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This paper concerns the ground-state energy E„ofa system of N identical bosons interacting via the attractive
central pair potential V(r&) = —V,f(r„-/a) and obeying nonrelativistic quantum mechanics. It is assumed that the
potential shape f is decreasing and can be represented as the envelope of each of two complementary families of
power-law potentials a +Pr ~ (one family is above fand the other below) for suitable fixed p =p, and p =p, . If
e = —ma'E„/(N —1)fi' and u = Nm V, a'/2'', then it is proved that the entire collection of nonintersecting
energy trajectories e =F„(v), N = 2,3,4,..., is bounded between the fixed curves (u,e) = (

—y(p)[s'f'(s)] ',
(v/2)[2+s)+sf'(s)]), where the curve parameter s &0, and p =p„p,. Potentials, for example, with shapes

f(r) =a,lr + a,l(r +a,)
—a,lnr —a,sgn(q)r', where a, &0 and (q((1, have the 1' numbers 7'( —1) = 2 and

y(1) = 12/m. . The appropriate y numbers are provided for other classes of potential shape including perturbed
harmonic oscillators, and also for problems in one spatial dimension. The method yields in effect a recipe for the
way E„depends on N and all the parameters of the pair potential.

I. INTRODUCTION

In this article we shall be concerned with the
problem of finding the ground-state energy E„
of a system composed of N identical particles in-
teracting by attractive pair potentials. The main
emphasis is on systems of bosons although the
results apply equally well to the lowest spatially
symmetric states of few-fermion systems provided
there are enough internal variables (spin, iso-
spin, color) to'make such states accessible. Our
approach is to exploit the boson symmetry to re-
late the N-body problem to suitable two-body prob-
lems, and to use geometrical methods to analyze
this relationship. Geometry is involved because
our results hinge on the way the energy varies
with the coupling constant, and this leads to the
study of families of noninteracting "energy tra-
jectories". We are using the general principle'
from dynamic programming that in optimization
one should try to study famiLies of nearby prob-
lems.

We assume a translation-invariant Hamiltonian
H for the N-particle system with the form

l. e. )

where

mutation symmetry of the wave functions. If
C (p„p„. . . , p„) is any normalized boson "trial"
function of the N —1 Jacobi orthogonal relative
coordinates, ps = (r, —r, )/v2, ps = (r, + r, —2y, )/
~, etc. , then we have'

&„-(c,Hc) =(c,xc), (1.3)

Equation (1.3) is fascinating because it suggests
that there may be a relationship between EN and
the eigenvalues e,. of K. The ad hoc approxima-
tion EN =e, was used by Wigner' in 1933 at the
dawn of contemporary nuclear physics (with N = 3

and 4) and the first rigorous relationship was dis-
covered in 1956 by Post' who proved that E„~e„
for all N ~ 2. Subsequent developments' in this
area of lower-bound theory have led, for example,
to bounds suitable for fermion systems and atom-
like systems, ' and also to bounds on the energies
of the excited states. '

Our present discussion of the N-boson problem
is further simplified by the use of the following
dimensionless quantities in which, it should be
noted, the sign of the energy has been changed
(for large N, and for nonconfining potentials, the
variable e is proportional to the binding energy per
particle):

where the one-particle ("reduced" two-particle)
Hamiltonian 3C is given by

NZ= -(N-1) ~; +—V,f(~2p, /n) . (1.4)

V,~
= V,f(r,)/a)— . (1.2) v =NmVca /25',

and V, and a are, respectively, the depth and
range parameters of the attractive central poten-
tial with shape f. The complexity of the N-boson
problem is greatly reduced by the necessary per-

e = mE~ /(N —1)I-
lt = &„" + vf(x),

x = v 2 p,/a.

(1.5)
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If 4 ~ is the suitably normalized exact ground
state of the N-particle system, then we may
write from Eqs. (1.2) and (1.5)

e=(e„,he„)=- E„(v) .
Thus, for each given potential shape f, there will
be a family (E„}of (n, e) curves or energy trajec-
tories labeled by ¹ 2, 3,4, . . . . For the har-
monic oscillator we have f(x) = —x' and the tra-
jectories all coalesce in this case into the single
exact curve ~= —3v' '. For the attractive "5-
function" potential" in one spatial dimension f(x)
=5(x), and, we have for a.ll N) 2

1 f 1e=E (e)=—
i
1+—v'.

