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We present a systematic analysis in perturbative quantum chromodynamics (@CD) of large-momentum-transfer
exclusive processes. Predictions are given for the scaling behavior, angular dependence, helicity structure, and
normalization of elastic and inelastic form factors and large-angle exclusive scattering amplitudes for hadrons and
photons. We prove that these reactions are dominated by quark and gluon subprocesses at short distances, and thus
that the dimensional-counting rules for the power-law falloff of these amplitudes with momentum transfer are
rigorous predictions of @CD, modulo calculable logarithmic corrections from the behavior of the hadronic wave
functions at short distances. These anomalous-dimension corrections are determined by evolution equations for
process-independent meson and baryon "distribution amplitudes" Si(x, ,g) which control the valence-quark
distributions in high-momentum-transfer exclusive reactions. The analysis can be carried out systematically in
powers of a, (Q'), the QCD running coupling constant. Although the calculations are most conveniently carried
out using light-cone perturbation theory and the light-cone gauge, we also present a gauge-independent analysis
and relate the distribution amplitude to a gauge-invariant Bethe-Salpeter amplitude.

I. INTRODUCTION

In this paper we present a systematic analysis
in quantum chromodynamics (QCD) of exclusive
processes involving transfer of large momenta.
The results lead to a comprehensive new range of
rigorous predictions of perturbative QCD which
test both the scaling and spin properties of quark
and gluon interactions at large momentum as well
as the detailed structure of hadronic wave func-
tions at short distances. Predictions are possible
for a huge number of experimentally accessible
phenomena including the elastic and inelastic
electromagnetic and weak form factors of had-
rons, and, more generally, large-angle exclusive
scattering reactions where the interacting parti-
cles can be either hadrons or photons. We con-
firm that the dimensional-counting rules' for the
power-law falloff of these amplitudes at large mo-
mentum transfer are rigorous predictions of QCD,
up to calculable powers of the running coupling
constant &,(Q ) or (in@ /& ) . Angular depen-
dence, helicity structure, relative and sometimes
even the absolute normalization can be computed
for all such processes.

A simple picture emerges from our analysis of
these processes. For example, consider the
proton's magnetic form factor Gtt(Q ) at large
-q =Q . This is most easily understood in the
infinite-momentum frame where the proton is ini-
tially moving along the z axis and then is struck
by a highly virtual photon carrying large trans-
verse momentum qj. =-q . The form factor is the
amplitude for the composite hadron to absorb

large transverge momentum while remaining in-
tact. In effect, an intact" baryon can be pictured
as three valence quarks, each carrying some frac-
tion x; of the baryon's momentum(Q; tx,. = 1) and
all moving roughly parallel with the hadron. As
we shall see, the more complicated nonvalence
Fock states in the proton (i. e. , qqqqq, qqqg, . . . )
are unimportant as Q ~. The form factor is
then the product of three probability amplitudes:
(a) the amplitude P for finding the three-quark
valence state in the incoming proton; (b) the ampli-
tude &„ for this tluark state to scatter with the
photon producing three quarks in the final state
whose momenta are roughly collinear, ' and (c) the
amplitude P* for this final quark state to reform
into a hadron. Thus the magnetic form factor can
be written [see Fig. 1(a)]

p1 p1
Gn(Q') = ~' [dx] ~ [dy]e*(y;, Q,)Tn(xt, y;, 0)

&0 ~0

x4(xt q )[1+0(rrt'/q'. )]

where [dx]=- dxtdx2dxs5(1-Q, x,) and Q„= min;(x, .Q).
To leading order in &,(Q ), the "hard-scattering

amplitude" && is the sum of all Born diagrams
for y*+3q-Sq in perturbative QCD. The trans-
verse-momentum fluctuations of the quarks in the
initial and final protons are negligible relative to
qi, as are all particle masses. These can be ig-
nored in ~„so that in effect each hadron is re-
placed by collinear on-shell valence partons.
Since the final quarks are collinear, momentum
of 0(qi) -~ must be transferred from quark line
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FIG. 1. (a) The general structure of the proton's magnetic form factor at large Q . (b) Soft (infrared) interactions be-
tween color-singlet hadrons cancel.

to quark line (via gluons) in T„. This justifies
our use of perturbation theory in computing ~„,
since all internal propagators in the Born dia-
grams must then be off shell by O(Q'). Further-
more, the most important dynamical feature of
the form factor —its power-law falloff —can then
be traced to the behavior of TH, which falls for
increasing Q with a factor [n,(Q )/Q ] for each
constituent, after the first, scattered from the
incident to the final direction' . i.e. ,

(y
2 )2

T.(x..&„Q)= "'. '~ T(x„&,)[1+« .(Q2))],

(1.2)

where &,(Q ) =(4v/P)(lnQ2/A2) ' is the running
coupling constant.

R is now clear that nonvalence Pock states in
the proton cannot contribute since all such states
contain four or more constituents, each of which
must be turned to the final direction. Thus T~ for
these states falls as [&,(Q )/Q ] or faster and is
negligible relative to (1.2) as Q -~. [This obser-
vation, while strictly true in light-cone gauge
(2) '2 =A = 0), has a different interpretation in
covariant gauges-see Appendix C.] Thus non-
valence ("sea") quarks and gluons in the proton
do not contribute.

The "quark distribution amplitude" P(x„Q) is
the amplitude for converting the proton into three
valence quarks. The quarks each carry some
fraction

k', ko+ k'"' p' p' +p'

of the proton's longitudinal momentum and are all
collinear up to scale Q. In light-cone gauge, Q
is simply related to the hadronic wave function.

3rQ ~~,
p(x), Q)cc j d k).;0 k)., ~)I)(x), k).,) .

4 j=2

(To be precise, |)) is the Fourier transform of the
positive-energy projection of the usual Bethe-
Salpeter wave function evaluated at relative light-
cone "times" z'=z +z =0.) This amplitude is
obviously process independent. 1t contains the
essential physics of that part of the hadronic wave
function which affects exclusive processes with
large momentum transfer. The distribution amp-
litude is only weakly dependent on Q, and this
dependence is completely specified by an evolution
equation of the form (in leading order)

a c.,(Q')Q',
Q

y(x„Q)=;, [dj]) (x„y,)y(y„Q),

(1.4)

where V can be computed from a single-gluon-
exchange kernel. The general solution of this
equation is

Q2') ~n

A]
Combining this expansion with Eqs. (1.1) and
(1.2), we obtain the general form of G„:

G„{Q')= '
g

l
Qb l(ln ~T) „c6)

The factorized form of Eq. (1.1) implies a sim-
ple space-time picture. The exchange of large
transverse momentum in the hard-scattering am-
plitude T& occurs only when the relative separation
of the constituents approaches the light cone-i. e. ,
-(z ' —z'~') -(zI.' - zY') -O(1/Q ). The distribu-
tion amplitude P is the probability amplitude for
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finding the valence quarks sufficiently near the
light cone,' by the uncertainty principle, this cor-
resyonds to a momentum-space wave function
smeared over all ki cl/zi -Q, as in Eq. (1.3).
Each (polynomial) eigensolution p„(x~) [Eq. (1.5)]
of the evolution equation is directly related to a
term in the operator-product expansion of the
wave function evaluated near the light cone. The
eigenvalues y„are the corresponding anomalous
dimensions.

Beyond leading order, both the hard-scattering
amplitude and the potential in the evolution equa-
tion have expansions in &,(Q ):

&~.(Q') '
& (;,y, Q)=l

&&[T,(x„y,) + u, (Q')rg(x„y, ) + ],
I( „y„~.(Q'))=I;(x,, y, )+ .(Q')1, ( „y;)+" .
These corrections can be systematically evaluated
and the basic equations [Eqs. (1.1) and (1.4)] made
exact to any order in o',(Q').

An essential part of the derivation of these re-
sults is an analysis of the end-point behavior of
the x; and y, integrations in Eq. (1.1), and especi-
ally of the region x;-1 or y&-l. As long as (1
—x,}»m/Q, we find that the distribution ampli-
tude vanishes as p(x&, Q)-(l-x, )', with &(Q) &I
as x]-1. This follows from a perturbative ana-
lysis of the x, -1 region coupled with the realiza-
tion that e(Q)-2 as Q-~, which is a necessary
consequence of the evolution equation (1.4). Con-
sequently, P and P* vanish sufficiently quickly
that the x„y; integrations are well behaved, at
least for (1-x;)»m/Q. [In particular, the evo-
lution of the amplitude eliminates any potential
logarithmic singularities in the region 1» (1-x,)
» m/Q. In Ref. 6, it is argued that such singu-
larities do occur resulting in an additional cor-
rection to T„of order o.', (Q) In(Q/m)T„; however,
this calculation neglects the effects due to the
evolution of P occurring when higher-order cor-
rections are properly included. ]

The region 1 —x, & m/Q must be analyzed sepa-
rately. Contributions from this region were first
discussed by Drell and Yan, and by West. They
related the Q' dependence of these contributions to
the x-1 behavior of the deep-inelastic structure
function vW, . Taking vW2-(I-x)' as x-l, in ac-
cord (roughly) both with experiment and with naive
theoretical expectations, the Drell-Yan-West con-
nection implies a term in the form factor which falls
as 1/Q -i.e. , just as in Eq. (1.6). However, a
detailed examination reveals that this term is
suppressed by at least two full powers of &, (Q )
relative to (1.6). Furthermore, in perturbation
theory, gluonic corrections to the quark-photon

vertex result in a Sudakov form factor which sup-
presses the end-point contributions by additional
powers of m/Q. Thus the infinitesimal region
1 —x, ~ m/Q makes only a negligible contribution
to the form factor. It is also clear then that the
Drell- Yan-West connection between deep-inelastic
scattering and hadronic form factors is invalid in
QCD. Notice finally that the proof of light-cone
dominance [i.e. , dominance of finite-x„y; region
in (1.1)] in the asymptotic form factors does not
even require consideration of the Sudakov correc-
tions-end-point contributions are suppressed by
a, (Q ) for baryons and, it turns out, by 0(m/Q)
for mesons.

The remainder of the paper is organized as fol-
lows.

In Sec. D we treat the simplest example of an
exclusive process inQCD, the v -y transition
form factor &~(Q ). Thisquantity is measurable
both in e'e annihilation (e'e -w r) and in two-
photon reactions (er-ev ). The basic analysis
tool is light-cone perturbation theory which is
developed and summarized in Appendix A. The
calculation of the y*m-y' transition involves all
the basic steps required in computing any of the
hadronic form factors. A detailed derivation of
the meson's evolution equation [to leading order in
o.',(Q )] is also given in Sec. II. General proce-
dures for its solution are given in Appendix D.
We also show that +~ is exactly normalized at
Q -~ by the pion decay constant:

P .Q'F (Q')=2f. .

The absence of true infrared singularities in
exclusive amplitudes is due to the fact that hadron
states are color singlets. In particular, soft
interactions (k s &) between initial and/or final
quarks in 7'0 all cancel since the quarks enter and
leave in (collinear) color-singlet states [see Fig.
l(b)]. This also allows us to define a Fock-state
expansion of the hadronic wave function in terms
of states with a f inite number of quark and gluon
quanta. An important feature of the light-cone
gauge (as employed in Sec. II} is that the leading
terms in any exclusive amplitude are due to the
minimal or valence Fock states in each hadron.
Nonvalence states are suppressed by powers of
m /Q, as discussed above. The use of light-cone
perturbation theory together with the light- cone
gauge thus leads to a number of significant compu-
tational simplifications. The generalization to
other gauges and to covariant perturbation theory
is given in Appendix C. There we also relate the
quark distribution amplitude to the operator

/exp -ie, Jl dz 'A g
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(with all fields appropriately smeared in the tran-
sverse direction), correcting certain defects in the
analysis given in Ref. &0.

Section III out1ines a general procedure for com-
puting corrections of order o,(Q ) and higher in
the form factors. This includes the analysis of
higher-order terms in T„( see also Appendix B)
and in the potential V for the evolution equation.
The analysis of &f&(x„Q) using the operator-pro-
duct expansion (OPE), as given in Ref. 5, is also
reviewed here. In general, the formalism pre-
sented in this payer provides a gauge-invariant
calculational method for composite-system ma-
trix elements.

To simplify the analysis Secs. II and DI deal
primarily with F» [although the analysis of
Q(x„Q) is obviously process independent]. As
Q -~, this form factor is determined by the ma-
trix element (0 I T~„&k(0)I v) with z --1/Q -0.
The fact that z'-0 for this process is not obvious
a priori, but rather is a consequence of the results
given in Sec. II. However, given this fact, one
can determine the Q behavior of F» directly by
using the standard OPE of J'~ (z)&„(0) near the light
cone. This analysis gives results identical to
ours. Unfortunately such an approach is useless
for studying most other exclusive amplitudes. For
example, in the case of the proton form factor
F(Q ) -(p

I J~ (z) Ip), it is hard to see which is the
"short distance" to be analyzed using the OPE.
Only by dissecting the amplitude, as in Eg. (1.1),
do we see that it is the structure of the hadronic
wave function near the light cone, together with
that of a hard subprocess (i. e. , T„), which deter-
mines the form factor's behavior at large Q . The
"short distance'-' is buried inside the process. So
whereas the OPE analysis of J,J„ is useful only
for &~, the techniques developed in Secs. II and
III for reducing such an amplitude to a form ana-
logous to (1.1) are universally applicable. In ad-
dition, they provide a compelling picture of the
microscopic processes which govern this area of
large-pi physics.

Detailed applications of our analysis to hadronic
form factors (mesons and baryons) are given in
Sec. IV. The techniques required to solve the
more complicated baryon evolution equation are
given in Appendix D. In addition to normalizing
mesonic form factors, important predictions test-
ing the spin of the gluon can be made for both me-
sons and baryons, including specific QCD spin
selection rules. The absolute sign of meson form
factors and the absence of zeros are also nontri-
vial consequences of a vector gluon theory. We
also discuss at length the end-point contributions

' to form factors.
In Sec. V we describe the general features pre-

dieted for large-angle exclusive reactions involv-
ing hadrons and/or photons. An important feature
of the QCD analysis is the huge number of Born
diagrams contributing to &H in.purely hadronic
reactions. This may help explain the anomalous-
ly large cross sections for rp and pp elastic scat-
tering at 90'. It also explains why the Landshoff
pinch singularity plays no role in wide-angle
scattering, at least at current energies. Such
contributions are overwhelmed by the large num-
ber of hard-scattering subprocesses. Further-
more, we show in Sec. VB that the pinch singu-
larity is suppressed by Sudakov form factors which
fall faster than any power of f as -f-~ (at least
in perturbation theory). The potential role of
Landshoff processes in very-high-energy small-
angle processes (If I

«s) is critically examined.
A brief discussion of the data available for large-
angle scattering is also given.

Finally, in Sec. VI we summarize our basic re-
sults and discuss future prospects. This paper is
an elaboration of the results presented in Ref. 1.
Similar results for the pion form factor were ob-
tained independently by Efremov and Radyush-

10,13~14
Mo

In this paper we show that large-momentum-
transfer exclusive amplitudes are. dominated by
quark and gluon subyrocesses at short distances.
As in any calculation in perturbative QCD we im-
ylicitly assume that the most singular contribu-
tions of the theory near the light cone are given
by perturbation theory, i.e., that any nonpertur-
bative contribution is relatively more regular at
short distances. We also ignore here distinctions
between timelike and spacelike form factors since
they are identical to leading order in o'.,(Q ).

(a)

XI,
k+q +

xs, -kj Xl q

(b)

+ ~ ~ ~

(c}

FlG. 2. Diagrams contributing to I",„: (a) lowest-or-
der terms, (b) one-loop corrections, and (c) generic
structure of one-loop corrections.
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II. SUMMING LEADING LOGARITHMS IN Qm

A. The n~ transition form factor

The y*7t'-y vertex in the amplitude for 8&-ey
defines the &-y transition form factor E~:

I'„=-ie F~(Q )&„„p,p",e'q', (2.1)

where P, and q are the momenta of the incident
pion and virtual photon, respectively, and & is the
polarization vector of the final (on-shell) photon.
In the standard "infinite-momentum" frame where

p, =- (p', p, p.) = (1, m, ', 0.),
q = (0, qi - m, , qi) q =-q. =--Q2 2 x~ 2 2 2

(p' is arbitrary; for simplicity we choose p'=1),
E,„ is given by"

2) -(e'(e, xq, ) '

where e =(0, 0, Ei), Ei'qua=0 is chosen.
The lowest-order contribution to F~, is [Fig.

