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The asymptotic behavior of the proton electromagnetic form factor due to virtual pion exchanges is studied by
restricting to a class of ladder diagrams. We set up an o6'-mass-shell integral equation for the modified proton-
proton-photon vertex due to virtua1 pion exchanges by summing up an infinite number of ladder diagrams. This
integral equation is converted into a set of coupled differential equations involving Lorentz-invariant amphtudes.
From the solutions of the differential equations it is found that the usual form factor is modified by a factor
exp f [ —1/2 ~ (1/2)(1 —g'/e')'"]1nt ) at large momentum transfers, where g is the pion-nucleon coupling constant.

I. INTRODUCTION

The asymptotic behavior of the electromagnetic
form factor of the proton with radiative correc-
tions has been investigated by a number of auth-
ors' ' in the local relativistic quantum field the-
ory. The dominant contributions in the high-en-
ergy limit for the Feynman diagrams are obtained
in all these calculations. Jackiw' has derived in
connection with the dynamics at infinite momentum
a set of diagrammatic rules which are similar to
those discovered by Weinberg, 4 and has obtained
an integral equation for the vertex function in
spinor electrodynamics. He has approximated
the kernel of the integral equation in a fashion
which is accurate at high energies, and which is
easily tractable. He has considered ladder as
well as crossed- ladder diagrams. Recently,
Mueller' has calculated the asymptotic behavior
of the form factor in quantum electrodynamics
in an Abelian gauge theory with nonzero photon
mass. His result is essentially the same as that
found by Sudakov. ' The asymptotic behavior of
the elastic nucleon form factor in the context of
the renormalization group has been discussed in
a number of recent papers. ' The dominant high-
energy behavior of the Feynman diagrams has also
been investigated by a number of authors' ' in
connection with the Regge behavior of the ampli-
tudes. " The eikonal approximation of quantum
electrodynamics in the high-energy limit has also
been used in summing up the diagrams to all ord-
ers. Appelquist and Primack' have calculated the
modified vertex function due to virtual pion ex-
changes in perturbation theory. In the asymptotic
region where the momenta involved are much larg-
er than any of the masses and where the processes
are not dominated by resonances, one might hope
that a field-theoretic approach would have some
value even for strong interactions. All these re-

suits, however, indicate that summing Feynman
graphs does not provide an explanation of the ob-
served rapid decrease of the form factor (-1/t')
at large momentum transfers. "

In the present paper we have tried to solve the
problem in a completely different manner. %'e set
up an off-mass-shell integral equation for the
modified vertex function due to virtual pion ex-
changes by summing up an infinite number of lad-
der diagrams. This integral equation is converted
into a set of coupled differential equations involv-
ing I orentz-invariant amplitudes. The asymptotic
form factors are then obtained from the solutions
of the differential equations. We have retained
here the exact kernel of the integra. l equation. All
the previous calculations consist of approximating
the kernel of the integral equation by its dominant
asymptotic behavior. The coupled differential
equations obtained by us are, however, solved
here in an approximate fashion by the iteration
method. " We also consider the off-mass-shell ef-
fect of the integral equation. Our results are sim-
ilear to those of Jackiw' and Appelquist and Prim-
ack. ' The method adopted by us is analogous to
those of Johnson, Baker, and Willey, "Haag and
Maris, "Bose and Biswas, " and others" in the
nonperturbative approach to quantum electrody-
namics. The method has also been applied to
find the high-energy behavior of lowest-order
weak amplitudes with electromagnetic radiative
corrections. "

FIG. &. Pion-exchange diagrams for the vertex func-
tion in the ladder approximation.
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II. THE INTEGRAL EQUATION FOR THE MODIFIED VERTEX FUNCTION AND ITS SOLUTION

The unrenormalized proton-proton-photon vertex function due to virtual pion exchanges in the ladder ap-
nroximation is obtained by summing up the Feynman diagrams (see Fig. 1). It is found that the modified
vertex function satiss]Lc~ the Iokiowing u«-~l. ~ss-si'est integral equal. jon:

ig' d'k P' —I|+m
T 'k y

p'- I'+m
(2 )' (k — )' —i1' ' (p'-a)' — ' ' ' '

(p —k)'—

where P=—p —q and P'=—p' —q are the external pro-
ton momenta, P —P ' =p —p

' = q = momentum trans-
fer, m is the mass of the proton, p, is the mass of
the pion, and g is the pion-proton coupling con-
stant.

