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Quantum effects in the early Universe. IV. Nonlocal effects in particle production in
anisotropic models
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The dynamical equation governing the evolution of the effective geometry in the presence of the production of
conformally invariant scalar particles is solved for a homogeneous model cosmology with small anisotropy and
classical radiation. The pair-production probabilities and spectrum are calculated in the one-loop approximation to
lowest nonvanishing order in the deviation from exact isotropy.

In this paper we shall continue the study begun
in three earlier papers of a model calculation of
particle production and anisotropy dissipation in
the early Universe. The model we consider is
the production of free conformally invariant sca-
lar particles in a slightly anisotropic, homogene-
ous, spatially flat model cosmology containing
classical radiation. In previous papers we re-
duced the calculation of the particle-production
probabilities in this model to the solution of a
single linear integrodiff erential equation. In
paper III we were able to exhibit the qualitative
behavior of solutions to this equation by solving
it in a truncation in which nonlocal effects were
neglected. In this paper we will complete the
model by exhibiting solutions to the full integro-
differential equation and calculating the conse-
quent pair-production probabilities.

The assumptions of the model, the effective-
action equations used to compute the particle-
production probabilities, and the approximations
and truncations used to solve them are discussed
in detail in the previous papers in this series. In
summary, however, the basic points are the fol-
lowing. 'We compute the effective action I'[g] to
first order in 0 for argument geometries g of the
homogeneous, spatially flat form

ds =a [-dg+(e ),~dx'dx~],

where the scale factor a and the traceless Sxs
matrix P,, describing the anisotropy are both func-
tions of p alone. Only the contributions of a single
conformally invariant scalar field are retained in
the one-loop quantum corrections to the classical
action. The result is calculated to quadratic or-
der in the metric parameter P measuring the
anisotropy,

r[a P1= I" [ ]0+ar, [ Pa]+'

determine a family of physically reas'onable effec-
tive geometries when subject to boundary condi-
tions which exclude runaway expansions and fix
the amount of anisotropy in the model. A conven-
ient measure of this anisotropy is the parameter
4 defined in terms of the late time mean, 8, and
rms difference, hH, of the three principal Hubble
constants by

]
6 ~ )Z &/Z

p„
(4)

where p„ is the density of classical radiation and
l = (16mG) ' is the Planck length. h is dimension-
less, scale invariant, and constant in classical
epochs.

To quadratic order in the anisotropy of the
model, the probability to produce a pair of scalar
particles over the whole history of the Universe
in a comoving spatial volume V is

P = dqP,",.P"",
960m

where a prime denotes a derivative with respect
to rl. In this expression P„is the s. olution to Eq.
(3b), where I'2 has been evaluated at the solution
ao of Eq. (Sa) in the limit of exact isotropy.

In paper I we found the class of physically rea-
sonable solutions to Eq. (Sa) in the limit of exact
isotropy. For one of these geometries the initial
singularity occurred at q=-~ so that it was con-
formal to a complete flat spacetime and free from
cosmological particle horizons. Further atten-
tion was focused on this case and this is the sole
case considered here. In paper III the dynamical
equation (3b) for P;,. was discussed. By introduc-
ing the constants p, =a p„, 'V=6 ' /P„
=(&880& ), and scaled variables b, X, and h

through

The dynamical equations

51'/5a =0,
6r/6P, , =0

(Sa)

(Sb)

(6a)

(6b)

(6c)
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the dynamical equation can be written

d dh dh&—A —+K—I+m=1,
dx dx dxj

where

and

The operator & is defined by

xf(x)=cf(d ——.
' J dx'~(x —x')lnlx-x'( &„,,

(10)

where C is Euler's constant and .(X) = Xjl X I. In
these relations the constant p~ is the unfixed regu-
larization scale while c,&

is a measure of the mag-
nitude and orientation of the overall anistropy
related to ~ by

a' = y'c, ,c"/216 . (11)

The single function h(X) thus controls how the
anisotropic part of the effective goemetry varies
with time while the constant b measures the mag-
nitude of the anisotropy in the model.

