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Effective Hamiltonian for nucleon decay
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Renormalization effects for the SU(3) @SU(2)eU(1)-invariant baryon-number-violating operators of los&est

dimension are calculated. Linear relations involving these operators are presented and a minimal set is given for

nucleon decay processes.

I. INTRODUCTION

Renormalization-group analyses' of SU(3), SU(2),
and U(1} gauge theories have shown that unification
of the strong, weak, and electromagnetic inter-
actions is possible at a mass scale of order 10"
GeV. New interactions resulting from this unifi-
cation may violate baryon-number conservation as
in the SU(5) model of Georgi and Glashow. ' If
they do, nucleon decay will provide us with impor-
tant information about these interactions and could
help to determine how the SU(3), SU(2), and U(1}
theories are unified. However, the parameters
measured in a nucleon decay experiment refer to
a mass scale of order the proton mass m~, where-
as the mass scale relevant to grand unified models
is 10' GeV. In this paper, we calculate the SU(3),
SU(2), and U(1) renormalization effectsd which
allow one to relate parameters at these two widely
different mass scales.

If nucleon decay is governed by a mass of order
10' GeV, then only those baryon-number-violating
operators of lowest possible dimension will con-
tribute at an observable rate. Such operators con-
sistent with SU(3)S SU(2}SU(1) and Lorentz sym-
metry have been enumerated by Weinberg and by
Wilczek and Zee. ' In the notation of Weinberg,
the operators are

and

(3) (4) (4 )
abed ( abed + baca)

(4) (4) (4 )
Oabcd (Oabcd 0baca) '

(1.8)

(1.9)

With the relations (1.8) and (1.9) the effective
Hamil. tonian for nucleon decay can be expressed
in terms of only four types of operators:

(1) (2) (4) (5)
Oabcd ~ Oabcd, Oabcd &

and Oabcd ~

with four-component spinor notation is given in the
Appendix. The operator 0' ', which appears in
Ref. 5, can be expressed in terms of 0"' by the
relation

(8) (5) (5)
Oabcd ( cbad cabd)

and therefore need not be considered separately.
For renormalization-group calculations it is

useful to take into account any relations between
the operators being considered. The operators
0 ' and 0' ' can be written as the symmetric and
antisymmetric part (in the first two generation in-
dices) of a single operator. We therefore find it
most convenient to define an operator

n (4)
Oabcd (qntaL l BjbL)(7y bcLl l dL)en Byet tej 8

and note that'

(1)
abed =(dnaRaBbR)(&iycLl jdL )&n By&i j 1

(2)
Oabcd ( linaL IjsbL }( ycR dR )8 ey8i jn

Osbcd (linaL ljdbL)(ibycLitdL)&n &Byj&btt I

(1.1)

(1.2)

(1.3)

To avoid confusion we will retain the original
numbering in Eqs. (1.1)-(1.5). Thus, no O,l~„'d will
occur in our analysis. Note that there are still
some relations between these remaining operators,
namely,

(1.5)

(4)
abed =(ltnsL Ij Bbt )('lbycLl l }dLSbny (&8)tj ' (TB)bt I ( 4)

(5)
abed (d n aRa 8 bR )(aycR1 dR }en 8 y &

n (2) n(2)0abed 0bacd (1.10)

where n, lj, y are SU(3) color indices; i,j,k, l are
SU(2) indices; a, b, c,d refer to generation num-
bers, and L and R refer to left- and right-handed
fields. We have used two-. component spinor nota-
tion in Eqs. (1.1)-(1.5) with spinor indices con-
tracted as in the Appendix. The correspondence

and

(4) (4 ) (4 ) (4)O,b,d+Ob„„-O„b„—O,b,„Q.

(3) 1 (3) (4} (3) (4)
abed 8( cabd cabd+ chad+ cbad) (1.12)

In terms of the original. operators 0' ' and 0' ',
Eq. (1.11) becomes
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In the following section, we derive the one-loop
renormalization factors for the operators 0,'„'„,
0,"„'„0,'43,'„and 0."„',from SU(3), SU(2), and U(1)
interactions, and then apply our results to nucleon
decay into nonstrange and strange final states. %e
will ignore the extremely small effects from light-
Higgs-boson renormalization of the operators.
Our results allow one to include SU(3), SU(2), and
U(1) renormalization effects in calculations of nu-
cleon decay rates and branching ratios in grand
unified models. ' For example, operators of type
one and two can occur from vector-boson exchange
while operators of type four and five originate
from Higgs-boson exchange.

0,",",= 1+ '(2)+ ' (1) 0' ' + '
( —(0(3' .

