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We investigate e e duality in heavy-quark systems with application to the c- and b-quark sectors. An

alternative duality formulation permits quark masses to be determined from "bound" quarkonium states alone. The
c- and b-quark masses are found to be m, = 1.45 +0.05 GeV and mb =4.58 +0.08 GeV, respectively.

INTRODUCTION

Duality in e'e annihilation is based on the idea
that the underlying short-time quark dynamics is
revealed by suitable energy smearing of the ob-
served hadronic data. ' ' Unfortunately, it is not
obvious how this smearing should be done. In
previous work' we have shown that e'e annihilation
duality can be formulated in terms of moments
over hadronic data of a given flavor

1
ds s"R„,(s}= „„dss"R„-(s),

S0"+ So+

where

R(s) = (tes'e -y- h dar on)s/o(e'e tt, 'tt -)

and A,„, and 8„-are experimental and dual values
for R(s); s is the square of the total c.m. energy
and s, is a convenient dimensional factor. From
the experimental data in the charm sector we have
determined4 the shape of the dual function 8„- and
its threshold which defines the charm-quark mass.

In this paper we show that Eq. (1) can be recast
into a "pole-duality" form in which only the dis-
crete states appear. In Sec. I we review the der-
ivation of Eq. (1}and discuss the pole formulation
of duality. A simplified model solution for heavy
quarks is proposed in Sec. II in which the quark-
mass solution is half the lowest vector-meson
state and the energy gap to the continuum is pro-
portional to I',„-/R~, where R~ is the asymptotic
plateau value of R(s). The charm-sector data is
used in Sec. III to verify that the discrete states
alone yield the same duality function Bnd charm-
quark mass as the global-duality relation4 of
Eq. (1). The pole form of duality also accurately
predicts the charm production threshold, In Sec.
IV we use the sharp Y states to determine the s-
quark mass and the 0-flavor production threshold.
The dual function Rtf(v) is found to have the same
shape as R„-(v). Our conclusions are presented
in Sec. V, together with some comparisons to
the recent work of other authors.

I. GLOBAL AND POLE DUALITY IN TERMS
OF MOMENT SUM RULES

The hadronic cross section R(s) is just the dis-
continuity of the suitability normalized photon had-
ronic vacuum polarization. The vacuum polariza-
tion' tt(s) is analytic in the cut s plane and vanishes
tt(0) = 0 at s = 0 due to charge renormalization. In-
tegrating the quantity s"[tt„,(s) -tt„-(s)] around the
finite contour of Fig. 1, we obtain the sum rules
(1) under the following assumptions:

(i) tt,„,(s) = tt„-(s) on the circular contour. This
is expected to be valid if the radius of the circular
contour s is sufficiently large so that R(s) is
smoothly varying (i.e. , above the resonances).

(ii) tt,„,=tt„-(s) near s= 0; or, alternatively, the
derivatives of tt(s) evaluated at s = 0 are equal if
evaluated using the experimental R,„,(s) (and a
dispersion relation) or by differentiating the quark
quantum-chromodynamics (@CD) result: For
heavy quarks the s =0 point' is far from quark
thresholds and perturbative methods are expected
to apply. If a calculated QCD result is assumed,
we can compare its derivatives to the experimental

FIG. 1. Contour in the complex s plane used in de-
riving Eq. (1). %'e assume the radius s is large enough
so that asymptotic QCD can be used even close to the
timelike axis.
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+ „„dss"[R„-(s)-R,„,(s)] .
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Assuming R„- is known to be dual to R,„, in the
continuum range, the second integral can be ne-
glected and Eq. (5) becomes

q,
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FIG. 2. (a) Perturbation contributions to m. ,-with
one quark flavor. (b) Flavor -mixing contributions to
X/|7 ~

derivatives as advocated by Novikov et al.' We
prefer to reverse the argument assuming that the
residue of s"[n,„,(s) -v„-(s)] is negligible, thus
defining a dual vacuum polarization n„-(s).

The dominant vacuum-polarization diagrams
involve quarks of only one flavor as shown in Fig.
2(a). The polarization can then be grouped into a
sum of flavor loops and thus the sum rule (l)
holds for each flavor. Flavor leakage occurs
through violation of the Okubo-Zweig-Iizuka rule, '
as illustrated in Fig. 2(b). The lowest-order
leakage diagram is a factor &,' down compared
to the flavor-conserving loop. This flavor seP-
aration is an essential simplification in our work.

