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Three-jet final states in Z' decay for heavy quarks
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We study the influence of quark masses on the values of average spherocity S and average thrust T for Z' boson
decay into three jets in the standard model. We find that for quark masses (m, ) greater than —10 GeV the
average values (S) and (1 —T) may be significantly altered from their values for massless quarks previously
obtained in the literature.

I. INTRODUCTION

Recently, the combination of the Weinberg-
Salam (WS)' model of unified weak and electro-
magnetic interactions and the model of the strong
interactions, quantum chromodynamics (QCD), '
has met with many experimental successes. One
of the most important predictions of QCD is that
of jets3 in e'e, e&, and hadron-hadron collisions;
in particular, the observation of three-jet events'
in e'e away from heavy qq' resonances seems to
be in accord with the predictions of QCD' with
massless quarks.

Another source of jets is the decay of heavy
particles; in this paper we will consider the decay
of the neutral gauge boson, the Z, in the standard
%S model into three-jet final states: Z- qqg. In
particular, we will examine the influence of finite
quark masses on the average values of the infra-
red-safe variables spherocity S (Ref. 6) and thrust
T (Ref. 7). This will be of particular importance
for heavy quarks such as 'the t or possible heavier
quarks into which the Z can decay.

In Sec. II we consider the calculation of the dif-
ferential decay distribution for the Z- qqg decay
in terms of the scaling variables x, (i=1,2, 8)
(Ref. 8) for massive quarks. An important result
here is that the distribution is flavor dependent
since the Q =—,

' and Q = —3 quarks couple to the Z
with different vector and axial-vector coupling
constants.

In Sec. III we discuss the detailed kinematics
for the Z-qqg process with massive quarks. This
includes a determination of the bounds on the
scaling variables x, and the variables spherocity
and thrust. This is complicated by the fact that
there now exist three distinct kinematic regions
depending on the correspondence between the
variables x, and T.

Our results can be found in Sec. IV and our con-
clusions can be found in Sec. V.

Z„-, =P,r„(v ar. )P-, Z" . (2.2)

p, &, &
is the momentum of the (anti)quark and P, is

the gluon momentum; the mass of the outgoing
quark or antiquark is denoted by m. By simple
manipulation we can rewrite Eq. (2.1) as

—2'
(2P, ~ P.)(2P. P.) ' ' (P'

~((P, P )r.[(P', +P')+m]r„(v —ar, )

- (P, P,)y„(v - ay, )[(P', +P, ) + m] y„]v(P,) .

(2 8)

Z
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P
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y (v-a@5)
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two diagrams in Fig. 1. Apart from color consid-
erations we can write the matrix element for this
process directly as

% =-ig v(Pg)fr, [(Pg+Pg) —m] 'r„(v —ay, )

-y„(.— r.)[(P. P.)- ]-'rJ
X V(P2)fg E~z ' (2. 1)

Here we have defined the quark-antiquark-Z'
coupling by

II. Z~qq+ GLUON FOR MASSIVE QUARKS

The lowest-order-in-n, contribution to the
process Z-qq+gluon (Z- qqg) comes from the FIG. 1. Diagram contributing to the decay Z qqg.
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We now simply square 9Q, and use the polarization
sums

ducts of four-momenta can then be rewritten in
terms of these variables:

E"(X)6&(A) = -g"" +p "p" /M& (2.4)
P ~ P —2SX],

Q eg'(X')eg" (X') = -g"'. (2.5}

The decay rate is then given directly by (apart
from color factors)

2p, p, =s(l —x,)-2m',

2p, p =s(l —x,),
2P, P, =s(1 —x,).

We also have

(2.8)

dr =(2v)-'(2M, )-'5'

To make contact with the usual development on
e'e - qqg we define the scaling variables'

v, -=2g, /v v, Q v, =2 (2.7)

(here, of course, Ws=Mx). The various dot pro-

s~ —= (P, +P, )' =2PP, +2m' = s(1 —x,},
s„-=(p, +p, )' =2pd), +m' = s(1 —x,}+m', (2.9)

s» =(p, +p, )' =2p,p, +m' = s(l —x,) +m'.