6~
Although this 6-function potential only acts in one
dimension and is not smooth as are the potentials
we shall principally study in this paper, we ex-
hibit the curves (1.7) in Fig. 1 as an illustration
of the geometry of the energy trajectories for an
exactly soluble case. Unfortunately, these two
examples exhaust the list of exact solutions known
for all N. In general, we can prove by a variation-
al argument (Sec. II) that the energy trajectories
&„cannot intersect; we can also bound these
curves for all N ~ 2 by the following general in-
equalities:

E (6) ) E (g) —g ) E (~ }

where I', is the exact solution of the two-body
problem, and E (which also does not depend on
N) is obtained by the use of a Gaussian trial func-

~
1

4 5

$0

f(x) = —sgn(p)x', p ) —1.
We then consider, for a given fixed p, a potential
with decreasing shape f which may be represented
as the envelope of a family (fj of power-law po-
tentials given by

f,(x) = n(s} —P(s}sgn(p)x',

where s is a parameter which labels the curves
in the fami1y. Since we know I', and I', for each
of the component potentials f„we can use this
information to find trajectory bounds for the po-
tential f which is the envelope of the f,. A suf-
ficient condition for definite energy bounds is that
every f, must correspond either to a stronger or
to a weaker potential than f itself. For example,
the tangents to f(x) =8-* corresponds to a collec-
tion of linear potentials each of which is weaker
than the exponential potential. We obtain in this
way trajectory bounds E~ and E~ (the subscripts
refer to "lower" and "upper" in the sense of the
energy E„hwi hchas opposite sign to e) satisfying

(1.10)

r

tion. In many cases the N dependence of &~ is
largely accounted for by the N dependence in v
and e so that the functions I'~ do not vary strongly
with ¹

The equality E,(v)=E (v) occurs if, and only if,
f corresponds to a harmonic oscillator. '" For
short-range potentials the bounds can be very
close, ' and for the linear potential f(x) = —x which
we have recently studied (along with general pow-
er-law potentials, see Sec. III) we can determine
E„in this way with error &0.15/~. Mathematical-
ly rigorous bounds such as these are themselves
useful both for the construction of models for few-
particle problems and as tests for alternative
many-body techniques such as the numerical solu-
tion of the Faddeev equations. "

However, the main purpose of the present paper
is to describe a new geometrical method, which
we call the "method of potential envelopes, " for
determining bounds on the energy trajectories I"„.
We first find in Sec. III the trajectory bounds I',
and F for the power-1am potentials

E~(v) ~E,(v) ~e ~E,(u) ~E~(v). (1.11)

10
V2

15

FIG. 1. Exact energy trajectories e=E&{p), labeled by
N, for the attractive 6-function potential in one dimen-
sion; and Gaussian trajectory bound E~(v); v
=mNVoa /2K and e=-mE&a /(N —1}I'2.

1he pleasing outcome of this study is that we have
been able to find a simple universal formula which
gives I"~ and I"~ directly in terms of the potential
shape f, namely,

E(5)= 2U[2f(s) + sf'(s ~I (1.12}
v = —y(p) [s'f '(s }J ', s & 0 .

For each value of p, we need just two p numbers,
p~(P) and p~(p), which respectively determine
I"~ and E~; moreover, these numbers turn out to



2064
I

RICH AR D L. HAL L 22

be precisely the same factors which yield I", and

E, via Eq. (1.12) for the corresponding power-law
potential shape f(s) = -sgn(s)s2.

As an illustration, suppose p=2, then for the
harmonic oscillator with shape f(x) = -x' we al-
ready know E,(v) = F„(v)= E,(v) = —3v'~2, and con-
sequently from Eq. (1.12}we have y~(2) = yv(2)

Now consider the Gauss potential e-" which
can certainly be written as the envelope (above} of
a family of the form n —Px', so that Eq. (1.12)
yields e ~ Ev(v ) = ve ' (1 —s'), v = 9e' /4s4, and 0 & s
&1. Withoutchangingy we can, of course, immedi-
ately apply Eq. (1.12) to find Ev for f (x) =e 'or f (x)
= z '- &or for any smoothpotential shape which lies
above a family of parabolas. Potential shapes with
corners can first be approximated by smooth curve
curves on the appropriate side, and the formula
(1.12) may then be applied to this approximation.

As a further illustration, suppose f(x}=x ' —x'
for fixed q in the range 0 & q & 1. Such potentials
are of interest as nonrelativistic approximations
for the central part of the quark-quark interac-
tion" " (since we consider only a one-component
Schrodinger equation in the present article our
results may be applied directly to N-quark sys-
tems only for N &3), In Sec. IV we sha. ll show
that y~( —1)=2 and yv(1)=12/K. This class of po-
tentials has the property that f lies above its tan-
gents (p = 1) of the form n+ px '. Consequently,
the trajectory bounds I"v and E~ provided by Eq.
(1.12) are "magnifications" of each other for if
(v, e) is a. point of E~, then (pv, pe) is a point of
Ev, where p=6/».

Equation (1.12) is not without some interest even
for N = 2 and in view of the usually intractable
nature of the many-body problem we expect that
the existence of such a general formula, valid
for alI. N~ 2, will be of practical importance for
exploring the implications of various potential
shapes for the N-boson problem.