2(a); see also Appendix A] (n, =3)

(Q ) ~ ~ rt [dx x k ) v, (x2, —k(.) ((, (xg, k(. +q(.) u&(x(, kz+qi) + ((, (x~, k()
z(&x qx) ao, ( 15m gx2

1

q, '-[(k, +q, )'+ ')/ -Ik,'+ ')/. 2
(2.2)

where [dx] =dx&dx25(I - x(, - x2) and e„~ are the quark charges in units of e. Here we are considering only
the L,=S,=O component of the general qq wave function, i. e. ,

1 ((((( —(((( d (I, d (I
~

$(x( k ).
& (x,x,)"' (2.3)

where a, 6 are color indices, n, =3 is the number of colors, and u, u, . . . represent on-shell spinor wave
functions for the quarks and antiquarks. Charge conjugation invariance requires g to be symmetric under
the exchange 1 2. Neglecting quark masses relative to Q, Eq. (2.2) becomes (see Appendix A)

00

&~(Q') =2~n, (e„' - e, ') [dx] ~i 15@(x( kJ ( + (xg x2) (2.4)
"0

Intuitively, the wave function must be peaked at
low ki, since a composite particle has little ampli-
tude for existing while its constituents are flying
apart with large ki. The leading behavior for +~
as qi-~ is then obtained from (2.4) by neglecting
k(. relative to qi, and integrating over all ki s Q
= min, (x,)Q, at which point the energy denomina-
tor in (2.4) damps out the integrand:

( 2) 2v n, (e„—e, ) ' [dx] "o dk(.
( )Q' .0 xgx2 16m'

(2.5)

This approximation would be valid up to correc-
tions of order (m/Q)' -0 if (-(I/ki) " with e & 0
as ki-. Furthermore, +„would then fall as
1/Q since the ki integration in (2.5) would be in-
sensitive to its upper limit. In fact, P vanishes
as I/ki up to a factors of Inks' in @CD (see Sec.
II 8), so that the approximation (2.5) is valid up
to ~orrections of O(1/lnQ'). ' The integral

f dki P then varies logarithmically with Q . In
the next section we calculate this Q dependence
in QCD.

Notice that quark helicity is conserved at each
vertex in (2.2) in the limit of vanishing quark

Q2

&& dki P(ki), (2.5)

mass, since the photon is a vector particle (Tables
ii and III). Thus only states having zero spin
projection along the incident direction contribute, '

components of the pion wave function with S,& 0
are suppressed in &~ by m/Q. Indeed, for pions,
S,& 0 implies orbital angular momentum ~,& 0 in

P and such a contribution vanishes after the inte-
gration over d ki in (2.5). Thus (2.3) is the only
relevant component of the general wave function,
up to corrections of order m/Q in F~.

The one-loop radiative corrections to (2.4) in-
clude all two-particle irreducible corrections to
the &*+qq-z amplitude [Fig. 2(b)]. To analy'ze
the contribution from each of these diagrams, we
divide the integration over gluon momenta li into
two regions: (a) the collinear region l(. &Q'; and
(b) the ultraviolet (UV) region li & g . In the col-
linear region, each diagram, aside from the self-
energy correction, has the general structure of
Fig. 2(c):
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where the dependence on the longitudinal momenta
x„y is implicit, and where d'" =-g""+(2l'1"
+)t'1" )/y is the transverse polarization sum for
the gluon in light-cone gauge (2l'&=& =0) with
l = (y, li /y, 1)). The factor u(-li)y~d~ "u(0) van-
ishes linearly with lJ in this gauge. Consequently,
these terms are of the form

8 " CQJ ~ 'g +~

Q2

dk). g(k).) x const.

dki P(k).}

The use of perturbative QCD is valid here since
only li of order Q contribute. The li integration
does not diverge as lJ-0. Vacuum polarization,
self-energy, and vertex insertions into these dia-
grams combine to replace e, /4m by the running
coupling constant

4m.(Q )
P 1 Q2/A2, . (2.7)

x, kg

u, (k,')

FIG. 3. One-loop vertex correction.

where li =11- ~n&, n/ is the number of flavors,
and & is the QCD scale parameter. Thus these
corrections from the collinear region are sup-
pressed by (2,(Q') relative to (2.5) and can be ig-
nored for large Q2. Mass terms in the numerator
of (2.6) are also negligible, being suppressed by
m/Q in F,„.

The ultraviolet region (li )Q ) of these inte-
grals is, by definition, dominated by the short-
distance behavior of the theory, and thus is amen-
able to analysis via the renormalization group.
Loop momenta in Uv finite diagrams are of order
Q . As above, such contributions are suppressed
by a factor (2,(Q ) and can be dropped in leading
order. Vertex and self-energy corrections have
UV divergences of the generic form

~ f ' ' ' +0(~.((/)) C'(e'), ().8)
q2 J

where +~ is the form factor in the lowest order
[Eq. (2.5)]. From (2.7), the leading term becomes
(r/ti) lnln(Q /& )&~ after renormalization. The
renormalization group requires that such terms
exponentiate as higher-order corrections are
added, yielding

2 )' /l)

(2.9)

To illustrate, consider the UV-divergent part
of the photon-quark vertex correction in light-cone
gauge (Fig. 3):

' dx, C)„(2,(kF)A'= y' dkJ
0 1 -x q2 477

u(x, k.) „,„u(x, k.)

~ y„u(1, 0),

where C), = (n, —1)/2n, =f. Here again the leading
effect of vertex and propagator corrections is in-
cluded in &,(k). ) (Fig. 3). After some simple al-
gebra, A becomes

C, dx 2(1-x)+,dk). (2,(k). )
' 4x ~

2 J 'tt'
0 g

and the anomalous dimension associated with the
QED vertex is r& wh-ere [cf. Eq. (2.8}]

/1

yj„=C„~1+4I'

(2.10)

The Ward identity in QED implies that the anoma-
lous dimension for self-energy dia, grams is then
y&. The vertex and propagator corrections in
Fig. 2(b) together introduce a factor (lnQ /A2)~&/"

into (2.5).
Therefore, to leading order in &,(Q'), the v-y

transition form factor in QCD can then be written
as [recall Q= min(x, )Q]

Fyy(Q ) = dx1dx25(1 x1 x2)TH(x( Q))$(xj) Q) )
"D

(2.11)

where T~ is the hard-scattering amplitude for
y*+qq-y with on-shell collinear quarks:

( )
2~n(e„-e )

XQX2
(2.12)

The quark distribution amplitude (t (x„Q) is the
amplitude for finding constituents with longitudi-
nal momenta x, in the pion which are collinear up
to the scale Q:

( Q2 /pl)) ro dk 2

(t)(x„Q)=
~

ln ~~ 1 ~ p(x, , kg) . (2.13)

In the next section, we demonstrate how the infra-
red divergence at x = 1 in r), [Eq. (2.10)] exactly
cancels a similar divergence in g, and thus (t)(x„Q}
is well defined.

Two-loop and higher corrections to the two-
particle irreducible y*+qq-y amplitude are sup-
pressed by additional powers of c(,(Q ), in much
the same way one-loop coxrections are suppressed.
This is i11ustrated in Appendix B. The key in-
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gredient of this analysis is that the amplitude for
the emission of a collinear, virtual gluon by a
massless quark vanishes-i. e. , ~(x y—, li)z„d""
xu(x, 0)-li-0 when li-0, as in Eq. (2.6). This
property follows in physical gauges, such as light-
cone gauge, from two observations: (a) the vector
coupling of the gluon conserves the helicity of
massless quarks, and (b) the polarization tensor
d"" for the virtual gluon admits only transversely
polarized gluons (helicity = +I) as the gtuons go
on shell (i. e. , as li-0). Thus it is impossible
to conserve angular momentum along the direction
of motion when the quark emits a collinear gluon,
and the amplitude must vanish. In covariant
gauges, d"" contains longitudinal polarizations,
and tiie amplitude u(l JY„d""u(0) no longer vanishes
as li-0. Then the collinear region in Eq. (2.6)
is no longer negligible, giving a contribution

qln ln Y lEs~'(q ) .

Indeed irreducible diagrams with any number of
loops contribute to leading order in these gauges
(see Appendix C).

B. Quark distribution amplitudes and evolution
e quations for mesons

The qq wave function in Eq. (2.3) is the Fourier
transform (FT) of the positive-energy projection
of the Bethe-Salpeter wave function evaluated at
equal "time" s'=z +z =0:

&-FT&0IT'(«)(( ) I ) I. -o.

The behavior of the distribution amplitude P(x;, Q)
[Eq. (2.13)] at fixed x, as Q -~ is therefore
determined by the behavior of Tg(0)g(z) for z
=-g&'--1/q -0. This light-cone region can be

Xj,g

a)

b)

FIG. 4. (a) The bound-state wave equation for g(x&, qQ
to leading order in m, (Q2). (b) The relation between
g(x;, q, ) and the distribution amplitude.

q', y(x„q) = in ~ I

q ' 4(, q)q
A)

rp y(x), q)
P Inq'/A' ' (2.14)

The wave function g(x&, qi) satisfies the wave equa-
tion g=SKg, where S is the renormalized two

particle propagator and K is the sum of all two-
particle irreducible qq-qq kernels (see Appen-
dix A). The leading-order kernel is the one-gluon
interaction for which the wave equation becomes
(see Fig. 4)

studied using Wilson's operator-product expan-
sion and the renormalization group. This analysis
is described in Ref. 5, and again, very briefly,
in Sec. III. Here we derive a simple evolution
equation directly from perturbation theory, which
describes the variation of Q with Q [to leading
order in &,(q )]. In practical applications, evolu-
tion equations are usually the most efficient tool
for including the perturbative effects of @CD in

y(x„q).
An evolution equation is obtained by differenti-

ating both sides of Eq. (2.13) with respect to Q:

m, '-(qF+m')/xgx, .)

d IJ. I 2q u(xq, qi) u(yq, li)» 'U(y2, —li) U(x2, qx)

~(yx-xx) 1

yq -x, m, ' - (qi' + m')/xq - (li' + m')/y2 —(qj. -. IJ'/( yg —xg)

+(1—2) y(y„li) . (2.15)

(2.16)

The leading effects due to vertex and propagator corrections are again included in the running coupling
constant (cf. Fig. 3). As before, .the dominant behavior for qi-~ is obtained from Eq. (2.15) by neglect-
ing m, lj. relative to qi and integrating over li sqi [Fig. 4(b)]. This follows since g(y;, lj} is peaked at low
li. In fact, it is then clear from Eq. (2.15) that I)(x;, qi) -1/qi' up to logarithms of qi as qi-~, which
implies that the corrections to this approximation are of order 1/lnQ - u, (q ) Thus, to lead.ing order
Eq. (2.15) becomes

$(xg qJ}q 2C u, (q ) '
[d ] g( ) 5

1
I (1 2)l dli $(y„ li)



2164. G. -PETER LKPAGE AND STANLEY J. BRODSKY

where &„„- =1(0) when the constituents' helicities
are antiparallel (parallel). Our use of perturba-
tive QCD is again justified since only momenta of
order qi flow through the kernel. Combining this
equation with Eqs. (2.14), (2.13), and (2.10), we
obtain an evolution equation for (t)(x;, Q)
=- x,x, (t (x„q):

2-a
x~x2Q —,y(x„q)

[dy]i(;, y, )j(y;, Q)
~.(q')

where

—xix2((x;, Q)I', (2.)7a)

V(x„y,)=2 x,y, e(y, -x,) 5„„- +
y1 —Xq

+ (1—2)

(2.17b)

o.',(ki ) -lnln
~& (2.18a)

we can recast the evolution equation in a more
useful form

x~x, —y(x„q)+ —(t (x„q)
J

1
= p' )t [dy]i'(xl, yl)4(y, Q) (2 18b)

0

Given (t)(x, Qo), this equation can be integrated
(numerically or otherwise} to obtain (t)(x„q) for
any Q ) Qo . Alternatively, the general procedure
described in Appendix D can be applied to deter-

= V(y, , x,),
and n(t)(y;, Q) —= p(y;, Q) —(t (x„q). Notice that the
infrared divergence in Eq. (2.18) at x; =y, is
completely canceled by that in y~ [we have rescaled
x in Eq. (2.10) by x2 for the first and xq for the
second term in (2.1Vb)]. This is only true because
the color factor for the ladder kernel is identical
to that associated with the propagator corrections.
This in turn is a consequence of the color-singlet
nature of the meson.

High-order kernels entering in the wave equation
include all two-particle irreducible amplitudes for
qq-qq (Fig. 5). However, these corrections to
V(x„y;) are all suppressed by powers of &,(Q'),
because they are irreducible. This follows from
the same arguments used in the previous section
in analyzing corrections to T&.

By defining

+ ~ ~ ~

FIG. 5. Higher-order corrections to the yotential V
of the evolution equation (2.17).

mine the most general solution of (2.18):

y( x„q)= xg x, ~a„&„(xg- x} jn-T
~

3/2

where
+1

C~ 1 26a1i2T , ). (~ + ))(n + 2))

(2.19)

For pions, 6„g =1 and only even n contribute
since (t)(xq, x2, Q) =p(x2, xq, Q) is required (by & in-
variance). The coefficients a„can be determined
from Q(x;, Qo) by using the orthogonality relations
for the Gegenbauer polynominals, C„':

qo l) ~ 2(2n+ 3)
an ln A2 (

= 2+n 1+n
f 1

x d(x~-x2)C'„"(xg-x2)y(x„qo) .

y(x, , q) Ax',. asx,.-O (2.21)

for some & &0. In fact, this condition is auto-
matically satisfied by wave functions representing
truly composite states-i. e. , by solutions of the
homogeneous bound- state equation [Eq. (A5)]
which are regular at high energies. In theories
with an elementary field representing (or mixing
strongly with) the meson, the bound-state equa-
tion has a source term corresponding to the bare
coupling ~esp, and consequently the wave func-
tion tends to a constant (40) as x,-0.

Notice that as Q -~, the quark distribution
amplitude becomes particulax ly simple since only
the n=0 term survives (yo & y„ for all n& 0):

aP&1', A1+ h2 =0

q'&~~", I, +I, =+1.
a,x,x, ln 7 ~

(2.22)

The coefficient ap is just the renormalized quark-
antiquark wave function evaluated at the origin in

(2.20)

The convergence of series (2.19) is assured by
the elementary properties of orthogonal polynom-
ial if (and only if) (t) satisfies the boundary condi-
tion
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= 112 MeV) and for longitudinally polarized p me-
sons. In the latter case, a0 is normalized using
the decay p-e'e .Defining {0~J", ~p} =W2m, f,e"
implies

FIG. 6. Matrix element of the charged axial-vector
current controlling the decay m

—ep. 3
ap —~ (2.24b)

= WV n. ~.
x "' y'(1 y, )

"' -(t —t)
„VXg VX1

(2.23)

If we define {0
~
J~

~

v') = v 2f,p", where f, =93 MeV
is measured in the decay r- pv, we obtain a sum
rule for @(x„q):

1

a0 —6 [dx]Q,(x), Q) = ~0 +C
(2.24a)

Equations (2.22) and (2. 24a) completely deter-
mine the asymptotic behavior of the pion's quark
distribution amplitude (given isospin invariance,
these are identical for +, n} Fur'th. ermore, sum
rule (2.24a} is valid for all Q, up to corrections
of order o.',(Q ). Thus it imposes an important
constraint upon the normalization of P, at arbi-
trary Q when the amplitude is smooth and free of
nodes in x&, as might be expected for a ground-
state wave function.

Similar analyses follow for K mesons (f,-f»
I

coordinate space. Combining Eqs. (2.20) and
(2.13) for helicity-zero states, we obtain

ql»~ r odk~ = lim
~

ln T) J~ [dx] ', g(x„ki)

~dki=Z, [dx] i ~ y(x„k.),
"D 16

where Z2 renormalizes the quark field operators
in wave function g(x„ki) (recall that y» [Eq. (2.10)]
is the anomalous dimension associated with the
quark self-energy). The same renormalization
enters for the charged weak current, J~
=uy "(1-y5)d, whose matrix element between a
pion and the vacuum is~' (for p =+; see Fig. 6)

"dk v
&Ol4I&)=2'2

J
[dx]

J 10 s4(x&, k~) ~

where f, = 107 MeV.
Finally, we can combine Eqs. (2.11), (2.12),

(2.19), and (2.24) to obtain the @CD prediction for
the m-y transition form factor

( 2) 2~n. (e„'-e,')
.ty Z

Q2) a+
2

m'
x Q a„(ln~~ 1+0 n, (Q),

tl 0)2 f4t ~ ~ ~ 4e

-2(f./Q')» Q'-". (2.25)

Notice that because of boundary condition (2.21),
the singularity in &„[Eq. (2.12)] at x2 =0 does not
result in additional factors of lnQ . -For this rea-
son also we have replaced Q by Q in (2.11) to lead-
ing order in &,(Q ). (The replacement g-(x,)Q

Ql2 is perhaps more appropriate; but again the
difference is nonleading. )

Similar results apply for the p-~ form factor.
Assuming SU(3) symmetry, we find [to all orders
in o.,(q')]

(2.26)

III. BEYOND LEADING LOGARITHMS

A. General formalism in light-cone gauge

The preceding analysis (Sec. II) for E~ can be
generalized to include terms of any order in
o.',(Q ). One source of such terms is the set of
two-particle irreducible corrections to the hard-
scattering amplitude TH. As illustrated earlier,
these involve only hard-loop momenta (li -Q) and
as such can be organized in a power series in
o.',(Q ) (see Appendix B).

Another set of terms corrects the approximation
made in passing from Eqs. (2.4) to (2.5)-i. e. ,
from &g to &»Q. The difference between these
equations is

(3.1)

Clearly only ki-x, qi or larger contribute. Since k, is large, we can use Eq. (2.16}to replace p(x», k, ) by
SK~Q (to leading order):

[dx] Jl 16+(
~ ~ ] k zf k zf Jl [dy]K~(x;, ki;y;, Oi)p(y;, Q)

pi
[dy]&i" (y, Q)@(y, Q)[1+o{o',(Q')}], (3.2)

~o
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(a)

{b)

Q dk~

Xl "j

1' dk~

k -p 1677

equation (A5):

/=6'o g+ (1—S'o)g = 5'o tlt+ (1-so)sz(
= 0'o g + 6@'K6'o g,

where

d"= (1 s, )s g [z(1 a, )s]",
n~0

(S.5a)

(3.5b)

Xp

FIG. 7. (a) The 0(e s) correction to 7.'H due to the
subtracted one-loop ladder diagraln. (b) The collinear
projection operator actirg on the wave function $(xj k J ).