411' 41I ' '
4tr ( 3

(2.4)

Here a superscript 0 refers to a bare operator,
c(, is the SU(3) coupling constant, which at some
large mass M is given by

4m

p"'1 (M'/A2) '

and n1 and (22 are the SU(2) and U(1) couplings re-
lated to the electromagnetic coupling a«at the
W-boson mass M+ by

II. RESULTS &1(jifw) =(IEM(Mw)/COS ew (2.6)

To determine renormalization effects in a re-
normalization-group approach one needs to know
the anomalous-dimension matrix for the operators
of interest. This is determined from the renor-
malization Z factors which relate the bare and re-
normalized operators. In our calculation of these
Z factors, we have used dimensional regulariza-
tion in n=4 —@ dimensions and minimal subtrac-
tion. The calculation was performed both in the
Landau gauge and in the Feynman gauge (where
external wave-function renormalization must be
taken into account). Our results are

0(1&0 li os (2)i o2 9(i+ o( (11 0(1& (2 1)4' 4' 4)( 4pg 1 $2

(9 (I 23

and

&2(Mw) c(EM(—~w)/»n'f(w . (2.7)

1111 (daR+BR)(+yIeI, dyI L)&a By
(1 )

(2)@2' 301111 (dnL+BL)(+yRRR)0u By 1

(4)
@3 1111 (d L+ BL)(+yL L dyL wL)& B

and

(2.8)

(2.(})

(2.10)

Note that under renormalization O,'„'~ mixes with
Oba«, Ocbad nd Oacbd and O„«mix with Oacbd

(4) (4) (4)

We apply these results to two relevant cases.
First consider a = b =c =d =1 so that we have op-
erators relevant (apart from Cabibbo-suppressed
modes) to nucleon decay into nonstrange final
states. In this, case there are only four linearly
independent operators, which we denote by

@4=0III1=(& RIIBR)(14,ReR)B B, ~
(5) (2.11)

~+'

41' 47TB 2 j 41(B (6j

4m&
(2.3)

These do not mix under renormalization. If
A& U", ... ,A4"" are the tree-level coefficients of
Q&, . . . , Q4 in a grand unified model, then the cor-
responding coefficients at a mass scale of order
the proton mass p, = m~ are given by

+GUM +GUM ~ + GUM
(2.12)

-&GUM- + GUM + GUM
(2.13)

A3yP, y
=

3~ GUM +GUM i + GUM
(2.14)

A4ip ) =
4 ~

& GUM GUM

(2.15)
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n, (M2) and G.2(M&4, ) are given by Eqs. (2.6) and
(2.7}, c4,(i1) is the SU(3) running coupling constant
evaluated at the renormal. ization point p, =m~, and
o, GUM is the grand unified coupling. C is the nor-
malization factor between the U(l) of SU(2)43 U(1)
and the U(1) subgroup of the grand unified gauge
group. In SU(5), C = 5.12 Renormalization effects
due to the electromagnetic interactions have been
neglected between the S'-boson mass and the re-
normalization-point mass since n«ln(M1v /p. ) is
a small number. The P functions are given by"

(f)

(i)
Q2 01121 &

(2)3=o2iii

Q4
—(202111 + 01211),

(4) (4 )

&S =( 2111 12I1)
(4) (4)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Now consider the case of nucleon decay into
strange final states. The linearly independent set
of operators relevant to this case are

p02' = ll —', N~, —

(2) 22 2
P2 ———— N~ -——

3 3

(2.16)

(2.17)

and

(2.24)

and

(2.18)

when one light Higgs doublet is included. The last
terms in Eqs. (2.17) and (2.18) are the contribu-
tions of the light Higgs doublet. 1V~ is the number
of quark flavors.

Q„.. . , Q, have been defined in Such a way that
they do not mix under renormalization. Denoting
the tree-level coefficients of these operators in a
grand unified model (i.e. , the values of the coeffi-
cients at the superheavy mass scale) by

A1 ",. . . ,A, "", it follows from Eqs. (2.1)-(2.5)
that the coefficients determined at p. = m~ are

AI(p. ) = i
~+ GUM + GUM + GUM

- 2/O(3) - .9/4O(2)- " ii/i2cog(i1) 0 Q2(M/I) 0 C Qj(Mg&) 0 &GUM
A2(V) = 2

+GUM- GUM 9GUM

) ~

A2(~) = 3+ GUM & GUM + GUM

+ GUM & GUM O' GUM

i/6c2~(i)

GUM + GUM + GUM

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

2/ g (3) i3/3c2 o «)
n,(P}0 , C o1(M2 )

A6(V) = 6 ~

„&GUM & mar
(2.30)

GI. CONCLUSIONS

In the previous section we gave R minimal set of
SU(3) I8& SU(2) Im U(1)-invariant operators which
enter the effective Hamiltonian for nucleon decay
into strange and nonstrange final states. It is im-
portant for both theoretical and experimental anal-
yses to have a minimal set of such operators. We
then calculated the relationship between the coeffi-
cients of these operators at the grand unified and
proton mass scales. A given grand unified theory
predicts most directly (i.e. , from tree-level)
values of these coefficients at the grand unified
mass scale. However, quark-model-type esti-
mates for the matrix elements' of the operators
can be expected to be valid at the proton mass

