
but to all orders in g, I obtain

p gp pro/op—Al 2 2t
16@ 1+2y, /p,

z„/z, =z, y=y„. (18)
(20)

To evaluate the asymptotic behavior of m, I use
the perturbative expansion

To obtain the Higgs-boson decay width I take the
imaginary part of analytically continued II at q' =M'
(Higgs-boson mass),
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ImII(q' =M2, g, n2, p, )

Ppg' M' "0~2()ln—
16m' p,

'
P g2 M2 )yp/B 0

x — M2K0+m2 ', ln —,
I Lp . (21)16@2 p,2)

The yp/pp power of lnM'/t(2 can be absorbed into
the running quark mass [Eq. (17)]which becomes,
in the leading order,

2 M2 20~2()0
m(M) =m ' ln-

16w2 p~ (22)

In fact the Yukawa coupling in Eq. (4) is given by
the Fermi constant Gz and the quark mass in the
standard SU(2) x U(1) model, '

g = (M2G )"'m . (23)

Inserting Eqs. (21)-(23) into Eq. (4) I obtain the
Higgs-boson decay width in the leading order,

I IMr='~MUG [ (M)] I+~L
2

='~~20' (~)) I(-6 ™"'I
where the leading inhomogeneous terms Kp and L,,
are calculated from the quark-l. oop diagram in
Fig. 1 using Eqs. (6), (ll), and (19},

3
Kp 4 2

9
p 2 2

(24)

(25)

yp=-8, y, =-M8+ 9 Nf,
(26)

where N& is the number of quark flavors. Two-
loop diagrams in Fig. 2 are calculated to obtain

The leading-order result in Eq. (24} is the same
as the Born term Eq. (2) (without gluon correc-
tions) except: (i} The quark mass m (of the Yukawa
coupling) in the Born term is replaced by the run-
ning quark mass rn(M) evaluated at the Higgs-boson
mass, and (ii) the quark mass in the phase-space
factor (1 —4m2/M2)'~2 is replaced, by the running
quark mass m(M) and, up to the first term in the
[m(M)/M]' power expansion, is retained. Terms
of order [m(M)/M]2", n ~ 2 are contained in the
first termll(q2, g(t), rn(t)e ', tj)A(t) in Eq. (12) and
should correspond to contributions from operators
m'"X 1 in the operator-product expansion.

The renormalization-group analysis allows pre-
cise predictions to any desired order in the running
coupling constant g. As an example I will present
the next-to-leading-order correction. The P func-
tionp and the anomalous dimension'0 y„ in Eq. (19)
have been calculated up to the next to leading order
in the minimal-subtraction scheme

tip = 11—2 N~) P, = 102 —222 N~ y

FIG. 2. The order-g diagrams for the correlation
function 7t of scalar currents.

the next-to-leading inhomogeneous term K, in Eq.
(19) [for simplicity the mass in the loop is neg-
lected, i.e. , L(g) =0],

A., = 5/~'. (27)

The finite (nonlogarithmic) part of II is also need-
ed:

Il(q' = —t(,2,g = 0, m = 0, t(, ) =- (- p.2)K0B,
—2'(ln4m- ys)+ I, for MS scheme

1, for MS scheme

(28)

~(M) =Is(M),

r(~) =(—,;)"""

0 A2

(3o)

n2 =m/F(p, ) .

(31)

(32)

In this expansion I obtain the Higgs-boson decay
width

3M A+2 7' /2gp I 2
I'= v2Gz m ln —, C,

where the ln4m —y~ term in the minimal-subtrac-
tion (MS) scheme is absorbed into the redefinition
of the QCD scale parameter A in the modified
minimal-subtraction (MS) scheme of Ref. 11.
Other quantities in Eqs. (26) and (27) are unchanged
in the MS scheme. The solution (12) of the re-
normalization-group equation can now be expanded
in powers of (lnM'/A') ', leading to the Higgs-bos-
on decay width in the next to leading order,

r= M2G [m(M)j' (y, ~—2y, a)
3M K~

(29)

Taking Higgs-boson mass M = 50 GeV, N&
= 6, and

A=0.5 GeV for the MS scheme, +35/0 correction
(the second term in the large square brackets) is
obtained. The running quark mass m(M) defined
in Eq. (17) can also be expanded in powers of
(lnM'/A') '
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0 A2

The correction factor C becomes 1.32 for the
same parameters (M = 50 GeV, NI = 6, A = 0.5 GeV,
MS scheme).

III. DISCUSSION

I have shown how to calculate perturbative QCD
corrections to the Higgs decay without encounter-
ing mass singularities at all. In practical applica-
tions, however, there remain two problems: (i)
Sincethe Higgs bosondecays preferentially to heavy
quark, it may be important to incorporate the
phase-space kinematical factor (1 —4m'/M')"'
in Eq. (2), and (ii) the magnitude of quark masses
is not accurately known.

As for point (i), I was able to reproduce explicit-
ly the phase-space factor for the running quark
mass up to the first term in the [m(M)/M]' power
expansion. I expect that higher-order terms can-
also be reproduced by using the operator-product
expansion. Therefore it seems most reasonable
to use the phase-space factor (I —[2m(M)/M]'}
for the running quark mass m(M) together with
the perturbative QCD correction factors such as
Eq. (33).

As for point (ii), one should probably turn the
argument around: Our formula can be employed
to deduce from the Higgs-boson decay width the
running quark mass defined in Eq. (17) which can

be used, e.g. , in the discussion of grand unified
theories. '0'

One can treat Higgs bosons with y, coupling or
charged Higgs bosons analogously. One can cal-
culate perturbative QCD corrections to inclusive
hadron distributions from the Higgs decay using
similar renormalization-group analyses with the
cut-vertex formalism~3 instead of the operator-
product expansion.

While this paper was being typed, I received
a report by Inami and Kubota~4 which discussed
the Higgs-boson decay from a similar point of
view and gave the next-to-leading-order QCD cor-
rection in agreement with my result (33), but did
not work out the [m(M)/M]' term [in my Eq. (24)].

Note added in Proof Rece. ntly R. Tarrach has
recalculated the two-loop anomalous dimension y&

for the running quark mass and found a different
result' than in Ref. 10. His result replaces y&

quoted in my Eq. (26) by y&
———+44+ ~~N& Thi.s

changes my numerical result very little: 'The cor-
rection factor C in Eq. (33) becomes 1.38 instead
of 1.32 for M=50 GeV.
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