6'o (ki, lx) = &6m &(kx )&—(Q —li ) . {3.3)

Notice that + limits the flow of transverse mo-
mentum (li & Q ) through functions to the right

and replaces them by a & function. Applying 6'z

to the wave function, for example, gives [&ig. 7(b)]

d li.
(Pop= ~&o(kj., li)((x„ li)16~

d lj.
=16m &(kx ) 1 ~ ((xg, li), (s.4)

which up to a factor defines the distribution ampli-
tude Q(x, , Q). Replacing g by (Pop is precisely the
approximation made in going from Eqs. (2.4) to
(2.5)-i. e. , where quarks in the hadronic wave
function are replaced by a collinear (on-shell) qq
pair whose longitudinal momenta are weighted by
the distribution amplitude: Tg-TS'of = T~P. We
can express the exact wave function in terms of its
soft component &op through use of the bound-state

where &~ is the one-gluon-exchange kernel and
Q =min, (y;Q). &T„ is then just the one-loop ladder
correction to &&, but with the low-ki region sub-
tracted [Fig. 7(a)]. Once all vertices and propa-
gators are renormalized, it is suppressed by
o',(Q') relative to T&.

This analysis can be extended to arbitrary order
in o.',(Q ) and a similar analysis can be applied to
the distribution amplitude &f&. The procedure is to
use perturbation theory wherever loop momenta
are restricted to be large-restricted by an ex-
plicit subtraction for two-particle reducible loops
or by the inherent properties of irreducible dia-
grams (in light-cone gauge) for the rest. Our ig-
norance about the theory at soft momenta (k, «Q}
is absorbed into the quark distribution amplitude

Q, whose variation with increasing Q is neverthe-
less well determined.

To facilitate this separation of hard from soft
momenta, it is convenient to introduce a collinear
proj ection operator which isolates the nonpertur-
bative collinear region in two-particle reducible
loops

The exact &-y form factor can now be written
[from Eq. (3.5)]

2

J'„{Q')= „[dx],' T(x„k., q.)y(x„k.)

1
= ~t [dx]T„(X„Q}y(x„Q),

0
(S.6a)

where the general hard-scattering amplitude is
defined as

T„=d, (Q)(T + TC-@'Z)

=d, (Q)[T+ T(1 a, )SK

+ T(1- 6o)W(I —&5)SK+ ]

(3.6b)

with the external quark legs having zero ki (and
thus on shell when ignoring quark masses). The
quark distribution amplitude is

"~ d2u~
y(x„Q)-=d, '(Q) P(x„k,) . (S.6c)

The factor d~(Q) is related to the renormaliza-
tion of the quark field operator [Sz (p) -dz(p)/P'
as p --~]. In leading order it is (lnQ /A )"&'

The first term in T„[Eq. (3.6b)] is, to leading
order, just that given in Eq. (2.12). The correc-
tion 5T„[Eq. (3.2)] appears in (3.6b) as the domi-
nant part of the second term' . T(1 —&5)SK=T' '(1
—(P5}SK~. Notice that T~ includes all two-parti-
cle reducible and irreducible amplitudes for Y*

+ qq-p with on-shell quarks. It is however "col-

and where S is the renormalized qq propagator.
K is the sum of all two-particle irreducible ker-
nels.

Notice, in Eq. (3.4), that 6'og contains only mo-
menta li & Q . The region (li ~ Q ) is included
perturbatively in G@ . Any two-particle reducible
loop containing (1-a o) is protected from collinear
singularities —e. g. ,

~dk'idli
T(1 —.5'o)g= ~, ~ T{ki,qi)

x[16m 5 (ki- li)

1625(k,')g(Q' —l,')]y(1,)

"dl ', [T(l., q.}—T(O, q.)&(Q' —l')]y(l.) .
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linear irreducible" in the sense that the low mo-
mentum region of each two-particle reducible loop
is removed by the subtractions involving O'Q.

Thus there are no collinear singularities as k~
-0 in the loop integrations of ~H. After renor-
malization, T& is UV finite. It is free of infrared
singularities as well, since the external particles
are in color-sin~let states. Consequently, all
loop momenta ki in Tz are scaled by Q' (i. e. ,
other scales such as infrared cutoffs can be set to
zero since there are no divergences in T„}, and
the hard-scattering amplitude has a power-series
expansion in o',(Q ): Q T„=f0(x,) + o.',(Q )f2(x,)
+ o., (Q )f2(x&) + ' ' ' corresponding to 0, 1, 2, . . .
loop diagrams in the Uv-finite skeleton expan-
sion. In principle, end'-point singularities in the
x, integrations [e.g. , as x, -0 in (2.11)] can gen-
erate additional factors of lnQ'. However, as we
have seen, the wave function vanishes sufficiently
quickly in this region to prohibit such terms (see
also the discussion in Sec. IV).

Notice finally that TH is always manifestly gauge
invariant to leading order, since it is a renor-
malized Born amplitude with its external (con-
stituent) lines all on shell. Thus it can be com-
puted in any convenient gauge using ef'her light-
cone perturbation theory or covariant perturba-
tion theory. It is possible to make T& gauge in-
variant to all orders in , by slightly redefining
the factors d„(Q) appearing in Eqs. (3.6), but this
is of little practical value.

An exact evolution equation for P(x„Q) is de-
rived by differentiating (3.6c) with respect to Q:

Q', 2e(x„Q)= Q'dQ, »d. '(Q) e(x„Q)
J

+
16 ~(x'. q)Q

d~ '(Q)

The Callan-Symanzik equation for d~(Q} can be
written

Q', lnd '(Q) =-r(o', (Q')),
dQ

(3.7)

where y = (o',(Q )/4v)y~ + . Generalizing our
earlier analysis, we can rewrite g(x„qi} in terms
of P by combining the bound-state equation (A5)
with Eqs. (3.5):

P (Q}Q2 y( ) E (Q) Q2 (SKy)16m'

cf

16v2 Q (SK+SKG'K)(P gQ

jt ~dy)V(x~~y~, o's(Q'))

x4(y~, Q).

"
I
' q

V-Q

!

zi, k Zi

+ ~ ~ ~

k =0 l67r

FIG. 8. Terms contributing to the potential in the ev-
o1ution equation; each diagram has several time order-
ings, a11 of which contribute.

Thus the general evolution equation is

Q', ,y(x„Q)

~,(Q')
ldy]V( „y„..(Q'))~(y„Q)

—y(~.(Q'))y(x„Q), (3.8)

O(~ ~)"'

( ~)o

S

FIG. 9. Coupled bound-state wave equation for multi-
parton Fock states.

where V = V"'(x„y,) + o.',(Q ) V '(x„y,) + has
contributions from all two-particle irreducible
kernels as well as subtracted reducible kernels
(as in Tz,' see Fig. 8)-i.e. , V is collinear irre-
ducible.

Notice that g has contributions only from terms
in the wave function having orbital angular mo-
mentum L,=O. All other terms vanish after the
angular integration in (3.6c). The leading contri-
butions from L,& 0 terms are obtained by expand-
ing the qq+ y*-y amplitude in powers of I2i qi/qi,
which has L,='+1 with respect to the ki integration.
These are then suppressed by 1/Q or more and can
be ignored.

As mentioned earlier, &f&(x„Q) can also be stud-
ied via' the renormalization group and the operator-
product expansion of Tg(0) fi(z) with z' = 0, z =-zi
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-1/q'-O (Itef. 5).
n

Ty(0)q(z) = g C((~',~}, , I(*& g d, ~„„, ~, [q(0)r"'L&, , L&„y(O)]+ ~ ~ ~,
m&n k=0

(3.9)

B. General gauges —Fock-state decomposition

We required only the qq wave function in Sec. H.
This is not the case in general gauges, where it
becomes convenient to represent a hadron by an
infinite column vector @ of wave functions —one
for each of the Fock states qq, qqg, . . . in the
meson, for example. In general, + satisfies a
bound-state equation 4 =M+, which is an infinite
set of coupled equations where the matrix K is
the completely irreducible kernel and S„„is the
n-particle propagator (Fig. 9). In complete ana-
logy to the qq analysis just completed, we can
define a projection operator which isolates the
nonyerturbative region in the n-particle inter-
mediate state.'

n-&

)Se~(),,')e(q- g ~)., (}. (3.11)

We can then systematically reduce E~ to the form
E~ = T~~" (P„-+T„'~&&j&„,+ ' ' ' where the -hadronic
distribution amplitudes, defined in analogy to
(3.6c), satisfy evolution equations.

The fir st term in this series is precisely that
described in the previous section. In light-cone
gauge, the remaining terms are suppressed by
powers of 1/Q. For example, the leading hard-
scattering amplitude for the qqqq state includes
diagrams such as in Fig. 10(a) which fall as 1/Q
because of the additional propagators. Similarly,
the qqg contribution to E~ includes [Fig. 10(b)]

where I' ' =(1,Ys, Y~, Y~ Y&, o„„].. In general, this
expansion includes operators having explicit fac-
tors of the gluon field. However, these do not
contribute to the wave function (0

~
Tg(0)(T)(z)

~
&} +

p

since (0Q(0} ' ' ' A„' ' ' ((0)
~

&(}o- &I„ in light-cone
gauge &i

'& =& =0 (the only other vector avail-
able is p„but p',&0), and &i z=@'=0. Fourier
transforming (3.9), we obtain

e(*,. e) =E .e.~.. .(Q')~.(Q'), (~.)o)

where, as we found above, (P„=~a&('2C„' (~x —&2)
+ o( .(q')) -«.(Q') = (l.q'/A') "[1+o( .(q'))].
For pions, the anomalous dimension of C„(Q } is
that associated with the operator )T)(0)'Y„'YSD„~

D~ g(0). For longitudinally and transversely
polarized p mesons, y„y& is replaced by y„and
&x,„, respectively. The evolution equation (3.8) is
formally equivalent to the Callan-Symanzik equa-
tions for each term in (3.10).

(3.12b)

and d"" is the gluon's polarization sum. The only
vertices entering in (3.12a} are uy'u and ur)u since
d =0 in light-cone gauge. There is then at most
a factor qi in the numerator (and even this results
in a factor ki ' qi which integrates to zero}. Thus
E~'~ falls faster by 1/Q than E~~" as computed
earlier. Clearly adding further gluons to the
Fock state leads to additional factors of 1/Q or
1/Q for.each gluon.

Notice, however, that d does not vanish in
general covariant gauges, and longitudinally pola-
rized gluons (i.e. , &') can couple to T„via the
vertex uY u-q =qi (&~, qi). For this polariza-
tion, the numerator in (3.12a) cancels one power
of Q in the denominator so that E~~'~ -1/Q and is
no longer suppressed. Indeed, Fock states having
any number of longitudinally polarized gluons con-
tribute to leading order in I",„ in such gauges.
Just this problem is avoided by selecting a gauge
in which virtual gluons have only physical polari-
zations —i.e., g 'A. =A'=0 gauge. We illustrate
in Appendix C how this problem is overcome for
covariant gauges through use of collinear Ward
identities.

IV. ELECTROMAGNETIC FORM FACTORS
OF HADRONS

A. Mesons

Following the prescription set out in Sec. III,
we can reduce the pion's electromagnetic form

X(

Xp

(a) ( b.)

FIG. 10. Hard-scattering amplitudes for nonvalence
Pock states.

(3.12a)

where the leading-order distribution amplitude is
q2 W&; /() so

(ir„Q) = ()nm~, , d k, d ( (r, ).",)„, ,
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. factor to the form

+q(Q ) =
J

[dx][dy] J' (
p)z~ 4*(yg~ f&)

x T(xg, y„ki, li, qi) P(x(, kJ

16vC~ u, (Q') eq ep

Q x2yp xgyy

x[1 yO(o. ,(q ), m/Q)], (4.3)

[dx][dy]@*(y„q,)T„(x„y„q)y(x„Q„),
0

(4.1)

where T contains all two-particle irreducible amp-
litudes for r*+qq-qq, and where the hard-scat-
tering amplitude is [Q„=min(y, Q), Q„=min(x, Q)]

T„= d~(Q„)[T+ T(l-&6 )SK+KS(1-6') )T

+KS(1—(P) )T(1 —P6 )SK+ ]dp(Q„) .

(4.2)

Here the collinear projection operators 4'$ and &6
act to the left and right, respectively, and, in
analogy to (3.6), the initial and final mesons are
replaced by collinear qq pairs. The disconnected
diagrams in 'T make no contribution to the first
term in (4.2) because &) Ts'o -0 when the quark
lines are not connected. [For example, in Fig.
11(a), the incoming and outgoing qq pairs can only
be collinear (i. e. , ki=ki+xpqi=0) when xp =0,
at which point p(x„Q„)vanishes. ] Thus the low-
est-order contribution comes from one-gluon ex-
change in the second and third terms of (3.4) [Fig.
11(b)]:

1, 10, and 13)

4wC~o, (Q )
a„ ln ~

x [1y 0{a,(Q2), m/Q)] .
(4.4)

0.5

0 4 — i&4) p

0.5
0.2

O. I

0.0l

$(x ~QP) & x~x2

The n =0 term dominates as Q becomes very
large and we obtain [Eq. (2.24)] (Refs. 14, 1, and
10)

~,(q') -16 o.(q')(f, '/Q') . (4.6)

Figure 12 illustrates predictions for Q &, given
three different initial wave functions at Qp =2
GeV:

'

(a) P(x» Qp) ~ xgxp

(b) P(x, Qp) 6(x, --.'),
(c) @(x„qp)~ (x,x,)'",

with representative values of the @CD scale pa-
rameter A . In each case the normalization is
uniquely determined by sum rule (2.24a); all
curves ultimately converge to the asymptotic limit
(4.6) [i.e. , Fig. 12(a)]. For Fig. 12, we have
multiplied (4.4} by (1+m, /Q ) to allow a smooth
connection with the low-Q behavior suggested by

where e& and e2 are the charges carried by parti-
cles 1 and 2 {in units of e). As for &~, the bound-

ary condition (2.21) on P implies that there is no
singularity in (4.1}at y, or x, -0. Consequently,
in leading order, we can replace Q„and Q„by Q
in (4.1}to obtain the QCD prediction for the pion
form factor [from Eq. (2.19) with 6» ——1] {Refs.

X~ ( X~

k~ x ) qg+( kg+xp qg) ~t(g) 0 Q

0.4—
~ Oa-

(3
O. I

0.5
0.4 — II ))

0.5—
0.2—
Ol

O. l

0.0l

y(" QO) Ir ~(xi-VZ)

(b)
xI Yi~Y&qz

0 I I

lO 20 40
Q (GeV }

I

80

FIG. 11. Leading terms contributing to &z for the
pion form factor. Disconnected diagrams (a) vanish
when sandwiched between collinear pro]ection operators.

FIG. 12. @CD predictions for the pion form factor
assuming various distribution amplitudes P(s~ Qp) at

Qp 2 GeV and various values of the (ct)CD scale param-
eter A2. The data are from the analysis of electropro-
duction e"p e + ~'+ e; C. Bebek et al. , Ref. 24.
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~.(Q')'(,), + (.( ). (4.5)

The electromagnetic form factors of ~ mesons
and longitudinally polarized p' mesons follow from
the same analysis but with f, replaced in the sum

vector dominance models.
The behavior exhibited in Fig. &2 can be radi-

cally modified if (tl(x», Qp) has nodes or other com-
plex structure in x&. However, such behavior is
unlikely for ground-state mesons such as the pion.
For these, one intuitively expects' a smooth, posi-
tive-definite distribution amplitude, peaked about
x~, x2 --,'. Given these constraints, the normaliza-
tion of E,(Q ) is largely determined by the breadth
of the distribution —broad distributions [Fig. 12(c)]
result in a large form factor, narrow distributions
[Fig. 12(b)] in a small one. The magnitude of the
form factor also depends to some extent upon the
scale parameter A through the factor n, (Q } in
(4.4}.

Notice that we can completely remove depen-
dence upon the distribution amplitude by compar-
ing &~ to I", [Eqs. (2.25) and (4.4)]. In fact, a
measurement of each provides a direct determina-
tion of n, (Q ):

rule by f» and W2f„r espe cti vely [Eqs. (2.24}].
If the quark distribution amplitudes for these dif-
ferent mesons are similar in shape, the ratios of
& to & to pr. form factors should be approximately
f, :f» .2f, 1:1.5:2.5 for Q large (becoming
exact as Q -~).

An important constraint on the nature of the
distribution amplitude for & mesons can be ob-
tained from the &&-&~ transition form factor
which is measurable at large timelike Q' in the
reaction e e -&L,K~. The & wave function ana-
logous to {2.3) is

5,. 1 @»p(x,, y, )4» p = r r-QqS& —doS&]. I il/Z

where, because of the large m, /md ratio, 4»p
need not be symmetric in x,—x~. Since T~ con-
serves flavor, we have

(n, ~z(ol~nO=( ~ o (ol ~ )
=&z'lz" {0)lzo) .