II. THE FUNDAMENTAL ENERGY BOUNDS

The lower energy bound is represented in the
notation of this paper by the inequality F„(v)
&E2(v). By an immediate generalization of the
proof of this result in Ref. 2 we now prove that
the energy trajectories I~ do not intersect, i..e. ,

E„(v) &FK(v), N& K. (2. 1}

For this argument it is essential to use Jacobi
orthogonal relative coordinates Ip,.}which have
the property that p„„is symmetric in the individu-
al-particle coordinates (r„r„.. . r„). We suppose
that (tltN} represents the orthonormal eigenstates
corresponding to the energies E'„~E'„"of the N-
boson problem and we write for fixed K, 2 &K & N,

Q

N(P2tP3t ' ' ' 1PN}

M r,T~(
j »1t 2tP3t ' ' ~ tPK} t(PK+ltPK+2t ' ' ' tPN} 1

(2. 3)

and from Eq. (1.6) we have

e= (4N3, he'N) = Q ~C, ~'(4t», h4») . (2.4)

Nowt for a given f2xed value of v (the product V,a'
must be adjusted as we go from N to K in order
to keep v constant),

E„(v)= (eN, he'„) and FK(v) = (e», he»),
and from Eqs. (1.5) and (1.6) we. have

@2
(tltt h lt) tt(Et 1 (2. 5)

The right-hand side of Eq. (2.4) is therefore
bounded above by the largest term (4'K, &+K)
weighted by Q,. IC,. I

'= 1 and consequently we ob-
tain the required inequality (2. 1).

Although we shall be using this result principal-
ly with K=2, the geometrical property that the
energy trajectories do not intersect often increas-
es the value of any information we may obtain
concerning the energy of the N-boson problem.
If, for example, for a, given f, N, V„and awe
have calculated a variational upper bound Ev to
FN(at V,), then we obtain a single point, say P,
= (v„e,) in the (v, e) plane, where by Eq. (1.5)
v, =NmV, a/26' and e, = mEva2/(N —1—)h' Since.
P, lies below the trajectories F» for K &N (see
Fig. 1 for an illustration of the geometry), we
may conclude for each K ~N and for all A. & 0

(2. 6)

Results similar to Eq. (2. 6) have been di. cussed
by Calogero et al. "and Balbutsev et a$."

We now turn to the "upper-bound" trajectory I', .
The use of Gaussian trial functions leads to an
Ã-independent trajectory bound because of the
unique factoring property "that a boson func-
tion 4 of Jacobi coordinates factors in the form

(P2t P3t ' ' ' t PN) 4(P2) (P3t P4t ' ' ' 1 PN}

if, and only if, C is Gaussian. Since (H)=Q),

(2. 2)

where the G,. have norm one but are not neces-
sarily orthogonal, and the summation over i in-
cludes, if necessary, integration over the contin-
uum. It follows that
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we need only integrate over p, ; and for central
potentials the problem reduces further to an in-
tegration over a single real variable. For a
given v the formulas for I' become

E (v ) = min e(a, v), (2. 7)

where

~(&,~)= (4, 4)11411 '
I'2 't '~'

, +l —l
g t'e "/'f(at)dt,

(2. 8)

Q(x) = exp[-(x/2a) 1 ~

For a given value of v, e((r, v) is an integral trans-
form of f(x); for a given value, say, a, of a',

e(a„v} is a linear function of v which is tangential
to the optimal curve I . The lineay trajectory
bound

~(0&(+) E(lb)(1)+2/(0+2) p P 0 p ) 2 (3 3}

where E,'~'(1} is the largest eigenvalue of h= &
—sgn(p)x~ and E,'~'(1) is the maximum expectation
of k with respect to normalized Gaussian func-
tions of x. For p & -2 the wave functions must
vanish sufficiently fast as x 0 0 and this makes the
Gaussian functions which we use for F unsuitable.
The cases p=2 (harmonic oscillator), p=1 (lin-
ear potentia, l"), and p = -1 (hydrogen atom) are
standard elementary problems for which we pre-
sent E, and E, [along with the corresponding y,
and y~ for Eg. (1.12)] in Table I. The number
given for E,"'(1}is an approximation for the first
zero of the Airy function. '9 From Eg. (2. 7) we
obtain the values of E'~'(1) as follows:

E,"'(1)= -3(p + 2)/4po, ', (3.4)

where

e(v»v) E (v) -E„(v), N~2 (2.9)

is extremely useful in actual calculations and we
have earlier called this the tangent method (Ref.
17, Sec. 3.2).

Some other potential shapes for which the tra-
jectory bounds I", and I", have been found are as
follows: square, ' exponential, '"Hulthen, ' Gauss, '
6 function, ' Yamaguchi, ""and logarithmic";
power-law potentials are discussed in Sec. III of
this paper.

For linear transformations n+ Pf of the poten-
tial shape f, the trajectory bounds E, and E obey
the general rule

The value

~ ~-i i&&+2)
1

p& -2, po0.