The usual results for the massless case can be
obtained by setting m' =0 in the above formulas.
Eliminating x, in favor of x„x, through the con-
straint E(l. (2.7) and defining 5 =—2m/2) s =2m/Mz
we find, after performing a trivial angular integra-
tion,

(2.10)

CPS''" =C (v'+a')(x, '+x, ')Z, Z, — [2(Z, +Z, )+Z,'+Z, ']1 2 1 2

—-', v'6' 6g g, —4(g, +Z, ) —2-—' ——'+g, '+Z, ' +-',(2v' —v')6'(2Z Z, +Z,*+Z,')I,
vv 2 1 ~z

where Z, =(1—x, ) and C is an overall coefficient obtained only after performing the color summation

(2.11)

Noting that the decay rate for Z- qq for massive quarks is'

(2.12)

we may write

I; dxdx, 3v& (1 —x,)(1 —x, ) 2(v'+a')

6Z2Zg —4(Z2 + Zz) —2 —~— + Z2 +Zz + [2Z2Zg + Z2 + Zz ]

P 2 -1
x (1—5') -2~2 — (1+-,'52) + (1 —5g) (2.13)

v=(T, —2Qsinz~) —.
2~ sin28~ '

e
a =T3

in28

(2.14)

where we have written the first term in the ex-
pansion explicitly; this is the only remaining
term as 5-0 and gives the usual result obtained
for .massless quarks.

In the standard Weinberg-Salam model' we have

1

weak isospin and the electric charge of the rele.—

vant quark and sin28~= 0.23. Note that, in general,
two quarks with the same mass but with different
charges would have different distributions since
the terms of order 52 and 5' are functions of e and
a. Realistically, however, since a ~ T3 is the
same for both Q = —', and Q =-—', (luarks, the distri-
bution differs only in the terms proportional to
vg/v'+a'; note that this ratio is very similar in
magnitude in the two cases (x~ =sin'Hv =0.23}

where T, and Q are the third component of the

0.325, Q =-s
2

" +~ 0.130, Q= —', . (2.15}
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For practical purposes, as we shall see, there is
very little difference between the results for
Q = —, and Q = ——, quarks.2 1

We now proceed to translate this distribution
from the variables x, and x, into the well known,
infrared-safe variables spherocity S (Ref. 6) and
thrust T (Ref. 7).

4m ~&$)2~& s)
m2 & S„,S23 & (V S —m)'. (3.1)

III. KINEMATICS OF THEZ ~qqg PROCESS

A discussion of the kinematics of the Z-qqg
process must begin with a discussion of the allowed
ranges of the variables x, .' These can be obtained
by first considering the allowed ranges of the three
invariants st sy„and s„, which are familiar
from the usual Dalitz-plot kinematic considerations

We find

S=, , [(1—x,)(1 —x,)(1 —x, ) —(5/2)'x, '] . (3.7)
64

(x 2 52)1/2 ') (x 2 52)1/2

T=(» 5)/ )(»2 52) /2 x

III' T=x )(x' —5')"' (x' —5')'"

The minimum value of thrust is obtained when

p& ——p2 ——P3, or simply

(3.8)

(x 2 52)1/2 (» 2 52)1/2

Using x, =x, =x and x, =2 —x, —x„Eq. (3.9) is
satisfied when

x = p —~(1 —-', 5')'",

(3.9)

Next, we consider the allowed ranges of S and 7;
these depend on the kinematic region

Using Eq. (2.9) these can be translated into

0&x, &1—6', 5&x„x,&1, (3.2)

so

Tmlll 2 (1 352)1/2 2

(3.10)

where 5 has been defined previously.
We now turn to the definitions of S (Ref. 6) and

T (Ref. 7); we will consider T (thrust) first. We
will define T as

Ppf
g =2 max (3.3)

T = max((», 2 —5')'", (x,' —5')"', »2] . (3.4)

This reverts to the usual expressions as 5-0.
(The sum Q, E, in the denominator is chosen to
simplify the normalization. ) For spherocity S
we will use the definition

g

where g signifies a sum over all particles in a
hemisphere and P ~~

is the momentum parallel to
the jet axis chosen to maximize T. With our de-
finitions of x„Eq. (3.3) becomes"

Note that for 5=0, T '"=—', as is well known. This
result is, of course, independent of the kinematic
region; 7', however, does depend on the kine-
matic region through the allowed range of the x&'.