The transition form factor E»» (Q ) at large Q
'can then be written in the form of Eq. (4.1) with

16»(n,(Q )C» e-, e,
H») Y»0 Q» x y x~

and thus [using the expansion (2.19)]

1 15»»n.(Q')C, ( ( , (t(x„ Q)
' ~ . . y(x„ Q)

'

(1 8»»n, (Q2)C» Q2 vnn'm'
z ~ Q Z a„"a ln7 +H. c. [1+O(n,(Q'), m/Q)].

n(even) m(odd)

Thus the form factor requires the odd (asymmet-
ric under x =x, —xp=x) Gegenbauer components
of the K distribution amplitude. Asymptotically,
the transition form factor vanishes with an extra
anomalous dimension

j'»» (Q ) a) Q2&

F"(Q') &'-" ap)
}Re —

I ln~

where 'Yq =p(C»IP) (—=0.4 for n& ——3). If this ratio
of form factors is indeed appreciable {i.e. , of or-
der 1), then the odd, asymmetric components
play a major role in the structure of the kaon wave
function. This would also imply a strong violation
of the relation &,+(Q )IF»'(Q }=f, If» at sub-—
asymptotic Q . All of these results can, of
course, be extended to mesons containing heavy
quarts.

As for +~, quark helicity is conserved at each
vertex in T„, which is then diagonal in (hadronic)
helicity up to corrections of order m/Q. Conse-
quently, there are two selection rules restricting

I

the helicities of initial (h, ) and final (I»z) hadrons ':

(a) 2k=I»z —I»;=0 (for timelike photon: hq=-h2),

(b) I&l = lh», ~l - —.'. (4.7)

The second rule is easily derived from the first
in the Breit frame. There the net change in the
hadron's angular momentum along the direction
of motion is h4. =-k& —h& ——-2h, because the heli-
city is unchanged while the momentum is reversed.
As the photon has spin 1, only lI»

l

~ —,
' is permitted,

up to corrections of O(m/Q).
Applying these selection rules to e'e collisions

beyond the resonance region, for example, we
find that the final states mp, p&pi, p~i are sup-
pressed by -m /Q (in the cross section) relative
to wr, EK, and pr. p& final states.

The selection rules are direct consequences of
the vector nature of the gluon. ln contrast, e e
-pipi is not suppressed in a theory with scalar
gluons. Furthermore, while each of the "allowed"
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form factors is positive at large Q in @CD, they
are negative ih scalar gluon theories, and then
must vanish at some finite Q [since &(0)=1].
Scalar theories are probably already ruled out by
existing data.

B. Baryons

Again from Sec. GI, the baryon's electromag-
netic form factor has the form

F.(Q') =
40

[dx][dy]e*(X», q.)T'e(X», y», Q)e(y» q,}

(4.3)

where in leading order T~ is the minimally con-
nected amplitude for F*+ 3q- 3q [Fig. 13(a)], and
[dx] =- dx»dx2dx25(I -g,.x,). The distribution ampli-
tude is the three-quark wave function integrated
over transverse momenta k).' sQ'.

Q2 3r»x/20-('Q .= — (d2$(»)
y(x„q)=( In —r (, .(; 16m'~2 gu(,»)~y(x„y(,»)),

A
(4.9)

where, as before, the factor (lnQ /A ) "»"' is
due to UV radiative corrections in T~. We can
derive an evolution equation for (t) in direct ana-
logy with the analysis of mesons. Indeed, since
in leading order only pairwise interactions occur
between quarks [Fig. 13(b)], the evolution equa-
tion follows immediately from Eq. (2.1V):

8 - 3C»„-
x»x,x, —y(x„q) + —

(t (x„q)
j.

[dy] V(x„y,)g(y„Q}. (4.10a,)
0

Here p =x»x2x2(t), ) = ln ln(Q /& ), and

V(x„y,) =2x»x2x, Q 8(y, —x»)f)(x„-y,)

I

nucleon is

(4.12)

r„=642', ' ', ( pe, T', (x„y,)
)'C, »2, (Q2)l '

»=1

+(x,—y,), (4.13a)

where (particle 2 has opposite helicity)

where t"& and +2 correspond to helicity-conserving
and helicity-flip parts of F", respectively (for
large p, P'). The magnetic form factor G„ is
given by Eq. (4.8}with hard-scattering ampli-
tude

= V(y», x,)

~y &2»2»

(4.10b)

is the sum over interactions between quark pairs
(i, j] due to exchange of a single gluon [C»»

=- (»2,

+1)/2»2, = —',]. The infrared singularity at x, =y,
is canceled [recall ag(y„q) —= P(y», Q) - »t)(x», Q)]
because the baryon is a color singlet. The evolu-
tion has a general solution of the form (see Ap-
pendix D)

1 1
x (1 )' (1 y)

1 1
x2(l x»)' y, (1-y2)'

1 1+
x2x2(1 —x2) y2y2( —y»)

1
x»x2(1 x») y»y2(1 y2)

(4.13b)

(»0 Q2
»(xx q)=x,x,xsI» x„»„(xi) &x

~~

Cx»x2x2

I&In mA

(4.11)

and e& is the electric charge (in units of e) of par-
ticle j. The hard-scattering amplitude T& for
form factors is most easily computed in the Breit
frame (p2 ——-p2) using Feynman gauge. [Recall

where the leading (t)„, y„are given in Table I, and
I» is the total quark helicity (= hadron's helicity
since 1-,=0). However, in practice it is general-
ly more efficient to integrate (4.10) numerically
rather than expanding ()) as in (4.11).

The most general electromagnetic vertex for a

(b) J . J . JC:.

FIG. 13. (a) Diagrams contributing to TH for baryonic
form factors. (b) Bound-state equation for the baryon's
three-quark wave function at large momenta.
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that ~H is defined with its external lines on shell
(for m = 0) and is thus both gauge and Lorentz
invariant. ] Only the diagrams in Fig. 13(a) con-
tribute.

The (e~]- are determined by the flavor spin struc-
ture of the nucleon's distribution amplitude. The
most general distribution amplitude for the proton
is (I), =-,') (Ref. 28}

' d)(1)u, (3)+u)(l)d)(3)
(2) (—') /2 (1)d (2), (3) ~s( Q)

(4.15)

(&) ("( )))I () &)+(&—&) (4)4)
L

Amplitude &f& must. be symmetric under interchange xq —xs, and P antisymmetric, by Fermi statistics,
since the color wave function &„,/Mn, is totally antisymmetric. The neutron s amplitude is Q„=—p~(u —d)
in the limit of exact isospin symmetry. From (4.11), Q" becomes negligible as Q -~, and Q be-
comes totally symmetric under particle exchange. Consequently, the flavor-spin structure of (4.12}tends
asymptotically to that assumed in the SU(6)-symmetric quark model.

Convoluting (4.13) with (4.14), we obtain the prediction in @CD for G„(Q ) (Ref. 1):

9 AJ 'I

TABLE I. Eigensolutions of the evolution Eq. (4.10)
for (h[ =~ {&P'") and jk( =a (()'))"') baryons. The pro-
cedure for systematically determining all Q& is given
in Appendix D.

b„N a (n) a (n) a (n) a (n) a(tt) a (n)
00 10 Oi 20 11 02

120 1

1260

1 420 2

5

34020
3

1944 2

41 -1
3 3

1414 &4

3 3
-7 -7

ytt t
n 0 120 1

420 1
2

420 13

2

5760 1
'1

3024
fv

34020

V)) I
+))(-&+ ~z

t'

7

2
7

2

7

2

2
2 8 2

a&".4 'x &ij

where e)) (e ))) is the mean total charge of quarks
with helicity para, llel (antiparallel) to the nucleon's
helicity (in the fully symmetric flavor-helicity
wave function}. For protons and neutrons we have
[Eq. (4.14)]

e'= tt n
II = ~ e-ll =0 eII = + II = 3

I

The constants b„, t-" are generally unknown for
baryons; however, by isospin symmetry, they are
equal for protons and neutrons, and thus @CD
predicts the ratios of form factors as Q -~.

Figure 14(a) illustrates the predictions for
Q4G~~(Q ) assuming a wave function Q(x, , QD)
~ 5(x& ——,'}6(x&——,') at Qo =2 GeV (the absolute
normalization is undetermined) and various values
of the QCD scale parameter. Again we include an
extra factor (1+m, /Q ) in (4.15) to allow a
smooth connection with data at low Q . Similar
curves are obtained for any reasonably smooth
distribution amplitude (t)(x, , Q, ). Only the ratio
G~~(Q )/G"„(Q ) is particularly sensitive to the shape
of the distribution amplitude. For illustration, this
ratio is plotted versus q in Fig. 14(b) where
(t)(x, , Q) =(xqx~x, )" is assumed for a given Q . For
each choice of q, the ratio decreases to zero with
increasing Q as (lnQ /A )"0 &=(lnQ /& ) ' '
The ratio G~„/G"„=-1 at Qo for the 5-function dis-
tribution amplitude used in Fig. 14(a). For com-
parison, note that in a theory with scalar or
pseudoscalar gluons, diagrams in which the struck
quark has antiparallel helicity vanish, Thus
scalar QCD predicts a ratio G~/G"„-e))/e)) = —3
independent of the distribution amplitude (assum-
ing only symmetry under exchange x& x3}.

As for mesons [Fq. (4.V)], form factors for
processes in which the baryon's helicity is chang-
ed (bh+ 0), or in which the initial or final baryon
has ~h

~
», are suppressed by factors of m/Q,

where m is an effective quark mass. Thus the
helicity-flip nucleon form factor is predicted to
fall roughly as Eq -mM/Qs, and the elastic ep and
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0.6
l I I

Q2/
en cross sections become (-t=Q -~)

dc' 4' o s +8 g(
dt f 28

(4.16)

O
0.4

/ A2=

~ ~g ) — „O.OOOI

ii OOI

O. I

t.O—

(a}

0"
0

I

IO

I

20

Q (GeV )

50

$(xi, Q} (xlx2x3)

cW
Q

CLX
C3

GM i GM&0P. ~ P
I (b)

0
I

2
"7

F&G. 14. (a) Prediction for Q Gg(Q ) for various QC&
scale parameters A2 (in GeV2). The data are from Hef.

. 30. The initial wave function is taken as (t)(x, ~) ~ &(x~
—t)6(x& —t) at &2=2 GeV . The factor (1+ment/Q) t is
included in the prediction as a representative of mass
effects, and the overall normalization is unknown. (b)
The ratio of proton to neutron magnetic form factors
for various distribution, amplitudes.

Cross sections for transitions such as ep-e4
( ~h~ ~

=-,') are also given by Eq. (4.16) [with G„
as in (4.15) but with C -C~Ca]. Cross sections
with ~ha ~

=-, are suppressed (by m /t). The reac-
tion e'e —6 a is dominated by baryons with

~
ha

~

=-,'; the cross section for production of
~ h~ ~

=-,
pairs or deltas with ~ha

~

=-, and —,
' is suppressed.

Again most of these predictions test the spin of
the gluon. For example, transitions ep-eh
(~ h~

~

= —,') are not suppressed in scalar QCD.
Finally, notice that the x integrations in (4.8)

diverge linearly as x& or x3-1 if the distribution
amplitude g is replaced by a constant. Since
compositeness only ensures that P(x„Q) s (1-x,)'
as x,-l with some & & 0 [Eg. (2.21)], end-point
singularities are possible here. However, beyond
the compositeness condition, there is strong evi-
dence, both theoretical and experimental, sug-
gesting that in fact &» in which case the singu-
larity is destroyed. The wave function's behavior
near x, -& can be analyzed perturbatively, since
large momentum [-(hi +m )/(1 —x,)] flows through
the wave function in that region. We show in the
next section that g(x;, hJ -(1-x,) as x, -1 up to
factors of ln(1- x,). By the Drell- Yan-Westv
connection, this behavior also determines the x
-l dependence of the inelastic structure function

vs, giving vs -(1-x)" =(1—x) . This agrees
with the structure function data, once corrections
due to gluonic bremsstrahlung have been included.
From Eq. (4.11), the corresponding exponent
& = t(Q) in the distribution amplitude P(x, Q) is
increased (beyond &=1) a,s Q-~, tending ulti-
mately to & =2. This evolution is due to the high-
er-order corrections summed by the evolution
equation for the baryon distribution amplitude.
Thus the x integrations in the baryon form factor
are well behaved as long as Q [=(1-x,)Q as x, -1]
increases with Q—i. e. , for all xt external to the
infinitesimal region 1 —x, m/Q. The contribu-
tion to the baryon form factor for end-point region
1 —x, c m/Q (first discussed by Drell and Yan,
and West) is strongly suppressed, as we show in
the next section. Note that the correction ~T~
-O(o.', (Q) 1n(Q/m) Ts) suggested in Ref. 6 does
not occur when higher-order corrections, leading
to evolution of P, are properly included, since
this term comes from the region 1» 1 —xq» m/Q.

C. End-point singularities

An alternative mechanism for hadronic form
factors was proposed some time ago by Drell and
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{a)

k +(I-x)q

((-r) ((-x), Ri

FIG. 16. The nucleon form factor.

(b)

Yan, West, and others. Writing the meson form
factor as [Fig. 15(a)]

F(q ) = t dx t I x g(x, kx)g*(X, kg+(l-x)qx),
Jp ~ 6m

(4.17)

they observed that large transverse momentum
flows through neither- wave functi;on when x is re-
stricted to the end-point region 1 —x & &/Q where
& -(ki +m) is some typical hadronic scale. In
this region, both wave functions are peaked at
ki cX [i.e. , P-B/(ki +&)], and the integration
over ki is convergent with only ki —& «Q con-
tributing. Thus the contribution to &(Q ) from the
end-point region is governed only by the x behavior
of g(x, X) as x-1:

-f 1
~Z(q') - dx ~(t(x, ~) ~'

~i-./q

(y/q) 1+25 (4.18)

where g(x, &) -(1-x)'. The Drell- Yan-West con-
nection relates the exponent 5 to the behavior of in-
clusive structure functions before radiative cor-
rections due to gluonic bremsstrahlung are in-
cluded —i.e. , v Wt '-(1 —x) ' as x- l.

Since the distribution amplitudes Q(x;, Q) in Eq.
(4.1) vanish as x, -l, the Born graphs for T„[Eg.
(4.8)] give negligible contributions from the end-
point regions. The contributions which do cor-
respond to the Drell-Yan-West analyses first ap-
pear in our analysis in the one-loop corrections to
Tz. Consider the diagram in Fig. 15(b). Here

I —x )I/Q

FIG. 15. (a) The pion form factor in lowest order. Q)
Lowest order term in I", requiring analysis of end-point
region 1—x + ~/'Q.

1

AE(q ) - dx

(y/q)2+25

i 1

(1-x)d7 ly(x, ~, k'"-&) ~'
Jp

(4.19)

if the wave function vanishes as g-(1 —x)' for x
-1 and kI.' -X [then vWt -(1—x) ' as x-1]. Per-
turbation theory again implies 6 =1 when, as in
Fig. 17, the wave function is replaced by two-
gluon interaction kernels —Kt~ -(1—x) o.', m /

t

!
+ ~ ~ ~

o

0
i

FIG 17. End-point .contributions to G„(Q ).

the one-gluon interaction kernel plays the role of
the wave function in (4.18). This kernel vanishes
linearly as x-1 which implies 6=1; i.e. , K«
—(1 —x) o',/(ki + m ). Thus the end-point region
in this diagram is suppressed by a full power of
~,(&q)(&/Q) and is negligible relative to (4.4). It
is readily demonstrated that higher-order cor-
rections are similarly suppressed. ' Terms in
&~~ which flip quark helicities also vanish linearly
near x-1 [K1 -m (1 —x)/(ki +m ) ], and there-
fore processes violating the helicity selection
rules (4.7) are suppressed in the end-point region,
as elsewhere.

Notice that based on this analysis, the Drell-
Yan-West correction actually implies a pion struc-
ture function which vanishes as vWts-(I -x)'
near x = 1, rather than v Wte -(I- x) as is usually
assumed. Such behavior is certainly consistent
with the data when one allows for high-twist
terms.

For nucleons the end-point region contributes
(Fig. 16)
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+ ~ ~ r + ~ ~ ~

FIG. 19. Nonvalence Foek states in Gs(P).

c) I

gl I

I

FIG. 18. (a) Terms contributing to the Sudakov sup-
pression of the end-point region. (b) Terms in which
the Sudakov (double) logarithms cancel when all are
combined. (c) A term which cannot cancel the double
logarithms in (a).

[(k, +m ) (I, +m )]. This isconsistentwithdatafor
vs and results in a correction to the hard-scat-
tering amplitude of order &&„-(n, (&Q)/Q )- a'., (XQ)T„. Although &7„ is itself negligible
for large Q, further radiative corrections to this
term are not obviously small since the presence
of wee partons in the end-point region precludes
use of the renormalization group. Potentially the
most important are corrections to the photon-quark
vertex [Fig. 18(a)]. Since the struck quark is off
shell by only h -& /(1 —x)-&Q«Q, these cor-
rections result in factors of In(Q/&) in each order
of perturbation theory (Appendix E). However,
such terms combine to give a Sudakov form fac-
tor for the quark which falls as a power of (&/Q).a'

This elastic quark form factor tends to further
suppress &T„, and consequently the end-point re-
gion makes no significant contribution to the had-
ronic form factor. Interactions between the wee
spectator quarks are insensitive to Q and thus do
not modify this conclusion.

It is significant that such Sudakov suppression
arises only in the end-point region. Elsewhere
(i.e. , all x„y,» &/Q) Sudakov logarithms, which
do occur in individual diagrams, ultimately cancel
because hadrons are color singlets [see Fig.
18(b)]. Such cancellations cannot occur in the
end-point region since a gluon joining the struck
quark to a spectator quark [Fig. 18(c)] must trans-
fer finite longitudinal momentum to the spectators
(y» &/Q) if it is to result in a Sudakov form fac-
tor (see Appendix E). This in turn destroys the
end-point singularity of this contribution by forcing
large transverse momentum through one wave
function or the other. Thus there is no cancella-

tion of the photon-vertex corrections in the end-
point region.