Since the momenta involved here are much larg-
er than the masses of the particles, we neglect
the mass terms. In order to convert the integral
equation (1) into an equivalent set of coupled dif-
ferential equations we use the identity

where

g 1
4v' (p' —q)'(p —q)' ' (4)

r

in different problems. "'"
Applying the operator, ' on (1) and using (2)

we obtain the differential equation

,'I'„(p,p ', q) = cy, (P" —g)1', (p, p ', q)(ii( —g)y, ,

(3)

where

k —q)' (2)
Next we express all the momentum factors of (3)
and (4) in terms of the center-of-mass momentum
E (=P+P') and—the momentum transfer q (=P —P'). —

We define s and t as

This method of converting an integral equation into
differential equations was originally developed by
Green" in connection with the Bethe-Salpeter
equation and was later on used by many authors

s=E'=(P+P')',
t = q'= -(P —P-')'.

For the off-shell vertex function I', (E, q) we
have the following Lorentz-invariant structure:

I'„(E,q)=f y~+(if /v s)o„„q"+(f'~/0 s)E +(f~/~s)8'y +(f5/s)gE~+(f8/s)I/E„+ (f7/s)ggy

+ (f,/s" ')gf/E. + (f,/u s )q, + ( f„/s) I/q„+ (f»/s)gq. + (f„/s" ')gl'q, ,

where the amplitudes f, =f;(E', q', E ~ q) are func-
tions of E', q', and E q and are dimensionless.

For the radially symmetric case (s wave), we
obtain, by substituting (5) into (3), the following
set of coupled differential equations:

16sq'f,"+32sf,'+ Sf» = c[s(E' —q')f, —2E'q'f, ],
16q'f,"+48f,'= c(E'+ q')f, ,

16sq'f3 + 32sf,'+ 16f„=c( 2sq'f, + s(E' q—')f,
+2sE f4 —2E q fa],

16sq'f,"+32sf,' —8f„=—cs(E'+ q')f, ,

16q'f;+ 48f,' = c[2sf, + (E'+ q')f, + 2E'f, ],
16q'f,"+32f,'= c[ 2sf, —(E'+ q')f, +—2q'f, ],
16q f,"+48f7= c[2sf1+ (E —q2)f7—J,
16q'f,"+48f,'= c[ 2s(f, +f,+f,)+ (q'——E')f,],
16sq f9'+ 48sf 9= c[2sE f~+ s(E —q )f9

—2E~q~f12),

16q f "+48f,' = c[-2sf, +2q f, —(E +q )f, ],
16q f11+ 64f,', = c[2sf, + 2E f, + (E + q )f11],
16q f12+ 64f1'2 = c[-2sf4 —2sf9+ (q' —E )f12],

z(z —1)f,"+3(z —1)f,'+Af, =0,
g (z —1)'f; + 2(z —1)'f,'+ A(z+ 1)f,

(6b)

=(z —1)'f„2A(zf, +f,+ zf,—), (6c)

z(z —1)f4 + 2(z —1)f4+ Af 4
= —z(z —1)f„, (6d)

z(z —1) f"+3(z-1)f' —A(z —1)f = 2A(f, +f ), -
(6e)

z(z —1)'f,"+2(z —1)'f,'+A(z —1)f,= 2A( f, + zf,),
(6f)

z(z —1) f,"+3(z —1) f ' —A(z+ l)f = 2Af, (6g)

g (z —1)'f;+ 3(z —1)'f,' —A (g + 1)f,= 2A( f, +f, +f,),
(6h)

where the prime denotes derivative with respect
to q'. Now introducing the dimensionless variable
z = t/s we obtain the following set of differential
equations:

z(z —1)'f,"+2(z —1)'f,'+ A(z+ 1)f,
2Azf, + —,

'
(z —1)—'f„, (6a)