(3.5)

determines via Eq. (2. 8) the best N-body Gaussian
trial wave function (with respect to energy} for
the corresponding power-law potential. For the
class of potentials (3.1) with p & -2 and po 0,
the exact energy of the N-boson problem is there-
fore given by the expression

E""'( ) = n~+ E'/'(Pv) P» 0 (2. 10}
where

~[E(P)(1)+ Etn)(1}]/2/ 0 |2)+y
5%%u (3.8)

III. POWER-LAW POTENTIALS

For power-law potentials we write

(3.1)

E'tP)(&) E(0)(1)+I/'10+2) pp 0 (3.2)

f(x) = —sgn(p)x', p w0 .
It follows from Sec. II by use of the simple scale
change of variables x'= v '~'~'"x that the trajec-
tory bounds I', and Il, for these power -law poten-
tials are given by

5 = 1001E,'"(1)—E,'&'(1)
l [E,'&'(1) + E,'&'(1)]-' .

(3.7)

Thus, for example, if p=2, E,(v) =e is exact and
5=.0; for p=1, 5&0. 15'%%up, and for p=-l, 5
& 8. 1%%uq. These results which are valid for all
N ~ 2 provide useful tests for alternative approach-
es to the solution of the N-body problem. Our
general formula Eg. (1.12) (yet to be proved) also
yields Egs. (3.2) and (3.3) as the special case in

TABLE I. & and y numbers for problems in three dimensions.

Enveloping
family

Hyperbolic
Linear
Parabolic

-1
1
2

&,'"(1)

-2.338 107

y (&)(1)

2/3~
-3(3/2~)'»

2
3.787 210

9
2

3~/4
12/~
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which f is a power-law potential. The addition of
a constant term to f leading to potentials which
shapes like (1 -x) for example can be treated by
using the general rule Eq. (2. 10). Thus we have
for f(x)= (1 —x)

and we note that g (t) =f (s)/ Q (s) & 0 by our hypo-
thesis. We now assume that for s c S (or equiva-
lently t c T)

f(x) =g(y(x)}

e = v —(2. 341 442 5)v' '+ error,
where

Ierror
I

& (0. 004)2 ', all v & 0

and

I
error I

& (O. OO5)
I
e I, 0 & v & 4. 7;

(3.6)
- y, (x) -=[g(t) tg'(t)—]+gx)g'(t), all x & O.

(4.2)

For this inequality to be valid for s(=S it is neces-
sary that g"((t)(s)) & 0 for s c S and this condition
is also sufficient if S happens to be the half-line
s & 0. The expression for g (t) may be written
as

Equation (3.8) therefore represents an extremely
accurate solution to the N-boson problem in the
case of linear pall potentials.

IV. THE METHOD OF POTENTIAL ENVELOPES

f(s) =g((t)(s)), t= (P(s), s & 0 (4. 1)

Consider a monotone decreasing smooth po-
tential shape f. Such a function is equal to the en-
velope of its tangents and for f (s) & 0, the corre-
sponding tangent line f,(x) at the point x= s may
be regarded as an attractive linear potential.
Since we have been able to treat the N-boson
problem with linear pair potentials very effec-
tively, it is natural to hope that the representa-
tion of f as the envelope of a family of. linear po-
tentials may help us to solve the N-boson prob-
lem in which the pair potential has the shape f.
Suppose for s c S (where S is an interval) we have

f (s}& 0 and f,(x) &f(x), for all x & 0, then every
such linear potential f, is a stronger potential
(i.e. , gives more binding) than f and we have

e - E2(»~)(v}, s c S.
An even better bound on e is provided by using the
envelope of the family of trajectories (E2(~2)j which
we write as

E~ = envelope [F2't2)}.
s&S

Thus, we have e ~F~(v). By a similar argument
in which we assume f,(x) ~f(x) for all x& 0, we
obtain the corresponding bound e & Ev(v). The
method ofpotential envelopes is a generaliza-
tion of this idea.

Suppose f is the potential shape we wish to study
and suppose (t) is a potential shape for which we
have already found the trajectory bounds F,' ' and
F', '. We shall assume that f and (1) have con-
tinuous second derivatives and are compatible
in the sense that f'(x)/(P'(x) &0 for all x&0. The
smoothness assumption of f can be weakened if
we confine our analysis to smooth patches of f
lying between corners. We define the function g
and the variable t as follows:

[(t)'(s)]'g"(t) =f"(s) f'(s)(t)-" (s)/(t)'(s) . (4. 3)

Since g (t) & 0, the right-hand side of Eq. (4.2)
represents a, stronger potential than f and we have

e ~E~(v),

where

F~ = envelope [F2' "),
t62'

and by Eq. (2. 10)

F,""(v)= [g(t) —tg'(t)]v + E,'"(g'(t)v) .

(4. 4)

(4. 5)

(4. 6)

In order to find F~ we must therefore solve Eq.
(4. 6) simultaneously with its partial derivative
with respect to t, that is to say, with

0= -tg" (t)v+ E,"' (g'(t)v}g" (t)v,

l, e. )

t= E,'"'(g'(t)v}.

In order to find FU where

6-E()(v ')
~

(4. 7)

(4. 6}

(t)(x) = -sgn(p)x', p & -1, pa 0 (4. 9)

F(2t)( ) E(P)(1) 2/(()+2)
) (4. 10)

where the subscripts 2 and g are used on F as re-
quired. For this collection of curves the factor
g'(t) becomes

tg'(t) = tf'(s}//(t)'(s) =p 'sf'(s) . (4. 11)

Consequently, Eqs. (4. 5) and (4. 6) for either Fl,
or FU may be written in the following simple
generic form.