End-point contributions involving higher Fock
states (Fig. 19) are suppressed by integer powers
of &/Q due to phase space

1

dx, Il dx, dx„l! 1-Qx) -(x/Q)" '
~~-~/a ~0

(Note $„ is finite as x;-0 since singlet wave func-
tions cannot couple to infinite-wavelength quanta. )
Furthermore, the only two gluon kernels which
vanish linearly as x-1 are those illustrated in
Fig. .lV(b) (in Feynman gauge). All others vanish
quadratically and thus contribute (negligible) terms
of order &/Q' to &(Q). In particular, a detailed
analysis shows that helicity flip and 0 = & terms
are also suppressed in &(Q), indicating that the
selection rules (4.V) are valid for end-point con-
tributions as well.

Finally, note that only end-point contributions
to the form factor are directly related to the be-
havior of inclusive structure functions (vW2', . . . )
near x-1. Insofar as the end-point region is un-
important for hadronic form factors, the inclu-
sive- exclusive connection as usually stated is in-
correct.

V. FIXED-ANGLE HADRONIC SCATTERING

The techniques developed in Secs. II and III can
be applied in a study of hadronic cross sections
do/Ch(AB-&D) at fixed (h/s), or center-of-mass
angle 8, , as s-. Here, as for baryon form
factors, potentially significant contributions come
not only from hard subprocesses, involving trans-
fer of large ki between hadronic constituents, but
from the end-point region as well (where ki2 - X ).
The analysis is further complicated by- pinch sin-
gularities (in the x integrations) of the sort first
described by Landshoff. However, as we will
show, it is unlikely that either end-point or pinch
singularities (i. e. , "soft" subprocesses) are rele-

+ ~ ~ ~

Quark Interchange

FIG. 20. Diagrams contributing to Tz for vrp
—~p.
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vant for fixed-angle scattering, at least at current
energies.

A. Hard subprocesses

For a process AJS-D the fixed-angle scattering
amplitude due to hard subprocesses is

1

gg(AB-CD) = ), [dx, ]pc(x„pi)y~(x„,p.)
0 f=avb ~a, d

x T'„(x„s,&. )

xy„(x.,p.)ya(xs p~) (5 1)

as s~ (pi =tu/s), where the momentum transfer
between hadronic constituents occurs via the hard-
scattering amplitude &H. In leading order, && is
the sum of all connected tree diagrams in which
each hadron is replaced by collinear valence
quarks (Fig. 20). This amplitude falls as
n,(njs)" as s -~ with 8, fixed, where n is
the total number of constituents in the initial and final
states together (in agreement with dimensional
counting }.The quark distribution amplitudes

tend to their asymptotic forms, Eqs.
(2.22) and (4.11), for sufficiently large pi, and
the cross section becomes

as s-~, (5.2}

where for mesons y, =0, -4/3P for ~h~ =0, 1
while for baryons r, =-2/3P, -2/0 for ~h~ = —,', —,'.
Given a process, function f(e, } is uniquely
specified up to an overall normalization constant,
which in principle can be determined from form-
factor data. At lower Pi, f(8,. ) varies slowly
(logarithmically) with pi, as in Eq. (5.1).

The helicity structure of the amplitude is also
completely determined. In particular, total had-
ronic helicity is conserved —i.e. , h„+h~ =h~ + hD
(Ref. 36). This leads to strong correlations between
final-state helicities which would be absent in
scalar gluon theories, for example.

An important feature of this analysis is the
enormous number of tree diagrams contributing
to TH. Given a particular routing for the quark
lines, there are more than 60000 ways to connect
them with five gluons in baryon-baryon scattering.
When all quark-flavor routings are included, there
can be literally millions of Born diagrams in 7'H.

Consequently, amplitude (5.1) contains a very
large dimensionless factor related to the number
of diagrams-even if the various contributions, all
roughly equal in magnitude, are completely ran-
dom in sign, one still expects a factor M-10 ~

With about 2000 diagrams per quark routing (M
-1(P}, one expects a similar though somewhat

B. Soft subprocesses

Processes involving baryons receive contribu-
tions from the end-point region of the sort fami-
liar from the form-factor analysis (Sec. IV C).
Consider, for example, the amplitude in Fig.
21(a) which contributes to &p. When 1 —x s &/qi,
only small ki [-0(& )] flows through either wave
function. The amplitude is then a product of two
factors: one is precisely the end-point contribu-
tion to the form factor [Eq. (4.19)]; the other is
the amplitude for vq-vq, which falls as 1/s.
Here, just as for the form factor, the net contri-
bution from this region is suppressed by &, (4gi).
Furthermore, a Sudakov form factor develops
when radiative corrections are included in the 7)q

amplitude [Fig. 21(b)]. This tends to further sup-
press end-point contributions which therefore be-
come negligible relative to (5.1) as s-~.

Far more significant is Landhsoff's pinch singu-
larity. Consider, for example, the diagrams in
Fig. 22(a) which contribute to vm elastic scatter-
ing. Momentum conservation requires (u =-ri,

o) +(k +(I-x)q t ~ X

+ Hard Subprocesses
(x/1)

. b) + + ~ ~ ~

Flo. 21, (a) The end-point region for 7t'P -71p. (b)
Diagrams responsible for the Sudakov suppression of
this region.

smaller factor for meson-baryon amplitudes. Al-
though it is impractical to evaluate T„exactly for
processes such as these, the amplitude (5.1) may
well be calculable using Monte Carlo methods. '
Such a procedure will be described in detail else-
where.

One interesting class of elastic amplitudes in-
volves external photons in place of one or more of
the hadrons-e. g. , pP-wp, rP-pP, yy-&&. For
each of these the photon can be viewed as having
two components: (a) the bare photon which con-
tributes bn = 1 to the exponent in (5.2), and (b) the
photon as a qq composite state (i. e. , vector domi-
nance) which contributes M=2 in (5.2). While
the first Fock state must certainly dominate for
s-~, it is unclear which will be more important
at moderate energies since they differ by only a
single power of 1/s. Detailed calculations (cur-
rently in progress) will determine the relative
importance of these two terms.
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(a)

xp )(p(q~+ rj ) + kp

a g)
I

I

',9) )!

Xc,XcrL+ kc

) (h„',

Xd, Xdqg+kd

(8; 8) I) (I=

PIG. 22. (a) Amplitudes containing pinch singulari-
ties in ~x -7t~. (b) Hard-scattering subprocess ob-
tained from (a) when k, is large.

rx ' qx= 0)2

X~+Xy =X~ +Xg ~

k, +k~ —k, —k~ =(x, —x,)rg+ (x~ —x,)qi.

At least one of 0, , . . . , 0„ is of order s =xi + qi
for most values of x„.. . , x, . This results in a
hard subprocess such as that depicted in Fig. 22(b)
(where k, is large). However, in the region

Ix, —x, I
sx/r, Ix~-x, I st/q (5.3}

all wave-function momenta can be small [O(& )],

and will be since the wave functions peak at low
- k~ . Consequently, the energy denominators for
the intermediate states indicated in Fig. 22(a) be-
come singular in this region. '

D, =(x, —x.)ri'+(x, —x,)qi'

+2(k~ —k,) 'qua+2(k, —k,) 'ri

-(x, x.)-ri'+(x, —x.)qi +2(k, —k.) q,

+ 2(k, k.)—r, +~ O(~') + &~,

Dq~--Dq~ +0(X ) .
These denominators combine to give a & function
when the two time orderings are added

1 1—+ =-2vf5(~. Ir, I
+ ~, Iq, I),

I II

where

~.=-(x. -x.) Ir I+2(k. -k.) r

g=(x -x.) Iq I+2(k, —k.) q .

Thus the leading contribution from this region is

+&

&x, Pc(x,)gfx, )P„(x,)Ps (x,)5R«(x„qi, ri),
(stu) p

(5.4)

where %„ is the quark-quark elastic scattering
amplitude [x(-1) for qq scattering]:

s/t for equal quark helicities,
u/f for opposite helicities,

(5.5)

and where integrations over k, , . . . -& are im-
plicit. In lowest order, the ~-ir cross section due

to the pinch singularity is then

9g„result in Sudakov form factors which fall faster
than any power of t as It I

-~." Corrections from
gluons joining the t wo quark amplitudes cannot
cancel the Sudakov (double) logarithms appearing
in the separate amplitudes. For example, one
might expect cancellation between the diagrams
in Fig. 23 since pion & is a color singlet. How-

ever, if the singularity in D« is to be preserved,
momentum must flow through wave function $s in
the second diagram. Together the two terms give

—(nw-vw)
~4 ( 2+ 2)2

„dt t' us' (5.5)

which ultimately should dominate the hard sub-
processes [Eq. (5.2) with n= 8] by a full power of
1/s as s -™at fixed 8,. .. Note, however, that
the hard subprocesses should be more important
until very large s, given their anomalously large
normalization.

In fact, perturbation theory strongly suggests
that the pinch singularity is negligible at large
angles for all s. The radiative corrections to

xb kb I

I

xb
kb- lj

C+ =
()

1

()

FIG. 23. Terms leading to the Sudakov suppression of
the pinch singularity.
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(see Appendix F)

dy, "''dl n(t )( ( )
A2ll tl $ @2 l&

—y,(, -y, },—I,)],
where C is a color factor, t =x, t is the momen-
tum transferred in%„, and the external quarks
are off shell by k -0(&). We can neglect y and
li in the second wave function only when li ~ ~
and y K & / ~

t
~
. So while there is a partial can-

cellation (i. e. , of the infrared region) between
the two diagrams, there still remains

~a2&l jl)~~2 J

ln ~ lnln
&~ I g(&q, &~) ~

-2C

Such double logarithms exponentiate to give an
-2(C /I la 1nl t p, 2loverall factor It ~

&' """ in Il„when
higher-order corrections are included together
with radiative corrections in the s and u chan-
nels. Thus the effective exponent of (1/t) appear-
ing in the Landshoff cross section (5.6) is in-
creased by 8(C~/P) 1nln~t/&

~

', and the cross
section is negligible as ~t ~

-s-~.
Notice that the leading contribution for meson-

meson scattering from the pinch singularity is
purely imaginary. Thus there remains at most a
logarithmic singula'rity near the pinch region (5.3)
in (5.1) for meson-meson hard-scattering ampli-
tudes (which are purely real) such as in Fig. 22(b).
(An analogous result holds for meson-baryon and
baryon-baryon scattering. ) In perturbation theory,
this singularity is again destroyed by Sudakov
form factors. For realistic processes such as
pp-pp, terms in TB containing such a residue of
the pinch singularity constitute a small fraction
of the number of tree diagrams in TH.

Landshoff pinch singularities occur in both
meson-baryon and baryon-baryon elastic scatter-
ing giving cross sections

do n,'(t)
(MB) 7'annus (I/s)

(5.7)
do o.,'(t)(BB) ts'+earp fss(u/s),

where 5(t) —= 2(C~/}i) ln ln
~
t /&

~

' in leading order,
and t -t/4, t/9 for MB and BBscattering, respec-
tively. Note that these cross sections are s inde-
pendent at fixed

~
t

~
«s, unlike the majority of

hard subprocesses which fall as 1/s or faster.
Consequently, the pinch terms might dominate
da/dt for very large s when ~t

~

«s is held fixed
Conversely, the relative normalizations may be
such that the s-independent kaid subprocesses

+ ~ ~ 0

FIG. 24. The pinch singularity for a process with
flavor exchange.

prevail even in this region, in which case do/dt
falls as 1/t for MB-MB, and 1/t for BB-BB
(up to logarithms}. In any case, perturbation
theory suggests that the pinch contributions are
ultimately overwhelmed by the others as ~t

~
is

increased, since &(t) grows with jt~.
It is interesting to compare elastic scattering

amplitudes with those involving charge or flavor
exchange (e.g. , v p-v n, vP-KZ, . . . ) for ~t~

«s. These latter processes require quark inter-
change (Fig. 24), and therefore pinch contribu-
tions to do/dt at fixed t fall with increasing ener-
gy —1/t is replaced by 1/s in at least one of the.
qq amplitudes, which implies dg/dt -1/s . Also
interesting are processes in which spin or heli-
city is exchanged (e.g. , vp- pp). These have s-
independent pinch contributions, but they are sup-
pressed by an additional factor m /t in the cross
section. Hard subprocesses are much harder to
distinguish from pinch contributions for processes
such as these, and they may very well dominate
dvldt even in the region

~
t

~

«s.
Finally, note that pinch singularities in photon-

induced reactions (i. e. , 'Yp —
mp, . . . ) occur only

for the composite Fock states in the photon (i. e. ,
vector dominance, see Sec. VA). As the hard sub-
processes for these-Fock states are nonleading
for large s, it is unlikely that pinch singularities
are important for such processes.

C. Comparison with data

Hard subprocesses account naturally for the
two outstanding features exhibited by the data for
fixed-angle scattering. First the measured energy
dependences of baryon-baryon amd meson-bary-41

on cross sections are consistent with Eq. (5.2)
over a large range of ~, , provided only that the
effective QCD scale & in (5.2) is assumed small
(A c0.1)—see Figs. 25-2V. Second, the mea-
sured pp and mp amplitudes are substantially lar-
ger than the naive estimates, as is expected be-
cause of the large number of diagrams in T„.
For example, defining the amplitudes at 8, = 90'
in terms of electromagnetic form factors,

II„=K„(4~ngG„'(t),

5}I =K, (4sngF, (t)G (t),
we find &» -5000 and &~ -200 are required to fit
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FIG. 25. Cross sections for pp -pp at wide angles (Ref. 41). The straight lines correspond to a falloff of 1/s

the data. However, the analysis leading to Eqs.
(5.1) and (5.2) does not explain the small oscilla-
tions observed about the dimensional-counting pre-
diction in both mp and pp elastic scattering. Also,
it is not yet clear whether the large, rapidly
varying spin correlations observed in large-angle
polarized PP scattering are consistent with Eq.
(5.1).

The cross section ' for rp-&p appears to fall
as -1/s' at fixed angles [Fig. 28(a)] as would be
expected from Eq. (5.2) if the photon is treated
as an e'lementary particle [i.e. , An =1 due to 102 l00

7T P
-= 7l P

I I
I

I I I

each y in (5.2)]. Data for yp-&'n is also con-
sistent with this picture giving a cross section
do/dt -1/s [Fig. 28(b)]. Other me'son-photopro-
duction cross sections (yp-s'p, KA, nb) show 1/s"
falloff with n ranging from 7 to 8, suggesting that
in some of these the hadronic component of the
photon may be important (it gives 1/s rather than
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~ ioo
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FEG. 26. Cross sections for ~ p ~ p at wide angles
(Ref. 42).

FlG. 27. Cross sections for ~ p -~ p scaled by s
(Ref. 42).
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FIG. 28. Cross sections for (a) pp —pp at wide angles
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pinch contribution so that it predominates in the
s -3000 GeV data. Unfortunately for this inter-
pretation, the data is equally well fit by

2

Z s M ES t HS
., 4~a.(c)G„'(t) sr + 'I(„); (5.)))-

I/s ), at least for s &10 GeV .
The data for pp -pp may also show evidence for

the I andshoff process in the region s» 1t1. Ex-
perimental results for 5 GeV c 1t1 s 15 GeV
at energies s -400, 800, and 3000 GeV are well
fit by (&qcD= 0.1 GeV)

., [4vn, (t}]'1™t ' If,
dt 16vs'. '

I, t M~

2

+ 4~+.(t)G '(f)Z„, (5.8)

where && = 0.05 is the strength of the pinch con-
tribution [E(I. (5.7) with 5(f ) set to zero since t
-1 GeV is so small], and &» = 500 gives the
leading contribution in this region from hard sub-
processes [E(I. (5.2)]—see Fig. 29. As expected
from diagram counting, KI. is much smaller than
K„a, but the additional factor s/M~ enhances the

where now both &Hs = 510 and &„s ——8 represent
hard subprocesses. Higher-energy data may dis-
tinguish between (5.8) and (5.9)—the first predicts
dg/dt-(1/t) '~

&& logarithms, while the second
gives do/dt —.(I/t)' & logarithms. However, even
then the Sudakov suppression of the pinch [i.e. ,
5(t)] may obscure the differences. It is clearly
important to compute R'„s and K„s in QCD [E(I.
(5.2)].

Notice finally that, even assuming (5.8}, the
pinch contribution at wide angles (8, ) is insigni-
ficant relative to hard subprocesses until energies
s -10' GeV . [The contribution expected from hard
subprocesses is extrapolated from lower-energy
data using (5.2).] This is true even though we
have neglected Sudakov suppression of the pinch,
by setting 5(t) =0. Thus, as expec'ted, pinch
singularities are unimportant in the analysis of
wide-angle scattering, at least at current ener-
gies and probably for all energies.
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VI. SUMMARY AND CONCLUSIONS

Thus far, the most extensive efforts in testing
perturbative QCD have been concentrated in the
area of inclusive reactions. In the case of deep-
inelastic lepton scattering, lepton-pair production,
and e'e annihilation cross sections, the basic
scale-invariance of QCD is revealed through loga-
rithmic modifications of @ED or weak-interaction
amplitudes which must be verified over a large
range of kinematics. Direct checks of the coup-
ling of QCD at the Born level are possible in in-
clusive reactions such as e'e annihilation into
three or more jets, and the production of hadrons,
jets, or photons at very large transverse momen-
ta in hadron-hadron collisions.