I and II: T =(1 —5')'",

g BlRx 1 g2
~

(3.11)

Note g -1 in all three regions as 5-0.
For spherocity S we obtain the allowed regions

by the following procedure; first, to obtain S in
any of the three physical regions, consider S as
a function of two independent variables out of the
set (»„x„x,). This is easily accomplished by
using Eq. (2.7); we have

I and II: S =
2 2 [(1—x,)(1 —x,)(x, + x, —1)
64

r'T'

16 (Z IP'r I)'
2/' ( QE' )

(3.5)

(3.12)

III: S =, , [(1—x,)(1 —x)(x+ x, —1) —(5/2)'x '],

where P~ is the momentum transverse to the jet
axis.

For the three-jet final state, S is easily calcula-
ted using the angular relations"

x,x, —2(1 —x, ) +5'
12

(
2 52)1/2( 2 52)1/2l

x,x,-2(l-x, )
13

( 2 52)1/2

x,x, —2(1 —x, )
23

( 2 52)1/2 l

where 8,&
is the angle between momenta P, and P&.

(1 —x,) +-,'5'
I. x, - (1 —,x )

(1 —x,)+~5

II: same as I with x,—x, ,

III: x, = x2 = 1 —2x3 .1

x3 2 xg x2y

(3.13)

where x is either x, or x, . Keeping the variable
corresponding to thrust fixed in each region we
simply take the partial derivative with respect to
the remaining variable, set the result to zero, and
solve for this remaining variable. (Simple calcu-
lation of the second derivative shows that this
procedure does indeed locate S and not the
minimum S value S .) We find
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Substitution of these values into Eq. (3.12) for the
appropriate kinematic region gives S as a func-
tion of the x& corresponding to thrust in that region;
e.g. , in region III we have

(3.14}

All of these formulas reduce to the original result

(3.15)

as 5-0.
There remains only to find S; for this pur-

pose we need consider the kinematic boundaries
of the three regions for nonzero 5 in comparison
with the usual (5 =0}case. [This is because, since
S(x&, x~) is a continuous function with a maximum
in the interior of the allowed region, the minimum
must occur on a boundary. ].

I.et us first consider the case 6=0; here all
results are symmetric under xy x2 'x3 so we
define the two independent variables as x and T
(the remaining variable is given by x =2 -x —T).
The allowed kinematic region is shown as the
shaded area in Fig. 2. The uppermost boundary
results from the definition that T be greater than
x (x & T) while the right-hand boundary results
from the constraint T &1. Similarly the left-
hand boundary comes from the constraint T & 3

and the lower boundary from the energy-momen-
tum constraint g, x, =2. Since x+T =2 —X and
x&1, obviously x+T & 1 or x& 1 —T; this forms
the lower boundary. To find $~ we merely check
which of the boundaries give physically meaningful
results. We find immediately that $~ must occur
when x = T (the upper boundary) yielding the fami-
liar result (when g =0}

I 0—

0 9-
0.8—

0.7—

0.6—

0.5—

0.4—
0.3—
0,2—
0. I—

SIBlll (1 T)2(2T 1)
64

(3.16)

We now must ask how these results change when
5c0. As might be expected this depends on the
kinematic region of interest. We will find, how-
ever, that S always occurs for the upper bound-
ary independent of the kinematic region.