I

scale. Thus one must make use of Eqs. (2.12)-
(2.15) and (2.25)-(2.30) in order to make predic-
tions concerning proton decay from a grand unified
theory or to extract from future experiments in-
formation on the physics occurring at the grand
unified mass scale. In general, the effect of the
SU(3)S SU(2) &8I U(l) renormalization factors is to
enhance nucleon decay. For example, in SU(5)
with six flavors and A =0.1 GeV we have the fol-
lowing numerical values for the coefficients ap-
pearing in Eqs. (2.12)-(2.15) for operators con-
tributing to nonstrange decays:

A1(m&) =(2.2)(1.4)(l.l)A1" ——(3.4)A1", (3.1)

A2(m ~) = (2.2)(1.4)( l.1)A2
""—(3.4)A2 ", (3.2)
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A3(m q) = (2.2)(3.0)(1.01)A3 " —(6.7)A3 U", (3.3)

A4(mp) =(2.2)(1.0)(1.3)A4""—(2.9)A4", (3.4)

where the numerical factors give the SU(3),
SU(2), and U(l) renormalizations, respectively.
A large part of the enhancement comes from the
common factor of 2.2 from strong interaction ef-
fects. However, it is interesting to note that Q~
receives a significant enhancement from SU(2) in-
teractions as well, yielding a large overall factor
of 6.7 for this operator.

Finally, it is worth noting that our analysis is
only valid. in the simplest possible scenario, where
there exist only two relevant mass scales. It is
possible that new physics exists at intermediate
mass scales. The grand unified group G could
break down to SU(3) 13 SU(2) S U(1) in a series of
steps G &G'& ... &SU(3)IRSU(2)I3 U(1), in which
case one must also calculate, for example, the
renormalization of the operators due to a G gauge
theory in order to relate the coefficients of oper-
ators at the grand unified and proton mass scales.
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with

c' = (1,a) = (o")

o" =(1,-c)=(c')",
(A3)

(A4)

then a four-component spinor can be written as

(A5)

q=(R L,), (A6)

where a bar on a two-component spinor indicates
complex conjugation. Familiar bilinears are

and

g(=RL+LR =RL +-L R. (A7)

g'=(L R ), (A9)

where

R~=R &go, L =& Lg, L =& L~, Rfz =R

(A10)

so that, for example,

gy, /=RE„R+Lg~L =R(o„)—Jil +L'(v„)'"™L
(A8)

/

The charge-conjugate tjt field is

APPENDIX

g'(=L +R =LL +R+— (A11)

1

Two-component spinors come in two varieties
which, for fields that annihilate particles, we refer
to as left- and right-handed. These two transform
under SL(2C} according to representations which
are complex conjugates of each other. To dis-
tinguish these representations we denote left-
handed fields with' an undotted index and right-
handed fields with a dotted index. Under complex
conjugation of the fields undotted indices become
dotted and vice versa. Either dotted or undotted
indices may be lowered, raised, or contracted by
the antisymmetric & tensors & &

——&

The relationship between the four-component
spinor notation and the two-component form is as
follows. If we write

Py5$=-L +R =— L'L, +R.R-'. (A12}

These formulas can be used to express the oper-
ators defined in Eqs. (1.1}—(1.6) in four-component
form.

In order to prove some of the identities involving
the operators (1.1)-(1.5) and to calculate the re-
normalization effects, one needs the Fierz-trans-
formation rules

(A„B„}(C~D~)= —g(A„o „D~)(CI o'B„), (A13)

(AsBs}(CsDs ) = —~s [(AsDs}(CsBs)

+ ,(Asa ~+a }(C„g""B—s}),
(A14)

'-1 0

&0 1. (A1)
(AMBI )(CID~) = —~ [(AIDI }(CIBI)

+ ,'(A~o „„D~}(C~a""—B~)),

and (A15)
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where

o „„=-(v,v„—v„v „)
2

and

v„„=—(o„o.„—o„o,) .pV 2 p V V

(A18}

(A17)

and

(A~v'B„) = —(Bso "A~),

(&zv,.Bz)(~gv'"Dg) = o

(A20)

(A21)

It is also useful to note that

(Azv. .Bs) = (B—~v"Az)

( ~" Bi)=-(Biv.Ai),

(A18}

(A19)

Equations (A13)-(A21) can be used to write all
SU(3)I83 SU(2} U(1}-invariant baryon-number-
violating nucleon decay operators (of lowest pos-
sible dimension} as linear combinations of tbose
in Eqs. (1.1)—(1.5).
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