As we have discussed in this paper, large-mo-
mentum-transfer exclusive reactions provide an
extensive, experimentally accessible, and per-
haps definitive testing ground for perturbative
QCD. In particular, the power-law behavior of
these reactions directly tests the scale invariance
of the basic quark and gluon interactions at short
distances, as well as the SU(3)-color symmetry of
the hadronic valence wave functions. The normal-
izations of the exclusive amplitudes (both relative
and absolute) test the basic flavor and spin sym-
metry structure of the theory as well as the asym-
ptotic boundary condition for meson valence-state
wave functions obtained from the meson leptonic
decay rates. The angular variation, helicity
structure, and absolute sign of exclusive ampli-
tudes test the spin and bare couplings of quarks
and gluons. In addition, the predicted logarithmic
modifications of exclusive amplitudes reflect the
asymptotic-freedom variation of the running coup-
ling constant and the singularities in the operator-
yroduct expansion of hadronic wave functions at
short distances. The non-Abelian nature of QCD
enters in a dramatic way in the normalization of
hadronic scattering amplitudes. In the case of
ratios such as G~~(Q )/G~(Q ) and M(e'e -K~K2)/
M(e'e -K'K ), nonleading anomalous dimensions
of the hadronic wave functions can be observed
directly. In other cases we can obtain a direct
measure of o.,(Q ); e. g. ,

2

It is now possible to extend the rigorous predic-
tions of perturbative QCD to the entire domain of
large- momentum-transfer exclusive reactions.
The analysis presented here provides a systematic
method for calculating elastic and inelastic form
factors and the hard-scattering contributions which
dominate fixed-angle hadronic scattering ampli-
tudes as a perturbation expansion in the QCD run-

ning couplirig constant &,. An essential part of
this derivation is the determination of the short-
distance structure of hadronic wave functions. In
particular, the process- independent distribution
amplitudes p(x&, Q) (which specify the longitudinal-
momentum distributions for valence quarks col-
linear up to the scale Q) have a logarithmic depen-
dence in Q which is completely determined by the
QCD evolution equations derived here, or equiva-
lently, by the operator-product expansion of the
hadronic Bethe-. Salpeter wave function near the
light cone. The large-transverse- momentum tail
of the hadronic wave functions g(x„ki,) is thus
calculable in perturbative @CD," we emphasize
that (modulo calculable logarithms) g(x„ki,) falls
only as 1/ki, . at large quark transverse momen-2

ta-not exponentially as is often assumed in phe-
nomenological applications.

The central issue in this @CD analysis is the
demonstration- in perturbation theory that the
large-momentum-transfer exclusive reactions
of hadrons are indeed dominated by the interac-
tions of the valence quarks at short distances.
The absence of true infrared divergences in color-
singlet matrix elements, together with the fact
that the evolution of the distribution amplitudes at
large Q prevents anomalous contributions from the
end-point x& -& integration regions, are the criti-
cal elements in the proof of short-distance domi-
nance for elastic and inelastic form factors at
large momentum transfer. In the case of large-
transver se- momentum hadron-hadron exclusive
scattering at fixed ~, ., Sudakov form factors-
which fall faster than any power —asymptotically
suppress pinch contributions to the amplitude
which are not short-distance dominated. However,
even without this Sudakov suppression, the pinch
contributions are numerically overwhelmed at ex-
perimentally accessible energies by the large
number of hard-scattering subprocesses which
contribute to meson-baryon and baryon-baryon
scattering at large c.m. angles.

Thus, as shown in Secs. II-V, each hadronic
scattering amplitude can be computed at large
momentum transfer Q from a hard-scattering
amplitude T„(x„Q,8, )—calculated by replacing
each hadron by collinear on-shell valence quarks-
convoluted with the distribution amplitudes &f&(x„Q)
for finding the constituents with light-cone momen-
tum fractions x, at transverse separations -0(1/
Q ), with Q=(minx, )Q. By definition, all loops
containing collinear divergences are summed in
the distribution amplitudes rather than in T~. The
gauge-invariant distribution amplitude P(x;, Q)
plays the same role in exclusive amplitudes as the
quark and gluon probability distribution functions
q(x, Q) and g(x, Q) play in inclusive reactions. In
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each case, the large-Q behavior of these func-
tions can be analyzed from the operator-product
expansion or, equivalently, evolution equations

aZ(x, Q')/~ lnq'=
~

V(, y, ~,(q)}F(y, Q')dy

with distinct kernels V(x, y, u, (Q ) }for each quan-
tity. After renormalization, TH and V can then
be developed in a perturbative expansion in u, (Q ).
All the results are covariant and gauge invariant,
although the analysis is most easily carried out
in the light-cone gauge using light-cone pertur-
bation theory (see Appendix A). The infrared
singularity which occurs in the gauge-dependent
anomalous dimension for colored fields in this
gauge always cancels in physical matrix elements.
A completely covariant analysis for E~(Q ) and
the connections with the Bethe-Salpeter wave
function are given in Appendix C. The procedures
required to extend the analyses to higher order
in o.',(Q ) are given in Sec. III. Alternatively, one
could obtain the higher-order connections by cal-
culating the perturbative amplitude for the scat-
tering of collinear, massless on-shell quarks to
a given order, and then identifying the contributions
not already included in the leading-order results
given here, in analogy to the methods used for
inclusive proc esses.

The most important dynamical features of the
hadronic amplitudes at large momentum trans-
fer—their power-law falloff in Q, their angular
dependence, and their helicity dependence-are all
determined by the Born contributions to
T„(x„q,8, ). We are thus led to a large num-
ber of detailed, experimentally testable, predic-
tions of @CD which critically reflect its elemen-
tary scaling and spin properties at short distan-
ces. In particular, there are two sets of univer-
sal predictions of @CD which follow from the
properties of T„(x,Q, &, ) to leading order in
1/Q and to all orders in a,(Q ).

(A) The dimensional-counting rules for the pow-
er-law behavior of exclusive processes: 5R-Q
where n is the minimum number of external ele-
mentary fields (leptons, quarks, transversely po-
larized gluons or photons) participating in T„.

(8) The @CD helicity selection rules: bA=0
(hadron helicity conservation).

In the case of electromagnetic or weak form
factors, hadron helicity conservation leads to an
even more restrictive rule: ~k, ~

& —,
' (minimal

helicity for each interacting hadron). These heli-
city rules are special features of a vector-gluon
gauge theory.

Thus form factors for processes in which the
hadron's helicity is changed, or in which the ini-
tial or final hadron has helicity & 1, are suppres-

sed by powers of m/Q where m is an effective
quark mass. Form factors for particles with
opposite helicity dominate for q timelike. The
QCD selection rules imply power-law suppres-
sion of &2 (Q )/Wj(Q ), y*p —b,(h = —,'), and e'e

vp pI pr pT pT +(k 2) + ~(k 2), «c.
The techniques developed here can be readily

extended to other hadronic systems, including
large- momentum-transfer reactions involving
nuclei, pure gluonic states, heavy-quarkbound
states, etc. Applications to the elastic and inelas-
tic weak and electromagnetic form factors of bary-
ons will be given in Ref. 2. We have also used
similar methods to analyze the end-point x-1 be-
havior of meson and baryon structure and frag-
mentation functions in perturbative QCD, taking
into account the correct kinematic limits on struc-
ture-function evolution. A s we have emphasized
in Sec. IV, the Drell-Yan-West connection does
not work in detail in @CD: For example, the per-
turbative diagrams which control the x-& behavior
of baryon structure functions [giving the nominal
power &2(x) -(1—x) ] lead to contributions to bary-
on form factors which are suppressed by at least
two powers of o.',(Q ). The leading contributions
to form factors in QCD come from the short-dis-
tance region k, & O(Q), and not from (1 —x) -(m/Q),
k, small —as assumed in the Drell-Yan-West anal-
ysis.

We can also apply the methods of this paper to
the calculation of "high-twist" subprocesses in in-
clusive reactions, such as the C/Q terms in the
meson longitudinal structure functions, ' ' power-
law-suppressed terms in the baryon structure
function, and subprocesses involving more than
the minimal number of interacting fields in high-
transver se- momentum r eactions.

The testing of @CD in exclusive reactions is just
beginning, but already there are a number of im-
portant phenomenological successes. The power
laws predicted by QCD for the pion, nucleon (and
deuteron) form factors, and for large-angle pp
-pp, np-np, ~ p ~p, yp-vp, and rp-~'n scat-
tering are consistent with the data. These scaling
results give the best test so far for the essential
scale invariance of qq-qq scattering and the q and
g propagators. We emphasize that the specific
integral powers predicted by perturbative @CD
reflect both the scale invariance of the basic in-
teractions and the f act that the minimal color-
singlet wave functions of hadrons contain either
three quarks or quark plus antiquark (or two or
thre gluons). The dynamics and symmetries of
QCD are thus directly tested. The fact that loga-
rithmic modifications are not yet apparent in the
data —particularly in s da/dt(pp -pp), which
should roughly scale at fixed angle as u, (s)
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gives evidence that o.',(Q } is slowly varying-i. e. ,
that the QCD scale constant A is relatively small:
A,~, c 100 to 300 MeV. (The larger value is only
possible if mass corrections are important. )

A more qualitative success of @CD is the fact
that the pion form factor, computed with the
asymptotic wave function normalized to the pion
.decay constant, is within a factor of -2 of the ob-
served spacelike data. The definitive check of the
predictions for & (Q ) will require an evaluation
of the order o.',(Q ) correction, as well as further
constraints on the pion distribution amplitude
P(x, Q). As we shall show in a subsequent paper,
measurements of the scaling properties and angu-
lar dependence of the two-photon processes
dc/dt(yy -MM), with M =v'0, pz'or andtheir ratio to
the corresponding e'8 -~ ~ cross sections can
provide extraordinary checks on@CD and impor-
tant constraints on the form of the distribution
amplitudes at nonasymptotic momenta. These
two-photon processes are the simplest nontrivial
hadronic scattering amplitudes computable in
perturbative @CD. Pinch contributions are power-
law suppressed in this case. We also emphasize
the importance of experimentally checking the
ratio of &' to E' to pi, form factors which are pre-
dicted to asymptotically approach the ratios
f)2:am: 2f,2-1:1.5:2.5. The fact that the pion
form factor has the same sign as its value at Q
= 0 (i. e. , no zeros) is a nontrivial check of @CD;
for scalar gluons, the meson form factor would
change sign as Q increases. Another qualitative
success of @CD is its apparent explanation of the
surprisingly large normalization of the pp-pp and

mp -mp scattering amplitudes and the magnitude
of large-momentum-transfer nuclear form factors.
It remains an open question whether the large spin
polarization observed in large-angle pp -pp scat-
tering at Argonne can be explained in terms of
perturbative QCD mechanisms.

Finally, we emphasize that the quark distribu-
tion amplitudes

fQ

P(x;, Q) - d kjt/i(x;, kj.;).

which control exclusive reactions at large momen-
tum transfer, and the quark probability distribu-
tions

tQ
q(x), Q) J

d ki ill) (xi' kj.i} I

(summed over all Fock states), which control
inclusive reactions at large momentum transfer,
are each determined by the hadronic Fock-state
wave functions g(x„ki,). In principle, the P(x„ki,)
describe all hadronic matrix elements. A central
goal of hadronic physics will be to utilize these

wave functions to unify short- and long-distance
physics, and make contact with hadronic spectro-
scopy, low-momentum-transfer reactions, and the
whole range of nonperturbative physics.
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APPENDIX A: LIGHT-CONE PERTURBATION
THEORY

One of the most convenient and physical formal-
isms for studying processes with large transverse
momenta is light-cone quantization, or its equiva-
lent, time-ordered perturbation theory in the in-
finite-momentum frame. Defining p'—=p +p, we
can parametrize a particle's momentum as

~'=(u'. u, )~= lu'~. ', . ~).p

where p =p p -pi =m . [Note that in general
P 'k= ,'(P k +P k )——Pi'ki. j These variables
naturally distinguish between a particle's longi-
tudinal and transverse degrees of freedom and
when used in an appropriate frame lead to much
simplification. This is particularly true in any
analysis of collinear singularities as these appear
as divergences only in integrations over trans-
verse momenta, ki .2.

For each time-ordered graph, the rules of light--
cone perturbation theory are the following.

(Rl) Assign a momentum k„ to each line such
that (a) k', ki are conserved at each vertex, and

(b) k =m,' i.e. , k =(ki +m )/k' and k, is on
mass shell.

(R2) Include a factor &(k ) for each line —all
quanta are forward moving (k & 0) in the infinite-
momentum frame.

(R3) For each gluon (or other vector-boson) line
include a factor d,"„'/k' where d, „ is the (gauge-
dependent) polarization sum. In Feynman gauge
d,„equals -g„„. In light-cone gauge p '& =&'= 0,

d,"„'= Z ~„(k, ~)e„(k, ~)
)t=1 t2

q„k„+q„k„=-g) v+

where k ' E =g & =0. The singularity at g 0 =0
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P
(a}

(c}

(b}

(R7} In Feynman gauge, ghost loops occur. For
each ghost line [with momentum as in (R1}]include
a factor -e(k')/k . The gluon-ghost vertex is eok"
for Fig. 80(f). There are no ghosts in light-cone
gauge.

(R8) The fermion propagator has an instanta-
neous part [y'/2k'; Fig. 30(d)], as do the gluon
propagator [q"vf/k'2 in light-cone gauge; Fig.
30(e)] and the ghost propagator (in Feynman
gauge). In each case, the instantaneous propagator
can be absorbed into the regular propagator by
replacing k, the momentum associated with the
line, by

k=~k, gk g-k--, k
~

&&k

(d) (e}

FIG. 30. Vertices appearing in @CD light-cone per-
turbation theory.

mc interm

where the sums in the "energy denominator" are
over the light-cone "energies, "k, of the incident
(inc) and intermediate (interm) particles.

is regulated by replacing I/I7 k-I7 k/((I7 k) +e').
Dependence on & cancels in the total amplitude for
a process.

(R4) The gluon-fermion vertices are

u(k) „ u(l) u(k) , v(l)"(k')'"' (l')'" ' ' (k')"' ' (l')"' '

v(k) „u(l) v(k), v(l)
(k')'" (l')'" ' ' (k')"' (l')'" '

The factors 1/(k') ', 1/(l') ~ are omitted for ex-
ternal fermions in a scattering amplitude.

(R5) The trigluon vertex is [Fig. 30(a) j

-&0[(P —q)V'"+(q- k}'g'"+(k-P)Y"]
and the four-gluon vertex is [Fig. 80(b)]

eo'(a"'g"" -a g"') .
Generally there are three independent ways of in-
serting the four-gluon vertex [Fig. 80(c)]; all
must be included.

(RS) For .each intermediate state there is a fac-
tor

1
Q k Qk +z~ -'--

(a} I I I I

I

ki + I I e(k }
I I

I I I

I I I I I I I I

I I I I I

I I I I I

qi + I. I e(q')
I I I I

I I I I I

+ I
-

I e(k')

I

I

I

I
--

I 8(-k')
I I

FIG. 31. Procedure for removing instantaneous propa-
gators by redefining the noninstantaneous propagators.

in the numerator for those diagrams in which the
fermion, gluon, or ghost propagates only over a
single time interval (Fig. 31). Here Q. , denotes
summation over all initial particles, in the dia-
gram, while ~ t, denotes summation over all
particles in the intermediate state othe~ than the
particle of interest. Thus, in light-cone gauge, k

replaces k in the polarization sum d,'„', as well as
in the trigluon coupling, for gluons appearing in a
single intermediate state [Fig. 81(a)]. Similarly,
Z,~. , u(k)u(k) is replaced by Itf+m, and Z &~, v(k)
xv(k) by I'|-m, as in Fig. 31(b).

(R9) Integrate jo"dk'Jd2k, /16@3 over each inde-
pendent k and sum over internal spins and polari-
zations.

'

(R10) Color factors are computed as for covari-
ant diagrams (see Ref. 52, for example).

In addition to these rules, there are several
tricks which are useful in certain applications.

(Tl) In amplitudes with an external line off shell
(having momentum q", q2wm2), the energy denomi-
nators for intermediate states following the ver-
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I I

D) Dp

FIG. 32. Sample vertex in light-cone perturbati, on
theory.

tex with the virtual external line are modified by
the replacement+„, k -Q„,k +q where the
light-cone energy q =(q +qi)/q is specifiedby
momentum conservation (and not by on-shell kine-
matics as is usual). Thus the form factor in Fig.
32 has energy denominators

(pl. —ki)' + 81' kl.'
Dg =p —,, ——,+i&,p'- k k'

q +qj. (pi+qj, - ki) +m ki
D2=p + + + + —--+--+ig .P+q -k k

This rule is ec(uivalent to treating the (external)
virtual particle as an on-shell particle but with
mass q rather than m (=0 in Fig. 32). Ampli-
tudes having several external lines off shell are
analyzed in a similar fashion.

(T2) The contribution from each time-ordered
graph is separately invariant under boosts along
the 3 direction-i. e. , p'-&P', p -& p, pi-pi
for each momentum (internal and external) in the
diagram. Each time- ordered amplitude is also
invariant under transverse boosts: p'-p', p -p
+2pi'Qi+p'Qi, pi-pi+p'Qi for each momentum.
This is true in both Feynman and light-cone
gauges.