Formula for the traj ectory bounds

we repeat the above steps but reverse the inequal-
ity in Eq. (4. 2) [implying now that g ((t)(s)) 0,
s c S], and replace each F,' ' by E,' '.

We now apply this general analysis to the power-
law potentials which we have studied in Sec. III:
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E(v) = 2v[2f(s)+ sf'(s)],
v=-y(p)[s'f'(s)] ', s c S

(4. i2}

where for E~ and EU we use, respectively, the
positive constants y, (p) and y, (p) given for p4 0,
po 1by

2E(0)(1) (2 0+)/0

'Y,(P) = IP I

(
'+

2)

2E()')(1) (2+

y~(P)= P I

( ~2)

(4. iS)

(4. i4)

If S=[s ~s & 0], then b,~c, and b, ~c, .
(4. 15c,)

(4. 16)

Equation (4. 16) is proved, as in the general case,
by first writing the difference &(Q) =f,(x) f(x), -
for a given s, as a function of (t)(x) and observing
that t)(t)= t)'(t)=0; condition (4. 15b,) for all s
& 0 then implies via Eq. (4. 3) that t) ((t)(x)) &0,
that is to say, &((t)}& 0; similarly (4. 15b,)
~ (4. 15c,).

We shall see in Sec. V that, for suitable choices
of p, conditions (4. 15b,) or (4.15b,) are often met

y (2v)=2[3x5x ~ ~ x(2v+I)]' ', v=1, 2, 3, . . . .
We observe that if we make the formal substitu-
tion f(s) = (t)(s) in Eq. (4. 12), then the constants
Z2 and y, are precisely the factors needed so that
Eq. (4. 12) yields Eq. (4. 10) for the corresponding
power-law potential. Some values for y, (p) and

y (p) are given in Table I.
For power-law envelopes the condition f'(s)/

(t)'(s) & 0 implies f'(s) & 0, i.e. , f must be mono-
tone decreasing for such representations of f.
The necessary conditions g'(t) & 0 for E~ and

g (t) & 0 for Ev become via Eqs. (4. 3) and (4. 9),
respectively, D&(s)= [sf (s) ——(p —1)f {s)]&0
and D~(s)& 0, for s cS. We may therefore sum-
marize (for a given fixed value of p)'the conditions
for the application of the formula (4. 12) for the
trajectory bounds as follows.

Sufficient conditions for the trajectory bound-
formula

f'(x)&O, x&O (4. 15a)

E:D,(s)= [sf (s) —-(p —1)f (s)]& 0, s cS (4. 15b, )

Ev: D~(s)= [sf (s) —(p —-1)f'(s)]& 0, s c S (4. 15b,)

E~:f(x) &f,(x) =—[f(s) p'sf'(s)]-
+p 'sf (s)(x/s)~ each s c S, all x & 0

(4. 15c,)

E:f(x) &f,(x)-=[f(s) p'sf '(s)]-
+p 'sf (s)(x/s)~ each s c S, all x& 0.

for all s & 0 for large classes of potentials and
consequently the corresponding trajectory bounds
can immediatley be found with ease by use of the
generic formula Eq. (4. 12). In cases where
(4. 15b,) or (4. 15b,) are only satisfied for s in a
finite interval S, the global conditions (4.15c,)
or (4. 15c,) must be examined independently.

We are now in a position to make some inter-
esting general remarks about the shapes of the
trajectory bounds E~ and EU for a given potential
shape f. Suppose that the choice p =p, leads to
E~ and p=p, leads to EU, then FU is a magnifica-
tion of E~ for if (v, e) is a, point of E~, then (t)v, t),e)

is a point of Ev where p, = y, (p, )/y, {p, ) - 1.
know that p. =1 Only for the harmonic-oscillator
potential with p, =p, =2; in general p, p, . If
we define r(s} by

r(s) =2f(s)+ sf'(s), s c S (4. 17)

then we obtain from Eqs. (4. 12) and (4. 15b,}the
following differential relations which are valid for
both E~ and EU when the appropriate y& 0 is used:

—=y-'(sv) r'(s},
ds

d&—=f(s),
GV

d2

dv , =y(sv) 'f '(s)/r'(s),

(4. 18)

r'(s) =D(,(s)+ (2+p)f'(s) .
Since p & -2 and f (s) & 0, and since for E~ we
have D~ (s) & 0, we conclude that r (s) & 0; for
Ev we have D, (s) & 0, but r (s) is unchanged and
therefore still negative. Consequently, we have
the following general properties for both E~ and

V. SOME ILLUSTRATIONS

We choose classes of potential shapes so that
within a class we have D~ (s) & 0 and D&(s) & 0
for all s + 0 for suitable fixed p, and p, . Con-