In paper III we showed that, if it existed, there
was a unique solution to Eq. (7) for which the total
pair-production probability given by Eq. (5) was
finite. The appropriate boundary conditions for the
conformally complete ao which yield this solution
are

that from Eq. (10) the nonlocal term is the inte-
gral of the logarithmically singular kernel over
d'b/dX . The derivative d'hjdX was differenced
by standard methods. The logarithmically singu-
lar integral f dX'e(X —X )lnlX —X'Ig(X') was treat-
ed by deriving an integration formula interpola-
ting the argument g(X) linearly between the mesh
points but evaluating the logarithm exactly. Since

f dX lnX is well behaved at X = 0 this gave a finite
integration formula. The resulting set of linear
equations on the equally spaced mesh- between Xo

and» was supplemented with the additional linear
equations expressing the boundary conditions h(Xp)
=-(3~/8) ' and fs(Xq) =0. The whole system of
,equations was then solved using a complex matrix
inversion routi. ne. Reasonable results were ob-
tained with a step size bx = 0.012 5 and a range
Xo

—-0.8, X~
—1.2. Halving the step size changed

the results by not more than about 5% pointwise.
Extending the value of Xq to 1..6 or contracting the
value of XD to -0.4 did not change the results sig-
nificantly, indicating that the values X.o

—-0.8, »
=1.2 are sufficiently far in the asymptotic rygions
that enforcing the boundary conditions mentioned
above, at the finite points Xo and Xq, are good ap-
proximations to the true asymptotic boundary con-.
ditions of Eq. (12).

The results of our calculation are shown in Figs.
1-6 for three different values of the unfixed regu-

.larization scale pg measured in Planck units.
Figure 1 shows the real part of h in the range

&(X) -&/(2X'), X-+"
b(X) --(3X/8)", X---.

(12a)

(12b)

In paper III we exhibited solutions to Eq. (7)
only in the local truncation in which the nonlocal
integral K(dhjdX) in Eq. (7) was neglected. The
resulting ordinary diff erential equation could then
be straightforwardly solved by shooting. There
was, however, no justification for neglecting the
nonlocal integral K(dhjdX) in favor of the com-
parable term A(dhjdX). In this paper we will ex-
hibit solutions to the full integrodifferential equa-
tion (7).

Equation (7) was solved by converting it to a
system of simultaneous linear equations for the
values of h(X) at a set of uniformly spaced points
between a minimum value go and a maximum».
The differential part was differenced by standard
methods. The integral (d/dX)[K(dh/dX)] has a
logarithmically singular kernel and required some
care. We first noted that with the boundary condi-
tions of Eq. (12) (djdX)[K(dh/dX)]=K(d b/dX ), so

0.000l O.OOI O.OI O. I

FIG. 1. The real part of the solution h of the dynami-
cal equation which constrols the evolution of the aniso-
tropic part of the effective geometry for three different
values of the unfixed regularization scale p~. In all three
cases the function h approaches the real constant (3&/
8) at the singularity (~ -~) and evolves classically
as (real const)/X2 at late times (X +~). The bottom
scale measures the proper time of a stationary ob-
server from the singularity in units of the Planck time.
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FlG. 6. The function R, which measures the magni-
tude of the anisotropy energy of the effective geometry,
plotted against proper time from the singularity for
three values of the regularization scale p&.

significantly from the full calculation pointwise,
in qualitative form and order of magnitude it pro-
vides a good approximation to the behavior of the
full solution. The chief effect of the nonlocal part
of the equation is to concentrate the imaginary
part of the result in a slightly narrower range of
X and to damp out some of the late time oscilla-
tions.

Having solved for the effective geometry we may
now calculate the pair-production probability from
the integral in Eq. (5) using the definitions in Eq.
(6). The quantity with the most direct interpreta-
tion is the probability P„ to produce a pair of sca-
lar particles over the whole history of the Uni-
verse in the comoving volume occupied by one of
the classical radiation quanta. This is given in
terms of h by Eq. (3.16) of paper III. Our main
result is that this probability is finite. For the
particular solutions calculated here we find

6.& x y02g2 p, q
—y0 3

P„= 5.8&&10'a, p, &=1
7.0 && 10 b, , p g = 10

with an estimated accuracy of about 10/~. These
results for the pair-production probability are to
be applied only for ~ such that P„« 1, which gives
a quantitative meaning to the approximation of
small anisotropy. The results in Eq. (13) show
that the pair-production probability is not very
sensitive to the value of the unfixed regularization
scale p ~ and comparison with the result of the
local calculation (6.2 X 10 S for pq =1}shows that
it is not much altered by the inclusion of nonlocal
effects.