22 ASYMPTOTIC BEHAVIOR OF THE PROTON El ECTROMAGNETIC. . . 2075

z(z —1)'f9"+ 3(z —1}'f9+A(z+1)f,= -2A(f4+zf„),
(6i)

f."=f".
h
11 12 '

(lg)

(Sh)

f h -&~(i+ A)'/~z (Sb)

fh
9 ~ z ( lc)

( / }[~(+m} ]
& ll (Vd)

where the superscript "h" corresponds to the
homogeneous parts of Eq. (6). The homogeneous
solutions of different amplitudes satisfy the fol-
lowing relations in the asymptotic limit z- ~:

fh~fh fh fh

fh fh fh fh

(7e)

( lf)

z(z —1) f,"(&+ 3(z —1)'f,'o+A(z —1)f,o= 2A( f,+ zf,),
(63)

z(z —1) f,~+ 4(z —1)'f,', -A(z —1)f„= 2A(f, +f,),
(6k)

z(z —1)'f,",+4(z —1)'f,', —A(z+ 1}f»-—2A(f, +f,),
(61)

where A =g'/(4P).
In view of the extremely complicated nature of

the nonhomogeneous coupled differential equations
(6) containing the functions f, , we solve them in an
approximate fashion. The procedure is of course
a standard one." We first solve the homogeneous
parts of these equations, and then substitute these
solutions for the respective inhomogeneous terms
in the original equations. For the homogeneous
parts of these equations we note that Eqs. (6a),
(6c), (6g), (6h), (6i), and (61) are Heun's equa-
tions""'" and (6b), (6d), (6e), (6f), (6j), and

(6k) are hypergeometric equations. The general
solution of Heun's equation may be written down

as a series of hypergeometric functions, and is
rather involved. What we are interested in, how-
ever, are the asymptotic solutions of these equa-
tions and these may be readily obtained:

-[»(~-~) '1/2Z/2 (»)

f,(s, j!) ~ c,(s}exp(I —1 —(1+A)'~'] int], (8b)

f,(z, t) ~ c,(s) exp([- —,'+ —,
' (1 4A)]'~'1nt}, (8c)

t

f,(s, t) ~ c,(s) exp([-1+(1 —A)'~']1nt}. (Sd)

The amplitudes f,(s, t), f,(s, t), f,(s, t), and f,(s, t)
have the same exponential factor at large momen-
tum transfers. They decrease as 1/~t in the as-
ymptotic region and have the dominant contribu-
tions. The form factors f„f„f„f», and f»
have the same behavior in the asymptotic limit,
whereas f, and f» decrease as exp{[—1

+ (1-A)'~] lnt}. Since the constant A (-=g /4m') is
greater than one, the absolute values of all the
form factors except f, are independent of the pion-
nucleon coupling constant in the high-g limit.
Thus, the asymptotic behavior in the variable f,

of the modified vertex function is completely known.

It should be mentioned here that the earlier investi-
gations of the electromagnetic form factor with ra-
diative corrections resulted in determining the as-
ymptotic behavior of what is f, in this paper. We

have estimated all the off-shell form factors. Our
result for f, is similar to those of Jackiw' and Ap-

pelquist and Primack. ' In our nonperturbative
approach of converting an integral equation into
an equivalent set of differential equations the pho-
ton-exchange diagrams can also be tackled in a
similar manner.

Thus, for large z the inhomogeneous terms in
Eq. (6) are known. We can obtain the asymptotic
solutions of these equations as given in Ref. 20.
We take the dominant convergent solutions of the
nonhomogeneous equations. The new solutions ob-
tained are again substituted for the inhomogeneous
terms of the differential equations (6) until we ob-
tain the same consistent solutions in the asymptotic
region. The results are

f,(s, t) ~ c,(s) exp/[ ——,'+ —,'(1 —4A)'"] fj,

(8a)
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