For a given flavor, Eq. (l) ensures the equality
of each experimental and theoretical moment M„
of R(s),

1Mpo&e ds s"R -(s)n S n+1 CC
0 4 F2

(pole duality). This is the "pole" form of duality
since M„"", defined by Eq. (3), depends only on
the discrete quarkonium states. This form of
duality is expected to be useful only for heavy
quarkonia where the continuum threshold is above
the quark production threshold and the separation
between discrete and continuum regions is clean.

(6)

H. A SIMPLE DUAL MODEL FOR HEAVY

Q UARKONIA

In this section we consider a very simple model
satisfying the duality sum rules. We will see that
all of the gross features of the numerical solu-
tions are present and that a heavy-quark mass is
exactly equal to half the 'S, ground-state energy.
We assume the hadronic R,„,(s) consists of one
state of mass m~ and a step function continuum
plateau as shown in Fig. 3(a). The dual R„-(s)
will be assumed to have the step form illustrated
in Fig. 3(b). By Eqs. (2) and (3) the moments are

A1'"p =M"
n n

defined by

(2)
RA

SOn" 4W2

1
M '= ds s"R"(s)

n S n+1
4m 2

(global duality). The contributions to M„'*' can
sometimes be divided into the discrete poles

m 2 n+i Z'
~gpo le ~ & ea

u2 ~
poles So m V

Rqq(s)

(b)

fTl
V St

RA

and the continuum starting at s =s„
cont (4son' s

This being the case, Eq. (2) can be cast into
another form by dividing the integration range at

FIG. 3. (a} Simple dual-model "data. " (b) Simple
dual-model quark production.



given by

GLOBAL AND POLE DUALITY APPLIED TO c AND b QUARKS

m. CHARM SECTOR

2139

9~ m 'l""r
2 — [' + [(g)n+1 S n+1]

I, So] mV So

~ac A [(s )n+1 (4m 2)n+1]R
n+1

Equating the moments yields the relation

9m
(2n 2)n+1 aa A

[&
n+1 (4222 2)n+1]

1', R
+2 v ~ ++ 1 t

v
(8)

If we now assume that s, —4m, ' is much smaller
than 4m, 2, the right-hand side of Eq. (8) can be
expanded to yield

1
[s ""—(4m *)""]=(4m *)"" '

)
s —4m '

++1 t q q 4m,
(9)

s -4m'
( 2}n+1 ~aa (4 2)nal t a

m R ~ 4m'
A a

We conclude from Eq. (10) that
1m Qmv

and

(10)

The above assumption will be justified by our final
result when the quark mass is large. Combining
Eqs. (8) and (9) we obtain

The global-duality relations of Eq. (2) have
been previously analyzed4 for charm production.
In this section we will show that pole duality
gives equivalent results. We begin by reviewing
the global results.

Using the measured g and f' masses and leptonic
widths' along with the continuum R(s) measure-
ments of the SLAC group' the moments M„'"' were
computed. ' With s= 25 GeV' taken to lie above
the resonance region and s, = 15 GeV' arbitrarily
chosen such that M„ is comparable to M, we
plot these moments in Fig. 4. Assuming that the
dual function R„- depends only on the quark ve-,
locity, we tried the four dual functions listed in

able I and illustrated in Fig. 4. These examples
differ chiefly in the manner that the quark thres-
hold is approached. As indicated in 'Table I and
Fig. 4, the best agreement to the experimental
moments occurs for the R,-,(2)) which rise close
to threshold. " From the two best fits we find

m, = 1.47 GeV and we note that all of the examples
approach asymptotic limits R„between 1.3 and
1.6.

We now repeat the above analysis using the pole

s 4m 2+ F ee9am I'
R A

The approximation needed for the expansion in
Eq. (9}requires that

(12)
too, ,

s -4m'
4m ' n2 mvR„

It is well known' that the ratio I'„/RA is a univer-
sal constant for all known quarkonia ground states
and that )0

I"„/R„=3.6 keV.

The inequality of Eq. (13) is then equivalent to

9~ r..m» —"=1.9 GeV.F ~2R
A

(14)

(15)
~ ~ ~ \aa ~ ~a%+

Even in the case of charmonium, where mv= 3.1
GeV, the continuum threshold is expected to be,
from Eq. (12),

I

-10
I

-5
]

0
I

10

vs, =3.9 GeV (16)

which is a reasonable estimate to the actual DD
threshold of 3.7 GeV, considering the simplicity
of the model.