—& 0, = E (v) =f(s), , = E (v) & 0 .GV

dv

(4. 19)

Thus, the trajectory bounds are concave up and
therefore lie above their tangents. This is the
property which allows us to use the tangent meth-
od" for approximating E: each Gaussian trial
function with a fixed scale parameter o provides
a tangent line [Eq. (2. 8)] to E which line is itself
a trajectory bound; all the exact trajectories E„
lie above every member of this family of straight
lines.
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sequently, the trajectory bounds F~ and FU are
given for the whole (p„p,) class by the general
formula Eq. (4. 12) with, respectively, y=y, (p, )
and y= y (p,) as given in Table I, or by Eqs.
(4.13) and (4. 14). The class magnification factor
p is given by p, = y (p,}/y, (p, ). Two potential pa-
rameters, V, and a, are always allowed for in our
formulation because V(x,. }= Vg-(r, &/a.); other
parameters are introduced in the definition of each
class of potential shapes. The classes, which
are merely concrete illustrations, can be con-
siderably enlarged.

A. Hyperbolic-linear: (pj,p2) =(-1,1)

Suppose f(x) is.given by

15

12

f(x) = —'+ ' —o4 lnx —ct, sgn(q)x', (6. 1)
X X+&3

where n,. ~ 0 and ~q ~
-1. For this class of prob-

lems we may use the trajectory-bound formula
Eq. (4. 12}with y=y, (—1)=2 and y=y, (1)= 12/w,
respectively, for F~ and FU; the magnification
factor is p=6/v. Thus, we can immediately
determine how the energy of the N-boson sys-
tem depends on X and all the potential param-
eters. The shifted Coulomb potential" f(x)
=(1+x) ' and the central term of a possible
quark-quark potential"' "f(x) =x ' —lnx -x are
illustrated in Figs. 2 and 3; in Fig. 3 we have
added the best Gaussian U trajectory determined
by Eq. (2. 7) and labeled by G; E~ may also be

10 20

FIG. 2. Trajectory bounds for the shifted Coulomb po-
tential with shape f(x) = (x+ I) in three dimensions:
s&(~) «&sl, (~).

-3

FIG. 3. Trajectory bounds for the quark-quark poten-
tial with shape f(x)=x -lnx-x in three diinensions: the
curve labeled G is the best U trajectory which can be ob-
tained by the use of a Gaussian. trial function; Ez(v)
&&&(&)+ & ++a(&)~

improved by solving the two-body problem numer-
ically. However, the main point of the envelope
method is to provide a simple answer to the ques-
tion: How does E~ depend on N and the potential
parameters~ For example, for the case f(x)
= (1+x) ' we have V(y, , ) = -(V,a)(x,-,. + a) ', and for
each choice of ¹2,a+0, and t/', &0 we obtain a
value for v =Nma'/2h'; the exact quantity
-~E„g'/(N —1)h' then lies between E~ a.nd its
magnification by p, =6/w, where in this example
E has the simple parametric form (2(1+s)'s ',
(2+s)s 'j for s & 0. Most of our illustrations have
the same flavor as this example and they repre-
sent the nearest we have yet come to providing
a recipe solution to the N-boson problem.

The exponential potential shape f(x) = e-" lies
above its tangents so that Eq. (4. 12) yields Ev
for p, = 1. However, if we write e-" as the en-
velope of a family (fj of hyperbolas (p, = —1), the
hyperbola tangential at x=s, necessarily crosses
f if s & 1; consequently, we only obtain a partial
E~ trajectory via Eq. (4. 12) in this case, namely,
for the values v ~ 2e, corresponding to s -1.
More explicitly, we have for the potential shape
f(x) = e-":

e= ~~e '(2 —s),
F~ v=2e'/s', 0~ s ~l
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e= —,'ve '(2 - s),
v=12e'/ws', s & 0.

Vfe have earlier obtained' very accurate results
for this potential but the present partial and rather
less accurate results are certainly delightfully
easy to find.

B. Hyperbolic-parabolic: (p&,p&) = (-1,2)

This class of potentials includes all those of
class (A) plus terms, for example, of the form

10 40

30

Ax
f(x) = —x'+,

(1+gx )
(5.2)

where g ~ 0 and 0 ~
A, ~9. The upper limit on X is

sufficient to guarantee D,(s}& 0, and D,(s) &0 for
all 8 & 0. For this class of shapes we have for
E~ and Fv, respectively, y=y, (-1}=2and
y=y (2)=~~, so that p, =-', .g 2 y

We can also discuss the Gauss-well f(x) = e-"
with these y numbers, but, as with the exponential
potential in class (A), the E~ curve is only ob-
tained in part, namely, for v ~4e' ', correspond-
ing to s ~1/W. 8 ) 10

V

10

f(x) = —(x'+ o.e "'), 0 + o. ~1

and

(5.3}

Xxf(x(=-(x*+ o -z-o g-o. (o.o)1+@x' '