A particularly useful. spinor basis is constructed
from the eigenstates of the projection operators:

yy yy yy
4 2 2

= yy —yy yy
A

where (A, ) =A„A,A, =0, A, =A, Ph, =A,P,
{j~»A, =A, », and P= ro, »—-=r ri. The eigenstates

of A, are

A.x =x~x(&)=, x(&)=, (A2)
1 0 1 1

and the associated spinor bases for particles and

TABLE II. Dirac matrix elements for the helicity spinors of Appendix A.

Matrix
element
gyi ' 'gg

Helicity (A, A')

g(p) + g(q)
y +)i/2 ~ (q+)i/2

g {p) g (q)
{p+)i/2 ~ {q+)i/2

g {p); g {q)
{p+)i/2 ~& {q+)i/2

g(p) g(q)
(p')"' (q')"'

g(p) - + - g(q)
(p+)i/2~ ~ ~ {q+)i/2

I

g{p) + i g(q)
{p+)i/2~ ~ +& {q+)i/2

g(p); + „g(q)
(p+ )i/2 VXV 7 (q+ )i/2

i +~ g(q)
(p+)f/2 73.7 l'3.

(q+)f/2

2 2

p q+,(p~ q~ + ip» x q~ + m )

p,'+sr'~p~j q'+ se "q~
p q

(s'+ e)

p'q'+ {p~'q~ Esp~ xq~ + m )

x +&~ Pj.

q+

2{Bi~+ ie'~)

[(p sip ) —(q +iq')]

+m
p +q+

Pi~ ip2 q yiq
p'

+, , [(pi +~p2) —(qi+iq2)]
p q

(gil ~ ~gi2)p'

(gil g ~gi2)+

0

v p(p)7+ (q) =g (q)'Y+p(p)

~„(p)r"r'r'~. (q) = ~.(q)r'r'r+„(p)
vp(p)v p {q)= -gp(q)gp(p)
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TABLE III. Dirac matrix elements for the helicity spinors of Appendix A.

Matrix
element
vv, ux

Helicity (& A,')

v(P) + u{q)
(P+)1/2 ~ (q+)1/2

v(P) - u(q)
(P+)1/2 ~ (q+)fl 2

v (P) & u(q)
(P+)"' ' (q+)"'
v(P)' u(q~

(p+)f/2 {qy)f/2

v (P) + u(q)
(p+)1/2& ~ & (~+)1/2

v(P) + & u(q)
(P+)1/27 7 VJ. (q+)1/2

v(P) & + u(q)
(P+)1/2~J- / ~ (q+)1/2

v (P) g g u(q)
(p+)1/2 VJ.7 YJ. (q+)1/2

[(p'+@') + (e' + &')]

P +q+m 6"+Q")
P +q+

Pf+4 ' q'+~2
+ +P

[(p' + 4") (+&'+ &')]

(goal gt2)
q

0

2.
+ + {PJ qJ + ip x q —m2)

P' yid~p' q' + ie"q'
P

8, +(p~ q~+sp, xq, -m')
P q

p ~ v ie~ ~p&
P+ )

q,'~ i& &q~&

2'' +ie")

antiparticles are

u, (p) l . „x(&)'(
)

—
(
.)„,(p'+ pm + ni pi) &&

( ),

v, (p) l, - - „X(&)
gyp (p pm+ QJ pJ)

( )
~

(A3)

Taking p'-~, we find that these are helicity ei-
genstates when viewed from the infinite-momen-

turn frame. Notice also that the phases assigned
the antiparticle spinors are conventional for spin-
—,
' eigenstates. Thus a state u, v, —u, v, has spin
zero (in the infinite-momentum frame), for ex-
ample.

Matrix elements involving these states are tab-
ulated in Tables G and IG.

In light-cone perturbation theory, a two-body
bound state with total momentum p' = (p', (M
+Pi )/P, Pi) is described by a wave function

u(coax', k+ ~x) ue'(x2p', -k +x2p )+p~, ki;pj =
VXg V Xg

(A4)

where xp is the longitudinal momentum carried by the ith constituent (xq+x2 = l), and ski is the consti-
tuents' transverse momentum relative to the bound states (u is replaced by v for a bound state of a par-
ticle and an antiparticle). By Lorentz inv'ariance [see (T2) above], g(x„ki) is independent of p' and pi, and
thus we can set p~ = (l, M, Oi) without loss of generality. This wave function is the positive-energy pro-
jection of the familiar Bethe-Salpeter wave function evaluated with the constituents at equal "time" & =(z
+t),

(' dk u' '(xg, ki) u '(x2, —ki)
J~

'lh, (k;p) = ~ ~ 4(x„k,)

+ negative- energy components,

and satisfies an exact bound-state equation [Fig. 33(a)]:

~
M — — ~g(x), kg) =

2 2 2 2)

)

f' 1

[dy] ', Z(x„k,;y„f.;M')q(y„f.),
~Q ~lQ 71

(A5)

where [dy]-=dyqdy25(l-yq-y2). The interaction kernel K is defined as
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u"'(x~, ki)u '(x2, —k~) — . . 2 u (ylyf~) u (y2y f~)Z(x„kg,'y„ li; M )
x1 X2

(As)

where in perturbation theory E is the sum of all truncated, two-particle irreducible amplitudes as illus-
trated in Fig. 33(b). A scattering amplitude involving the bound state is given by

»1 »- ~ d2y 0) t2)[«]',me(x„k.;p) =
) [«] l;sn ~ ~ g(x», k.),

40 -o 16& -
' '

o 16m xg x2
(A7)

where 3g is the amplitude with the bound state replaced its constituents. Amplitude 3g must be two-parti-
cle irreducible with respect to the constituent lines if double counting is to be avoided (Fig. 34), [Note
that Eq. (A7) is consistent with rule (R4) which assigns the spinor factor u/ex (or u/~x to the interaction
vertex of each internal fermion. ] Equation (A7) has conventional (relativistic) normalization if the wave
function is normalized so that

d j8 di = [«] l
',

! g(x„k».)!'- [dx] l, [dy] l
', y*(x„k».),K(x», k».;y„li;M')g(y», li) .

Notice that the second term in (As) contributes only when the interaction potential is energy dependent
(which is not the ease in most nonrelativistic analyses).

For illustration, consider positronium. The kernel for one-photon exchange is

-168 m2 2

(k.—f.)'+ (x - y)'m'

(AS)

(AO)

in the nonrelatistic region ki, li-O(um) and x—= xq —x2-0(&), y—= yq —y2 -0(&). Using this kernel and writ-
ting M =4m +4m&, Eq. (A5) is approximately

( k2+ 2 2 P1 Pw Pf 82
»I»(x» k&) —(4xlx2) m dy s 8 zk f

xz I xz z 4(y», 4) ~

m ~-1

This equation has ground-state energy & =- cPm/4, as expected, and nonrelativistic wave functions

r

!
QgVg —QgVt parapositronium,

mp' '" 54vpx, x,
[ki'+ (xq —x2)'m'+ p']' I, »q~, orthopositronium

where P = »».m/2.
For use in Secs. II and HI, the free propagator

in (A5) (i. e. , So in So g=KP) is replaced by the
fully corrected propagator. Then E includes only
those two-particle irreducible amplitudes in which
the q-q lines are connected, to avoid double count-
ing. Analyses for Fock states containing three or

I

more particles are similar to that presented here
for qq states. For example, the qqq Fock state in
the nucleon is described by a wave function

3 (~)

@(x», k~»;P) =, ' '
»I» g~2i, (x,, k.,),u%, »(xp ~ k». » +x»pl. )

jA

where again p is,. independent of p and pi.

(a)

I

I

I

I

I
+ ~ ~ ~

I I

I

A
I »

I

I

I

I

LJ I I

I I

I

I

I

I

I

I

I

I

I

I I I

I I

Ai

i r reduc i b I e reducib le
(b)

I'IG. 33. The two-body bound-state equation in light-
cone perturbation theory.

FIG. 34. Two-particle irreducible and reducible dia-
grams.
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+ ~ ~ ~

FIG. 35. UV-finite skeleton expansion of the two-par-
ticle irreducible amplitude for p + qq -p.

APPENDIX B: COLLINEAR SINGULARITIES
AND TWO-PARTICLE IRREDUCIBILITY

IN LIGHT-CONE GAUGE

(b)
kg)

P~nrP
In this appendix, we demonstrate why higher-

order corrections to the two-particle irreducible
amplitude 7'(y*+ qq-y) are free of collinear sing-
ularities. It is convenient to express this ampli-
tude as a sum of UV-finite skeleton graphs com-
posed of fully renormalized propagators and ver-
tices (Fig. 35). These diagrams are free of in-
frared divergences because the initial qq state is
a color singlet. Being UV finite, the skeleton
diagrams involve loop momenta of order qi or
less. In fact, we shall argue that only momenta
li -O(qi ) contribute. Consequently, each virtual
gluon in Fig. 35 is off shell by order Q and leads
to a factor o.',(Q ). Again it is the vertex and
propagator corrections which combine to give
these factors of &,(Q ), as well as an overall fac-
tor d~ (Q ) related to the renormaiization of the
initial q, q fields (see Sec. III). Thus an n-loop
graph in Fig. 35 contributes

[ ."(Q')f.(,)+ .""'(Q')f..i(.;)+" ].
To illustrate why only l~ -qi contribute in an

irreducible n-loop amplitude 7.', we assume this
to be true in all irreducible skeleton diagrams
having (n —I) or fewer loops. Generally, T can(n)

be expressed in terms of an amplitude 7" having
(n —I) loops, as in Fig. 36. There are then two
possibilities:

(a) T'" is itself irreducible. Then by hypothe-
sis all of its internal momenta are O(qi), and the
corrected amplitude has the form

2

T -
&

&',(li )u(-li)y„u(0)d""T„(li, qi)
4 l

2 2dli
(l 2)

li'qi+li (Q2)„gl'4 s j- l4+ 44 8

where, as in Eg. (2.6), T„(L,qi) is independent
of li «qi and falls as I/li or faster when ii
» qi becomes infinite.

(b) T is two-particle reducible. The redu-
cible loops lead to collinear logarithms in 1"
[i.e. , f ~ dki /ki -ln(Q /m2)] which tend to can-
cel explicit factors of o',(Q ). However, upon

FIG. 36. Generic structure of diagrams contributing
to TH.

adding a gluon, 7.', which must be irreducible,
has the general structure [Fig. 36(b)]

(„)
' dli

( 2)
qi'li+li

lz s ~
(1 z+ z)z

(B2)

The transverse momentum li of the added gluon
enters as a lower cutoff in the logarithmically di-
vergent loops (ki, ) of T, because of the topology
of T . Clearly, only li-O(qi) contribute and
therefore only ki; ~O(li) -O(qi) are important —the
collinear logarithms in 7."" are destroyed by the
extra gluon loop. In both Eqs. (Bl) and (B2), all
loop momenta obviously are of order qi, and so by
induction this is true in all two-particle-irredu-
cible amplitudes for y*+qq-y. Notice that the
integrations over longitudinal momenta cannot af-
fect this conclusion since each internal line, hav-
ing transverse momentum li -q, , is far off shell;
there are no singularities in the x integrations for
these diagrams.

As emphasized repeatedly here, the essential
characteristic of these diagrams is that qi is the
only momentum scale, aside from the UV scale
parameter in o',(Q ). Infrared and collinear cut-
offs, quark and hadron masses, etc. , can all be
taken equal to zero-i. e. , they appear in the form
X/Q, m/Q, . . . , and are nonleading for Q large.
Indeed the absence of infrared and collinear singu-
larities implies that the contribution from the in-
frared and collinear regions of phase space is
negligible. For, rather than integrals such as
f g dks. /ki -ln(Q /m ) (~ as m -0) in which
ki -m. are significant, one finds integrals like

dki /kiqi in which the region ki ~ m is sup-
pressed by m/Q. Since qi is then the only scale,
the amplitudes are determined by the short-dis-
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x)q

FIG. 37. Covariant-gauge expansion of +~ in terms of
qqg" distribution amplitudes, and hard-scattering ampli-
tudes for p*+ qqg" -p.

(Cla)

x@ (x, y, Q) (C1b)

C1 y+ I+(-ej J~ dxdy, dy2Tr T,(x, y;, q) ~0

F„(Q')=
) dxTr T(x, q) ~ 4(x, Q)

0

Yg+(-eg
J

dxdyTr T (x, y, q)
0

tance structure of the theory, and perturbative
QCD is applicable.

+0 ~ ~

X4" (x, yq, Q) (Clc)

APPENDIX C: COVARIANT ANALYSIS OF F„
In this appendix, we reproduce the results of

Sec. II using covariant perturbation theory and
Feynman gauge. This leads to a gauge-invariant
formulation of the general analysis. We only
sketch the derivation here; most of the underlying
principles are thoroughly discussed in Secs. II and
III. Also, only the Abelian theory is analyzed
[assuming n, (Q) «1]. The results are trivially
generalized for non-Abelian theories.

Using the same frame as in Sec. II [i.e. , p'
= (1, 0, Oi) and q' = (0, qi, qi)], the exact vy transi-
tion form factor can be written (Fig. 37)

Here the pion is replaced by collinear, on-shell
constituents in the hard- scattering amplitudes

for

+ w'a'

The constituent quark, gluons, and antiquark carry
fractions x, y, , and1 —x —g, y„respectively, of
the hadron's longitudinal momentum (p'=1). The
amplitude for finding the qqg" Fock state in the
pion, collinear up to scale Q, is

(C2)e"'-".".
&» & q&=

"=' " 'rP"- —- (a »)el@ la. l

—g I» I).~ d2k, = =-=d2x, dk
167'' ": 16~' 2~ ' 2W

p f ( ' Jf
t i t

@N1''' ~ ~~,h@J.' ~ '
BS ~2'Y

(cs)

All other components result in additional factors
of m/Q, and can be dropped.

"here g
&""'' &(k, r;) is the Bethe-Salpeter wave

function, k and x; are the quark and gluon four mo-
menta, and &1, . . . , „are the gluon polarization
indices. Only that part of the general wave func-
tion having spinor structure y,P is retained:

The hard- scattering amplitudes are collinear
irreducible in the sense of Sec. III. The contribu-
tion from the collinear region-i. e. , from k'k

2 2-ki «Q —of each loop is largely removed by sub-
tractions as illustrated in Fig. 38. These sub-
tractions are necessary to avoid double counting
of lower-order terms; soft, collinear interactions,
with ki «Q, are all absorbed into the distribution
amplitudes (C2). Consequently, only ki ~Q con-
tribute in the hard- scattering amplitudes, other
regions being suppressed by factors of m/Q. The
amplitudes T, T, . . . then have valid perturba-
tive expansions in ~,(Q ). For example, the terms

k =k1=0

k

d~k dk

2~

k =k=0

FIG. 38. Collinear irreducible contributions to &H.
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+ l + ~ ~ ~ R
QQ ~ ~ ~ ~ — Q + ~ ~ ~

Q2

- dF (Q)
)

+ a(Q ) d (Q) I y ~ ~ ~s F

FIG. 40. Multiquark nonvalence states are suppressed
jnF„.

FIG. 39. Leading-order terms in TH for qq Fock
state.

and r& ——1. Thus only the first term in Fig. 39
contributes to (Cla) to lowest order in a,(Q ) (as-
sumed «1};an n-loop skeleton is suppressed by
at least &,(Q )". Amplitudes for the remaining
Fock states (qqg, . . . ) are analyzed in the same
fashion. In each- case only the renormalized tree
graph contributes to leading order in (2,(Q ).

In principle, one must also include states having
additional qq pairs (Fig. 40). However, these are
suppressed relative to (Cl) by powers of m /Q
coming from the additional hard propagators, and
can be ignored. That this is not the case for
multigluon states will become clear.

Consider now the term (Cla). Setting k"
= (x, 0, , 0i), we find (in leading order)

e2(e 2 2} )~ 2

dx C (x, Q)d, '(Q)

Thus &0) is

„ » I:(2'(((t + K)y.y28
-(1-x)qi'

+(x-() —x)]I. (Cs)

contributing to T(x, q) can be organized as a series
of UV-finite skeleton graphs (Fig. 39) with re-
normalized vertices and propagators. Since the
skeletons are UV-finite and have only ki ~ Q,
all loop momenta are scaled by Q—the only scale
greater than or equal to Q. Thus vacuum polari-
zation corrections to an internal gluon line can
be absorbed into a running coupling constant o.',(Q').
Furthermore, the photon vertex and fermion-
propagator corrections are then related by the
Ward identity, giving factors dF (Q) and di (Q),
respectively, in leading order where

4(Q) =e""I.l + o(&.(Q') }], (C4)
Q2

dk (2s(k )
( )t2 4~

with the hard- scattering amplitude

2(e„' —e,')
TH(x) Q) (1 )QZ

The qqg contribution, Eq. (Clb), has two de-
nominators of order Q after rationalizing the
quark propagat ore (Fig. 41). This term is negli-
gible unless one of these is canceled by the num-
erator. Consequently, only the longitudinal gluon
polarization contributes-i. e. , 4 T ——,'O'T
since q =qj. »q, qi in T . Thus, to leading or-
der, (Clb) can be rewritten

2 2 2 1

d —(- AC'( y Q)d '(Q)
2

X —8 Xygy P

2"T (x, y, q) = T(x, q) —T(x + y, q) .
Thus Eq. (C9} implies

]1
dx —y 4'(x, y, Q)d, '(Q)

"0

(C10)

x[T„(x,Q) —T„(x+y, Q)].
This equation can be written more compactly as

dg +ds —
) dx —C'(x, y, Q)dz (Q)dS 4p

&„'(Q') = e,
4p

4p

&& T„(x+sy, Q)

dxy, (x, Q)d, '(Q)T„(x, Q), (Cll)

+ ~ ~ ~

where 2' = (y, 0, Oi) is the gluon's momentum in
T and where y /2 =//y has been used in the nu-
merator. Adding and subtracting g+ g to p' in the
numerator, we can relate this qqg amplitude to the
qq amplitude in Eq. (C6) via a collinear Ward iden-
tity.'