Figure 3 shows region II for 5=0.2 with x& and
T as the independent variables. This figure dif-
fers only slightly from the massless case shown
in the previous figure. The upper andjower limits
on Thave changed from 1 and-', to (1-g')'& and&~

(1-~3g'}'~'——,'; these give the right-hand and left-hand
boundaries, respectively. There are two lower
boundaries here, the first being x,o g and the second
resulting from x~+x, ~ 1+ g' since max (x~)= 1—O'. Ob-
viously the upper limit here is given by x, =x, and
it is this boundary which gives S . We find

(3.17)

where

, x=x, =x, =(T'+5')'". (3;ie)

T~- 4 (1 'ga}~&~

Tmax (3.19)

The lower boundary results from 5 &x, as before

1.0—

0.9—

0.8—

I I I I I

T=~x2 82~I/2 & x ~
2 82

~
I/2

8 40. 2

0.7—

0.6—

0. 5—

0.4—

0.3—

0.2

O. I—

Because of x, —x, symmetry the same result per-
tains in region I.

Figure 4 shows the allowed area of region III for
5 =0.2 and with T and x, being the independent
variables. Here, again, the left- and right-hand
boundaries are given by P and T -, respectively:

0 ~ i I I

0.5 0.6 0,7 0.8 0.9 I.o
0
—

~( 0'5 I I

0.6 0.7
I

0.8
I

0.9
I

I.O

FIG. 2. Allowed kinemat'ic region in the x-T plane for
6=0.

T ~ (x2 82il/2

FIG. 3. Allowed kinexnatic region in the xg-T plane for
g=P.2 with T = Q —g )
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I .0—

0.9—

0..8—

0. 7—

l I I l I

T= x & {x -8 )I/2 (
2 82) I/2-X~ & XI-, x2-

8 =0. 2

This essentially involves calculating BS/Bx, , and
BT/Bx, , as functions of S and T for the three kine-
matic regions. We find

I: dx,dx, =6, , „,~((1 —x, )[2(1—x', ) —x,]
v'T'dTdS

+-,'6'(2 —x, —x,')) '~

0.6— dTdS, (3.25)
K 0.5—

0.4—

0.5—

0. 2

with x,' given by a solution of the quadratic equa-
tion

x,'[(1 —«, ) +(6/2}']

-x,[(2 —x,)(1 —x,) +2(6/2)'(2 —x,)]
O. I—

0gz I

0.5
I I

0.6 0.7
I

0.8
I

0.9 I .0

mgS
+

6
+(1 —x,)'+(6/2)'(2 —x,)' =0. (3.26}

FIG. 4. Allowed kinematic region in the x~-T plane
for 6=0,2 with T =x3.

This equation is simply obtained by rewriting the
equation for S in this region as a quadratic in x,
(x„S,T) Note .that there are, in general, two
different Jacobians, J,'„depending on whether x,
=Xg Or X~ .

and x, +xs ~ 1 since max(x, ) =1; the upper boundary
in this case differs from that found in regions I
and II. One of the boundaries is the usual one re-
sulting from P3 -P» P, :

II: Same as region I with xy xg
(3.27)

2 S j./2

x ~(T'+6')"' (3.20) = J3d7'dS.

g2 1/2

x~&1 ——+ — 1—
2 2 1

(3.21)

which, as is easily seen, reduces to x, -1 for
5=0. Thus the value of S in region III is given
by

=
a [(1—T)(1 —x)(T+x- 1) —(~/2)T'],
64

7r'

(3.22}

The additional boundary results from requiring S
to be positive or from requiring the angles in Eq.
(3.6) to be real. In regions I and II (as well as in

the massless case) this condition is trivially satis-
fied by the constraint x» ~1; herj, however, it
implies an additional constraint on the physical
region. For fixed T, the constraint S~ 0 implies

x =1 ——+ — 1 —(1-T) +6T T , 7tS
2 2 16 (3.28)

and x, is given by

X3 Xp ~ (3.29)

We are now ready to rewrite the decay distribu-
tion Eq. (2.13) in terms of S and T. Let us define

d I'ae~ 2& s'D(x„x,) . (3.30)

We then can write [by x, —x, symmetry of
D(x„x,}]

1 dI;;g 2o. s (2[JiaD (x» xa ) + Jia D(xi ~ xa }]i and II

(Note that in each of these regions as 6-0 we ob-
tain the standard result. } For this region we have

where

x =min[Eq. (3.20), Eq. (3.21)] (3.23)
+Z, [D(x,', x,') +D(x, , x, )]„,},

(3.31)

dl „-g d I;;g
dxjdx~ dSdT (3.24}

and x~ =2 —x —x3.
Once the boundaries are known we must next

translate the differential cross section as a func-
tion of x, and x, into a function of the variable S
and T as well as determine the Jacobian for the
transformation

with the appropriate x,' in the relevant kinematic
region. The subscripts I, II, and III indicate the
phase-space region to be integrated over with
the appropriate integration ranges for S and T.