The parameters n and X have been restricted so
that D, (s) & 0 and D, (s) & 0 for all s & 0 (the param-
eters V, and a are still free). Consequently, we

may find trajectory bounds via Eq. (4. 12) in which

y=y, (1)=3.78721 for E~ and y=y, (2) =—', for Ev,
so that p, = 1.188 2. The case A. =g= 1 of the poten-
tial shape Eq. (5.4) is illustrated in Fig. 4. Since
for the special case N= 2 the lowest eigenvalue of
h is equal to the energy of the first excited state
of the corresponding problem in one spatial dimen-
sion, we also display in Fig. 4 the results for this
latter problem computed by Mitra" (using a
variational method) and Kaushal'~ (using perturba-
tion theory). In order to represent the results
of these authors in our notation we have had to
derive the following scaling law:

e=F(v, A.,g) = v'~'E(1, X,g/v'~') . (5. 5)

Our results have been obtained by an application
of the very general recipe Eq. (4. 12) for the ener-
gy of the N-boson problem for all N and naturally
we should not expect to compete in terms of ac-
curacy with the results of special studies of the

C. Linear-parabolic: (pj,pz)=(1,2)

Ne now consider perturbed harmonic oscillators
with the forms

FIG. 4. Trajectory bounds for the perturbed harmonic
oscillator with shape f(x)=- fx +x (1+x ) ] in three di-
mensions. The points o are the energies of the first ex-
cited state of the tzo0-body problem in one dimension ob-
tained by Mitra (Ref. 21) and Kaushal (Ref. 22); for
g ~~=1 and 2, these values differ significantly and the
upper points are those of Mitra (see the text for more
accurate data).

taco-body problem for a given interaction. How-

ever, for perturbation methods such as in Ref. 22,
our strict upper and lower bounds may still be
of interest, as a check, even for %=2. %ith
~=g = 1 and v = 1 and v =4, for example, the
sequences of estimates (IE~(v) I, Kaushal, "Mit-
ra," IEv(v) I) for Ie I are, respectively, (3.220,
(3.305, 3.507, 3.589) and (7.053, 8.918, 7.428,
7.837).

D. Harmonic-power (2v): (p&,p&) = (2,2v)

As a final illustration of problems in three di-
mensions we consider perturbed harmonic oscil-
lators of the form

f(x}=-(x'+~'"), ~ 0, v=1,2, 3, . . . .
(5.8)

For potential shapes of this kind we can find ener-
gy trajectories via Eq. (4. 12) with y= y, (2}=+
for E~ and [see Eq. (4. 14)] y=y (2v)= —,'[3x 5

x x (2v+1)]'~' for Ev. Since our parameters
a and V, are still free, X is actually redundant
and we may therefore set X=1. The case f(x)
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=-(x'+x') has the magnification factor p= 1.291.'

Examples such as f(x}= -(x'+ Xx'+ nx') are treat-
ed by taking y, (2) = —,

' for F~ and y, (6) = —', (105)'~'
for E~: the magnification factor in this case be-
comes p, =1.570.

VI. PROBLEMS IN ONE DIMENSION

For symmetric potentials with shape f in one
dimension the operator corresponding to h in Eq.
(1.5) becomes

= exp[-x'/2o ] to estimate ~ we find

~ ~(1)( ) 3 -1/3 2/3x&]-E (6.7)

If v and e are again taken to be as in Eq. (1.5),
we have E,"'(v) ~e -E,"'(v) for the N-boson prob-
lem with the linear pair potential in one dimen-
sion: this is, as we found in three dimensions, an
accurate approximation since 2v '/'= 1.024 176.

For the harmonic oscillator f(x) =-x' we have
for the N-boson problem the exact solution

(6. 1) F~2)(&) F(2&(&) i/2 (6. 8)

If we make the change of variables (for x ~ 0)

& = v '~'(e+ vx) and @(x)= P(t'),

then Eq. (6.2) becomes Airy's equation

The continuity of 4 (x} at x= 0 implies

P'(e) ' ')= At'(eu ' ') =0

(6.3)

(6.4)

(6. 5)

and we see that the product m ' ' is equal to the
first zero of the derivative of Airy's function, "
that is to say, we have for the exact ground-state
solution of the two-body problem

e= E"'(v) = -(1.0879297)v' ' (6. 6)

If we now use a Gaussian trial wave function g(x}

All our general arguments go through in the same
fashion for problems in one dimension. However,
there are some differences of detail which we now

discuss. The power laws f(lx I) = Ix I
~ for p & 0

require a special vanishing condition on the wave
function at x= 0 and consequently we cannot use
families of such functions to model a nonsingular
potential because the problems have different Hil-
bert spaces: thus, for nonsingular potentials,
hyperbolic envelopes (p= —1) are not generally
useful in one dimension. For the familiar Coul-
omb case in three dimensions it is the product
y4(y) which must vanish at the origin: the ra-
dial wave function 4(y.} itself is, of course, like
e -Ar

'The Schrodinger equation for the linear potential
in one dimension may be written

4'"(x) —(a+v ~x~)4(x)=0. (6.2)