We can easily express our simple model in a
pole-duality form. Because of our chosen forms
for R,„, and R„- depicted in Fig. 3, the second '

integral in Eq. (5) is identically zero and pole
duality of Eq. (6) is exactly valid.

FIG. 4. Moments M„of R~~(s) as defined in Eq. (2)
with so ——15 GeV2 and s = 25 GeV2. The pole contribution
(Ref. 8) of Eq. (3) uses F,+, =4.8z0. 6 keV for the
$(3.095) and I'~+, =2. 1~ 0. 3 keV for the g (3.684). The
continuum part of Eq. (4) is based on the data of Ref. 9.
The interpolating curves between the moments corre-
spond to the various forms of R -(v) in Table I. These
forms are plotted in the insert graph as a function of
quark velocity. The quantity v corresponds to the cut-
off s by v = (1-4m /s) ~ .
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TABLE I. Global-duality charm analysis; four quark
production functions R,—,(v) and their associated param-
eters R~, ~, and m, obtained by fitting Eq. (2) to the ex-
perimental moments shown in Fig. 4.

10

~0 i g s I I I ~ ~ e3

2.0

Rcc

R& ——R~gv (3-v )

R3:—R~+x(1-v)

1.6

1.5

1.3 2.6

m, (Ge~

1.33

1.40

1.46

X

65.7

25.6

0.7

)0
Rcc

0
Vt. . . , . . . t. . .

0.2 0.4 0.6 0.8
quark velocity v

I.O

R4 =—Rg+ —(1—v) 1.4 0.7
v

1.49 0.3 to0

duality of Eq. (6). In this case the pole contribu-
tion in Eq. (3) comes from the $(3.095) and
g'(3.684) states alone. These moments are de-
picted in Fig. 5. In this figure we note that the
larger negative moments are identical to the glob-
al moments in Fig. 4, as expected.

The right-hand side of Eq. (6) is evaluated with

two R„- forms.
(i) R,~=R„-,v(3 -v')e(s -4m, '); this is just the

one-loop result normalized to an asymptotic
plateau of R„. 'The quark velocity is given by

v =(I —4m '/s)' '
(ii) R„-=R„[l+x(4m, '/s)']8(s -4m, '). In this

case R„- can rise or fall near threshold depending
on the sign of ~.
W'e adjust the parameters m„x, and s, for an
optimal fit to the moments as summarized in
'Table II and plotted in Fig. 5. The plateau value

R„ is poorly determined and has been fixed at
R„=1.44, appropriate for a charge-& quark and a
small gluon correction. We see that the one-loop
form does not fit well, as in the global case, and
the corresponding quark mass m, = 1.33 GeV is
the same as before.

The alternative dual function represented by
the solid curves in Fig. 5 fits the moments well
and corresponds to a quark mass m, and contin-
uum threshold of

m, = 1.44+ 0.02 GeV,

Ms, = 3.78 + 0.01 GeV .

IO
-10

I

-5 0 5

I'IG. 5. Charm pole moments (see Fig. 4 caption)
and bvo examples of dual functions R~. The fitted
parameters are given in Table II. The quantity vt
=(1-4m /s, )

'The quark mass is consistent with the best-fit
global value given in Table I and the continuum
threshold is in excellent agreement with the ob-
served DD threshold'

v's»= 3.'l4 GeV. (&8)

Our conclusions for the charm sector are that
pole and global duality give nearly identical re-
sults and that the pole-duality form accurately
predicts the open charm threshold position. Both
duality formulations yield a quark mass about

m, = 1.45 GeV and a duality function which rises
somewhat near quark theshold.

IV. b-QUARK SECTOR

'The pole-duality method was specifically de-
signed for qq systems in which only the sharp
states have been measured. 'This is at present
the case for the bb T states found at Fermilab, "
verified at DORIS,"and now more completely in-
vestigated at CESR." Using the combined DORIS

TABLE II. Pole-duality charm analysis; two quark production functions R~~ are compared
to the experimental moments of Fig. 5.

Rcc

R~pv(3-v )

R~[&+r(4m, '/s)']

R~ (fixed)

1.44

1.44 0.66+ 0.15

mg (GeV)

1.32

1.44+ 0.02

~s, (Ge~

3.88 + 0.02

3,78 + 0.02

X

87

1.5
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TABLE III. The & states obtained by combining the
data of DORIS (Ref. 12) and CESR (Ref. 13) experiments.