The differential decay formula Eq. (3.31) is now

a function of only infrared-safe variables. We can
now proceed to calculate (S) and (1-T) for the
g- gag process.
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IV. RESULTS I I I I I I I i I I I

To calculate (1 —T) and (S) we merely perform
the integrations for the following integrals over
the appropriate ranges:

Q = -I/3

(1 —T) = — '" (1 —T)dSdT,1 dr..—,
I"0 dSdT

~ 1dr-
(S) =

J
— "' SdSdT.

0

(4.1)

Unfortunately neither of these integrals can be
evaluated analytically and we must turn to a num-
erical evaluation. Figure 5 shows (1 —T) as a
function of 6 for Q=s (T, =-,') and Q=-—', (T, =-—,')
quarks in units of 2ns/3m. Note that both curves
are quite similar for 5 s0.4, although the weak
couplings v and a are different for the two values
of the quark electric charges.

We see from this figure that for a given value
of v s (fixed o.,) the thrust value decreases for in-
creasing 5, with the structure of the final state
appearing more and more three-jet-like. For
5 )0.6, however, phase-space considerations
shrink the allowed kinematic region and, hence,
decrease the decay rate until we reach a pure
(1 —T) =1 (in units of 2o, /3m). At v s=Ms=90
GeV we expect n, =0.10-0.15 and hence for all 5

independent of the quark charge we find

CO

Io-'
I

FO

V)
0

OJ

0 0.2 0.4 0.6 0.8 I .0
8

FIG. S. Plot of (g for Q =
3 as a function of 6.

(1 —T) ~0.14-0.21. (4.2) IO
I I I I I I I I I I I

Figure 6 shows (S) for Q = —', and Fig. 7 for
Q = ——', as a decreasing function of 6. Note that
the two curves are very similar. Unlike (1-T),
which initially increases as a function of p before

Q= 2/3

l6
I I I I I I I I I I I I I I

l4—
Q = —2/3——Q = —I/3

l2

IO

I

8

bJ

(A

IO
I

(0
0

GJ

I 0 2

0 I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 I.O
8

FIG. 5. Plo t of (1-T) 5 fo Q=- — d Q= —.

/.

I I I I

0 0.2 0.4
I I I I I

0.6 I.O
8

FIG. 7. Plot of (S) for Q= —a as a function of 5.
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phase-space effects drive it to unity, (S) decreases
rapidly as a function of 5; this results from both
the rapid decrease of available space as 5-1 and
the rapid decrease of S with increasing 5.

These figures show that as 5 increases, the
values of (S) and (1 —T) become substantially
different from their values at 5 =0.' This is par-
ticularly important for decays such as Z- ttg since
the t quark is heavier than 15-16 GeV and pos-
sibly greater than 18 GeV (if it exists at all).

V. CONCLUSIONS

In this paper we have analyzed the influence of
finite quark masses on the average values of
spherocity and thrust for the decay Z- qqg. This
involves recalculating the values of the variables
S and T in terms of the x, in each of the kinematic
regions (for finite quark masses) which are usually
indistinguishable in the limit of vanishing quark
masses. This also requires a detailed analysis
of the range of these variables and of the Ja.cobi-

an necessary to transform from dx,dx, to the
dSdT basis for performing the integration.

We have found that (S) and (1 —T) are both
strongly dependent on 5 (=2m, /Ws) and for quarks
heavier than -10 GeV will have distributions sig-
nificantly different from the naive expectations
given by the usual formulas (the 5 =0 limit). This
result is of special importance for the t quark and
any additional quarks heavier than the t into which
the Z can decay; the three-jet decay associated
with these heavy quarks will have quite different
distr ibutions.
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