The spectrum of the produced particles may also
be calculated from the effective geometry as dis-
cussed in Sec. IV of paper III. The probability
density p(ru} of producing a pair each member of
which has a frequency u& [in the sense that it cor-

responds to a solution of the scalar wave equation
varying as exp(-iruQ)j is proportional to ~g(2o) ~,
where g(o) =f dx exp(ivy}(dhldx) and o = y~. A

curve of ~g(2a)
~

for go=1 is shown in Fig. 3 for
the limited range of 0 allowed by the accuracy of
the numerical solution for h. Curves for pq =10
or p~ ——10 differ very little from this one in this
range of o. The main conclusion to be drawn from
this figure is that the spectrum does not vary ex-
ponentially with 0 as in a thermal distribution but
displays some structure.

The effective geometry by itself is not related in
a precise way to the local rate of particle produc-
tion. The total rate of particle production in Eq.
(5), however, is expressed as an integral over
time so that the argument may be viewed as a
crude measure of this rate. If we write

P= dip v',
0

(14)

where 7 is the proper time from the singularity
then p(7') is proportional to W b', the quantity W

being defined by

2 dh
W =~ (15)

Figure 4 shows a graph of W b . This measure of
the rate approaches infinity at the singularity but
slowly enough that the integral for the total proba-
bility [Eq. (14)] converges. The major contribu-
tion to the total probability integral comes from
the times before a few hundredths of a Planck
time. A comparison with Fig. 6 of paper III shows
that the effect of the inclusion of nonlocal. effects
is to push the domain of significant particle pro-
duction to earlier times. The strong dip and peak
evident in Fig. 4 is, to some extent, an artifact
of our choice of time variable. The rate measured
with the X coordinate time, for example, displays
a smooth single peak.

We turn now to the question of the dissipation of
anisotropy in the model. A complete quantum
mechanical description of the evolution would in-
volve the construction of the amplitude to go from
various initial anisotropic states to all possible
final ones. This we have not done. We have, how-
ever, solved for the effective geometry-the suit-
ably gauge-averaged normalized matrix element
of the metric field between the initial and final-
vacuums. This, for example, would be one ma-
trix element contributing to a calculation of the
evolution of the expectation value of any measure
of the anisotropy in the initial state. It is there-
fore appropriate to examine the local measures
of the anisotropy in the effective geometry, ' Figs.
5 and 6 show two of them.

Figure 5 shows the quantity W plotted against
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proper time from the singularity. W is related
to the absolute square of the %eyl tensor by

C „,C ass 4&a~a/(&t f4) (16)

and is thus one measure of the anisotropy in the
effective geometry. A second measure is Mis-
ner's anisotropy energy' p~ defined as the absolute
square of the shear and given in the present nota-
tion for small anisotropies by P~&P'"/a . Figure
6 shows the quantity Ra ——~h ~

/b which is related
to the anisotropy energy by

p =46, R/(Xl), (17)

plotted against proper time from the singularity.
Both ~ and Ra are infinite at the singularity but
decrease rapidly away from it. The decrease is
slightly faster than that computed in the absence of
nonlocal effects, as can be seen by a comparison

with Figs. 4 and 5 of paper IG. The decrease,
however, is not strikingly different in form from
that which would be predicted for these quantities
by the classical laws. For example, in classical
relativity the Weyl tensor decays as t while the
anisotropy energy decays as t . These behaviors,
normalized to agree with the quantum calculation
for h at late times, are at early times quite close
to those of the quantum calculation. This is plau-
sibly a consequence of the restriction of the aniso-
tropies in the model to be small with a consequent
small effect on the dynamics.
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