E'"(Q ) = dx C (x, Q)d (Q) T„(x,Q)
4p

(CV)
FIG. 41. Leading terms in Tz for qqg states.
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Q ~ = Q + Q + Q . + ~ ~ ~

FIG. 42. Definition of the effective qq distribution
amplitude.

where now

d t' dy
$1(x, Q) =- 8, ds —i —4'(x —sy, y, Q)

"0 dS 0 y

(C12)

is an effective qq distribution amplitude describing
the qqg state.

Again for the qqgg state (Clc) only longitudinally
polarized gluons contribute since two factors of
Q are required to cancel the additional large de-
nominators. Bose statistics require C" (x, y1, y2, Q)
=C (x, y2, y1, Q), and so we can apply the collinear
Ward identity (C10) twice to reduce 4 T

I&

= —,'4 "T to

X [1+O(n,(q ), 212'/Q'}] (C13)

with the complete distribution amplitude defined
as (Fig; 42)

Thus term (Clc) can be rewritten
1

F~'(Q') =
Jl dx &2(x& Q)d~ (Q) Ts(x& Q)

0

in leading order, where once more

e2 p1 d d
$2(x& Q) = ~t Jl ds1ds2

d0 ds1 ds2

1
X C' (X ylS1 y2S2&yl& 'Q)

dy1 dy2 ++

~0 y1 y2

is an effective two-particle distribution amplitude.
Terms involving three or more gluons are ana-

lyzed in the same manner. The final result for
the rp form factor is then

1

E~(Q ) = dx @(x,Q) T„(x, Q
0

[T(,q)-T( +y, q)

—T(x+y„q)

+ T(x+y1+y2, Q)].

y(, Q) -=d, '(Q) y. ( .Q)
n=

=d '(Q)y (x, q),
where for the qqg" state

(C14)

g„(x, Q) = —, I ds1 ds„' ' ' 4' ~x- gy1s1, y1& Q
~

~ (C15)n! Jp "ds1 ds„~p yf yg ( ] )
All effects due to longitudinally polarized gluons have been absorbed into Q(x, Q)—an effective qq distribu-
tion amplitude.

The variation of P(x, Q) as Q-~ is determined from Eqs. (C2), (C14), and (C15) by the behavior of the
Bethe-Salpeter wave functions g'"'(k, r, ) for large k&. and/or ri, [-O(Q)]. We can analyze this behavior as
we did F~(Q ) itself. For example, in leading order g(k) for ki large is given in terms of the distribution
amplitudes 4 '""' ~ by the diagrams in Figs. 43(a) and 43(b). As above, higher-order (collinear-irredu-
cible) interactions are suppressed, here by o.',(ki ) or more, and can be ignored [Fig. 43(b)]. The analo-
gous series for g (k, 2) is illustrated in Fig. 43(c); all terms shown are leading order in u, (Q ).

We now combine these series, as indicated in Eqs. (C14) and (C15}, and integrate over k and &' & k&.
' & Q'

to obtain an expression for P„(x,Q ) —g„(x, & ), as in Fig. 44. Once more, the collinear Ward identity can
be used to combine sets of diagrams (e.g. , Fig. 45), since only wave functions with longitudinally polari-
zed gluons contribute. In this way the series pictured in Fig. 44 can be reduced to an integral equation
for g„(x, Q) (Fig. 46):

"
dk "o

2 &2,(ki ) ——,
' Tr(y'yppr„ygPy" f gt)—

&"("'Q} ~"" } 2 /
'

4 y~"(y' '}( k k' )[( 1)k k'+ ~][( )k k'+' ]

,' Tr(r'r, gr —rp)
J 27)/i J&2 4' Jp ds p y [(x—sy)k —ki. + i&](—yk —k&. + i6)

dk ~
2 ~,(k ) ) d ' dy 'Tr[r'y rg-r'(-4}]

J 2s/i J„2 4v Jp ds .p y
" ][1—x —(1 —s)y]k —ki' + it]'(- yk —ki' +i&)

(C16)

where (C3) is used to project out the relevant component of the wave function, and where k =(x, k, ki),
k=(x —sy, k, k&.), and k= (1 —x —(1 —s)y, k, k&.). We integrate over k by closing the integration contour
at infinity in the complex k plane-above (below) the real axis for x & y (x & y) in the first term, and al-
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+
&)

~ ~ ~

(h)

+ ~ ~ ~

(c)

(I
+ g"~ + 0 ~ ~

+ ~ ~ ~

FIG. 43. (a) The qq wave function at large k~ in terms of distribution amplitudes. (b) Nonleadirg contribution to
P(x~, k&) which is collinear irreducible. (c) The qqg wave function at large k,.

ways below th'e axis for the remaining terms. Using Cauchy's theorem, the integral equation becomes

y (x, Q) =y„(x, X)+2 „' ' '
dy 8(x-y) +8(y x) —y„(y, k, )

0" dk, ' ~.(k,') )' 8(y-x) x
( )

8(x-y) y

dkj. u,(kg) " i8(x-y) 1-x, 8(y-x) 1-y
w&2 kx 471 go l x —y 1 —y y —x 1 —x

Here the substitution y -(y —x)(1-2s) was made in the second and third terms. Differentiating with re-
spect to $ [Eq. (C5)], we obtain an evolution equation for Q(x, Q) =dz (Q)g„(x, Q) =x(l —x)P(x, Q):

r1
x(1-x) —y(x, Q)+r, y(x, Q) = dy V(x, y)j(y, Q),

ag
(C17)

where r& —1 in Feynman gauge. and, in the same gauge,

V(x, y)=2 x(I-y)8(y-x)~1+ ~+
( b, i 'x-(1 —x)'

(1 y)

with b g =Q(y, Q) —g(x, Q).
Equations (CS), (CIS), and (C17) completely determine the large-Q behavior of E~(Q ). Aside from

color factors, these results are identical to those found in Sec. II [Eqs. (2.11), (2.12), (2.17b), and (2.18)].
Furthermore, definition (C14) of the distribution amplitude @(x,Q) is the same in both gauges, since in
light-cone gauge (p '& =4' = 0)@„(x,Q) = 0 for n+ 0. Although Y~ and V(x, y) are separately gauge dependent,
this dependence explicitly cancels in Eq. (C17). Thus the formulation presented here allows a gauge-in-
variant analysis of &~(Q ). The analysis of higher-order [in o.',(Q )] corrections to T„and V follows much
the same pattern. These methods are also easily generalized for the study of other elastic processes.
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k + kj

+ ~ ~ ~

+ ~ ~ ~

FIG. 44. The effective qq distribution amplitude (as defined in Fig. 42) in terms of qqg" distribution amplitudes.

The structure of the complete distribution amplitude P is best understood by Fourier transforming to
coordinate space. First, from definition (C2), the qqg" distribution amplitude can be written

C
'""' p(x, y„Q) =(-1)" ' "expt(i/2)[(1-x)z +y)z)+. +y„z„])

x «IT&(.)A"( )" A "(.)((0)I &, (C16)

where z'=zi=z', =zi, —= 0 (~z =z, =0), and where the fields g, A" are not local operators but rather are
smeared in the transverse direction over a region of radius zi-1/Q. This smearing is a consequence of
the finite range of the ki, rd, integrations in (C2), and follows immediately from the uncertainty principle. '
Substituting (C18) into (C15) we find

"d 1

d„(z, Q)= e 'i 0 pi)(zl(
~

(-ie3 ds, z 2(() —e, )s))p(0) s),j 2K 1Z p f-] 0

where each derivative in (C15) brings down a factor iz y, /2 from the exponential ultimately giving z A /2
=z A. Thus the full distribution amplitude is (1-s -s)

ple"'" ' i P PP(z)sxp —ie, dsz d(zs)ld(P) s), (C19)
|

where again all fields are smeared in the transverse direction, and the line integral in the exponential is
along the light cone (i. e. , z = 0).

The operator appearing in (C19) is closely related to the gauge-invariant operator (now with local fields)

( t &

T(T)(z) exp~ —ie,
~

dsz A(zs) ~(1)(0) .
)

y(x, Q) =d, '(Q)

(C20)

The two operators have the same collinear divergences (i. e. , as m-0), which must then be gauge invari-
ant in each case. Since epA" =(ep/))Zp}v2'pA" is renormalized, the ultraviolet divergences of the operator
is (C19) are the same as for TP)1). By including a factor dr (Q) in (C19), we guarantee that the Q variation
of p(x, Q) is determined solely by the collinear singularities in leading order —i.e. , the anomalous dimen-
sion of p is zero and p is UV finite. Thus the evolution equation for (t) is gauge invariant, since the col-
linear singularities are invariant (up to negligible corrections of order m /Q ).

The ultraviolet structure of (C20) is quite different. Since the fields are not smeared, additional diver-
gences come from the s integration (including linear UV divergences). Note that (t)(x, Q) is not simply the
Fourier transform of a matrix element of the gauge-invariant operator (C20), as was assumed in Ref. 10,
for example. Among other differences, these two wave functions have different anomalous dimensions'—
y=6+O(o.,(Q )) for (C20) (in any gauge). The derivation given in Ref. 10 mistreats the fermion propaga-
tor in the UV region (i. e. , where gluon momenta are»Q).

Finally, note that scaling violations in inelastic structure functions and fragmentation functions can be
analyzed in close analogy to the discussion given here. In particular, the nonsinglet structure function is
closely related to (C19), as it is given by

" dgP~(z, P)=d (i)) e* e"""' " i il()sxpP~~ —zie, ( ds'z d(zs))P(o) p).2%
(C21)
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+ kj = kg

The eigenvalues 'Y„are real since V(x„y,) is both
real and symmetric [V(x„y,) = V(y„x,)]. Further-
more, the fQ„]„".p are then orthogonal with respect
to weight z()(x,) =xqxp,

FIG. 45. Use of collinear Ward identities to combine
terms appearing in Fig. 44. [dx]p()(x,)y„*(x,)y „(x,) =K„5„„,

40

The only different is that here the matrix element
is for forward scattering, unlike the nonforward
matrix element in (C19). Thus the same anoma-
lous dimensions control the asymptotic behavior of
(C19) and (C21}.

APPENDIX D: ANALYTIC SOLUTIONS
OF EVOLUTION EQUATIONS

The meson evolution e(luation (2.18}is a first-
order differential equation similar in form to a
one-dimensional diffusion (or Schrodinger) e(lua-
tion, but in which ( plays the role of time f (or it}.
It is sometimes convenient to expand the general
solution of this equation in terms of its eigenfunc-
tions Q„(x;, q), where

a

, e,(x„—q)= ~.y.(x-„q)

and complete on the set of functions f(x) for which

[d ]
If(x,) I

Sp p( (x )
(D4)

q2) Wh

y(x„q) =K(x,) pa„ ln
A l j&„(x,),
A&

(D5a)

where by (DS}

)f qpi& 1 rl
a„ I&in ~&&l

=
& J [dx]p„*(x,)y(x„q) . (D5b)

n' 0

To find its eigenfunctions we first rewrite the
potential [Eq. (2.17b)] in terms of x=-xq —x2 and y

Thus boundary condition (2.21) ensures that the
distribution amplitude has a convergent expansion
for all q:

~y„(x,, q) =x,x, y„(x,)e "
q2

=x,x, y„(x,)l( ln Y (Dl)

~W

V(x, y) = (1+x)(l —y)8(y —x) ' +
I««

and [E(ls. (2.17) and (2.18)]
pi

«1«2 I

——«) ).(«) = ) (d) ]) («„),))„(&, )
P ~p

(D2)

x -x~
+

This potential can readily be diagonalized through
use of the basis functions fx")„"

p for which

Vlx") =— —V(x, y)y"dy

-1 2

where

pi
dy(1-y)l '"'"'y" + ' l+( 1)"&x- x]

2 . lI, 2 y —x)
1 —x ~ i 5hghp 2(j+1) & ) 5hghp . ~ 1) '

( )„(
4 ~&.q l&(n+1)(n+2) (n- j)(n+1)& (n+l)(n+2) ~~ )(p)

«(«)Q I«')&;. ,

( 1+( 1)n-g

2
»h&hp 4(j+1)

(n+1)(n+2) (n- j)(n+1)
n+&

2I~;,
(n+1}(n+2)

&0, y&n,

is a matrix representation of the linear (integral) operator po V on the basis (x ). As V~„=O for j&n, its
eigenvalues are just the, diagonal matrix elements U„„. Furthermore, the corresponding eigensolution



22 EXCLUSIVE P R 0 C E S S E S IN P E R T U R B A T I V E QUANTUM. . .

Q

2195

Q
d~ k

k + k
' + ~ ~ ~

X

"-Sy = yX- Sy

y

Y

FIG . 46 . Integral equation for the effective qq distribution amyl itude .

Q„(x,) must then be a polynomial in x of degree n. Since only the Gegenbauer polynomials C„P' (x) are or-
thogonal on -1 & x & 1 with weight co(x) = (1 —x )/4, the eigensolutions of th'e meson evolution equation are

Q2 Ya

e.(»;, p) =~i~~&„'"(~i-~~)(»r
with

e+&C„~1 25

The same Gegenbauer polynomials appear in other theories —scalar-gluon theories, QED, etc. —though
with different anomalous dimensions . This follows b ecau se the eigenfunctions of the evolution equation in
each theory are polynomials orthogonal with respect to the same weight, w(x, ) =x~xp. This weight function
is defined so that V(x;, y, ) = V(y„x,).

For baryons, the eigenfunctions g„(x,) and the anomalous dimension z„appearing in Eq. (4.11) are defined
by

3 Cp l - Cp
1

1 2 3 n n «
— 3 «y 3 «n 3 «

where the potential V(x„y,) = V(y;, x,) is defined in Eq. (4.10b). The y„are again real, and the fP„(x,)]
form a complete, orthogonal polynomial basis with weight nr(x;) =x,x2xp. ' To determine these, we expand
V on a polynomial basis fxq "xp"}",„p.'

m+& n+~
1 V I xg xp") „5apa 1 6a2a ~ 1
2 pp(x, )

~ P (m + 1)(m +2) ) 2j (n + 1)(n+ 2) )~gj

x,"'x," ' Q .
~

(-1) —+
n~ n- j'

«~1 g=p j] g

I x~ xp') ~~g,
«p j

&52 SQ

Here particles 1 and 3 have helicity parallel to the hadron' s helicity h, and @pa equals 1(0) when the heli-
city of particle 2 is antiparallel (parallel) to h-i. e. , ha2)) = 1 for

~
h

~

= -,' baryons, while &a2a = 0 for
~
I

~

= —,.
Since U«&,

—0 when i +j)m +n, the eigenfunctions are polynomials of degree M =m +n = 0, 1, 2, . . . with
M + 1 eigenfunctions for each M. Furthermore, the corresponding (M + 1) eigenvalues are obtained by
diagonalizing the (M + 1)x (M + 1) matrix U, &,aa) with i +j =m + n =M. The leading eigenfunctions are given
in Table I.

APPENDIX E: SUDAKO V FORM FACTORS

Ln this appendix we review the featur es characterizing the doub 1e logarithm s appearing in the fre e-fer-
mion vertex function (i. e. , Sudakov form factor). Using Feynman gauge in an Abelian theory, the lowest-
order correction to the vertex is (Fig. 47)

u 1, q~ p„z 1 —x, q~ —k» 1 -x, —ki 1, Oi
r' =- 3 7 d ki & 2 k k~ i 2 2 q - k k

16tr 0 x() x) 0 I E — — I. 6 +q1 - x x 1 —x x )

2v' Jp Jp
'

[k).' +x(l —x) a'][(xq). k))' + a'x(1 —x)]
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O, q n "' dx
2 2

m ~g/ 2 X J„~2

—y„] In~/ .

FIG. 47. The Sudakov form factor in lowest order.

where the external fermions are off shell by -6 .
The dominant regions of integration are

(a) LPx «kz «x qz, x» d /qi

(b) 6 x « (ki-xqi) «x qi, x » LP/qi

where the gluon is collinear with the initial fermion
in region (a) and with the final fermion in region
(b). These nonoverlapping regions contribute
equally, and therefore the total contribution (in
leading order) is twice that from region (a):

Notice that logarithms are generated by both the
x and ki integrations. The leading logarithms
in each order of perturbation theory are readily
summed to give the Sudakov form factor

/g2) /2fuwg /a )2 2

I ye u/ ( a~/d (E'&qi j

which falls faster than any power as qi -. In
Abelian theories at least, nonleading logarithms
are similarly suppressed.

In QCD, o.' is replaced by the running coupling
constant c.',(ki ). This softens the high-energy be-
havior of the loop integral and results in a Sudakov
form factor that falls as (6 /qi )' """', assum-
ing we can simply sum the leading logarithm in
each order of perturbation theory.
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q ~ k

~ (i)
x g„' +~„")
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~ (c)+ ~ (c)- 0 and ~ c)*,~ g)
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