IO

1 0 I I I I I I I ) I

& state Mass (GeV) Leptonic width (ke V) 0.8-

Y
gl
+II

+Ill

9.46
10.02
10.32
10.59

1.28 + 0.27
0.56 + 0.18
0.45+ 0.14
0.26 + 0.15

0.6—
Rbb

0.4-

0.2-
"t

0~ g i I If I I I I I

0 02 04 06 08
quark velocity v

1.0

m, = 4.58' 0.08 GeV,

v's, = 10.44+ 0.10 GeV.
(19)

The quark mass should be compared to half
the Y mass which is 4.73 GeV. Just as in the
charm case the quark mass lies slightly lower
than half the ground-state energy. The predicted
continuum threshold v'st lies between the sharp
T" (10.32) and the T"'(10.59) which is above BB
threshold.

V. CONCLUSIONS

Our conclusions can be enumerated as follows:
(i) Pole and global duality give equivalent re-

and CESR results we assume the following set of
Y states given in Table III. The last state Y"' was
recently reported" to have a width larger than
instrumental, thus lying above BB threshold.

We can now repeat the pole-duality analysis
of Section III for the b-quark case. Using the Y,
Y', and Y" parameters from Table III, we com-
pute the pole moments of Eq. (3) which are plotted
in Fig. 6. For these moments we have chosen the
dimensional parameter s, = 120 GeV'. As in the
charm case, we try two quark production functions
in the right-hand side of Eq. (5):

(i) R» =R„2v(3 -v')8(s —4m, '),
(ii}R» =R„[1+r(4m~'/s)']8(s —4m~'), where in

this case the b-quark velocity v = (1 —4m~'/s)'~'.
The plateau value R„has been fixed at R„=0.37,
a reasonable value for a charge-& quark and small
gluon correction. The parameters m„~, and s,
are varied to optimize the fit to the moments and
the results given in Table 4. The b-quark mass
and continuum threshold are found to be

IO

IO

-fo
I

-5
I

0

FIG. 6. b-flavor pole moments using Eq. (3) and the
upsilon masses and leptonic widths of Table III. The
fitted parameters are given in Table IV. The quantity
vt corresponds to the continuum threshold quark velo-
city vt (1—4m& /st)

suits for charmonium where complete measure-
ments have been made'

(ii) Pole duality accurately predicts the contin-
uum threshold for both c- and b-flavor production.

(iii) The c- and 5-quark masses lie slightly be-
low one half the ground state 'S, energy.

(iv) The quark production function R„seems to-
gently rise as threshold is approached from above.
The shapes of R„- and R» are consistent.

This last point is somewhat surprising, but it
can be verified in a crude way by expressing the
sharp states as boxes extending in energy to the
next state. This is shown in Fig. 7 for the cc and
bb bound states. We see from this figure a defin-
ite rise in the average R as s decreases for both
the cc.and bb states. The curves correspond to
the best fits in Tables II and IV.

We would like to emphasize that our analysis
does not assume anything from @CD other than
the existence of a nearly flat asymptotic region

TABLE 1V. Pole-duality b-quark analysis; two quark production functions Rqq are compared
to the experimental moments of Fig. 6.

R~2 v(3- v )

R~fl+y'(4m& /s) ~

R„(fixed)

0.37

0.37 0.43 + 0.4

m, (GeV)

. 4.25 ~ 0.02

4.58 + 0.08

~st (GeV)

10.77 + 0.05

10.44 + 0.10

16.0

1.5
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3.0—

2.0—
Rcc

l.0—

~ I

2.5

0.8-

0.6-
Rbb

0.4-

gl /II

5.0 3.5 . 4.0 4.5
~s (GeV)

above the resonances. In this sense our analysis
is quite general in that no relation between the
asymptotic and threshold regions is required.
This generality has been achieved by using a
range of moment sum rules. In the recent works
by Hagiwara and Sanda, Gounaris, and Greco et
al. ,

"specific QCD properties of the dual ampli-
tude were assumed. In particular, the first order
in o', expression for the dual 8 has been used.
The fact that some of these authors obtain similar
values for the charm-quark mass perhaps re-
flects the basic correctness of the theory, although
it should be pointed out that none of the above
authors" take into account the absorptive part of
&, beginning at s = 0 or the Landau ghost problem
inherent in the first-order QCD result.

0.2-

0
9.0 9.5

T+i

10.0 10.5 11.0

~s (GeV)

FIG. 7. Smeared pole contributions to R(s) for
charmonium and T. The curves represent the best fits
to the moments given in Tables II and IV.
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