Some E numbers and y numbers [obtained from
the F numbers by Eqs. (4. 13) and (4. 14)] for prob-
lems in one dimension are shown in Table II. The
generic formula. Eq. (4. 12) for the trajectory
bounds and the sufficiency conditions Eq. (4. 15)
remain the same as in three dimensions. The
y numbers for p even are given in one dimension
by the general formula

y, (2v)= —,[1 x 3 x 5x x (2v-1)]' ',
v=1, 2, 3, . . . . (6.9}

Since we have already illustrated the envelope
method in Sec. V for problems in three dimen-
sions we shall consider only one example here of
a one-dimensional problem. Mitra" and Kaushal"
have recently studied the one-particle problem
(i.e. , equivalently the reduced two-particle prob-
lem, or N=2 in our formulation) with potential
shape

f(x) = —x'+, , X,g & 0.1+gx'

As we saw in Sec. V, for us this is linear-para-
bolic problem provided h, ~3 (for all g& 0). Con-
sequently, we obtain E~ by setting z= z, (l)
= 0. 313 317 and Ev by setting y = y (2 }= 0. 5 in Eq.
(4. 12), which provides a recipe for the ground-
state energy of the N-boson problem as a function
of A. and g. Some results for X=g=1 are shown
in Fig. 5; in order to include the results of Refs.
21 and 22 we have again used the scaling law Eq.
(5.5). The remarks made in Sec. V about ac-

TABLE II. ~ and y numbers for problems in one dimension.

.Enveloping
family

Linear
Parabolic

-1.018 793
-1

3~-i/3] 2 0.313317
1
2

xi
2
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curacy are also relevant here. In addition, we
expect in general to obtain worse results in one
dimension than in three dimensions because of the
way the y numbers vary. This can be seen, for
example, if we compare Eg. (4. 14) with Eg. (6.9):
the (2, 2v) magnification factor p, = y, (2v)/y, (2) is
larger in one dimension than in three dimensions.

VII. CONCLUSION

For an increasing potential V(r,.&) = -VJ'(x,.&/a)
which can be regarded as the envelope of a family
of power-law potentials, we have discovered a
simple universal formula Eq. (4. 12) for the depen-
dence of the energy of the N-boson problem on
N Vp p

Q p
and the parameter s of the potential

shape f. Because the formula is simple to state
and to use, we are hopeful that it may be employed
as a tool with which to discuss the inverse prob-
lem of quantum mechanics: given E„, find V.

Having established a general result like Eq.
(4. 12), we should expect that alternative proofs
are available, and indeed this is the case. Since
the L trajectories are obtained by an overall mini-
mization of the energy expectation fi), and the
U trajectories are obtained by a minimization with
respect to scale, both trajectories satisfy the
virial theorem'4 and consequently we have

&ri) = (&„+vf(~})= ~av (2f(~) + ~f '(x)) (7. 1)

The passage from Eq. (7.1) to Eq. (4. 12) can then
be made, although by no @beans immediately, via

8 10
V

FIG. 5. Trajectory bounds for the perturbed harmonic
oscillator with shape f(x) = -[x + x (1+x ) ] in one dimen-
sion. The points o are the energies of the tm0-body prob-
lem obtained by Mitra (Ref. 21) and Kaushal (Ref. 22).

suitable integral inequalities. This alternative
approach can also be used to strengthen the method
in the following way: we select a class of potential
shapes and then search for the best y numbers,
y~ and y~, for this class. We have chosen to
present our results in the geometrical and physi-
cal form in which they were discovered but furth-
er improvements may come in answer to purely
mathematical questions concerning optimal y
numbers and integral inequalities.

The general envelope method, Eqs. (4. 6) and
(4. 7), is not, of course, restricted to envelopes
of families of power-law potentials. We have ob-
tained similar results, for example, for families
of square-well potentials and families of Hulthen
potentials [i.e. , f(x) = e *(1—e *) ']. However,
once we leave the simple power-law collection of
shapes, the peculiarities and intricacies of the
corresponding sufficiency conditions would only
be of interest in connection with a specific ap-
plication.

For molecular forces such as those derived from
the Lennard-Jones potential, the Gaussian trial
function is not appropriate and instead one would
have to use, for example, a more general Jastrow
function" of the form Q = Q,.&., +(r,,}with suitable

Jastrow functions are not only very useful, "
but the two known soluble bound N-boson prob-
lems, the 5-function potential in one dimension'
and the harmonic oscillator, both happen to have
exact ground states which are of this form; how-
ever, we have not been able to work with such
)rial functions for all N in general without making
special approximations. A review of the literature
concerning the quality of the lower bound for sys-
tems of particles interacting by molecular or nu-
clear forces may be found in a recent article by
Hill "

The aim of the present paper has been to exploit
existing knowledge concerning the two-body eigen-
value problem for certain specific potentials in
order to give information about the N-body prob-
lem in more general cases. We can summarize
the principal ideas which we have used as follows.

(a) For the two-body system, each potential
shape f leads to an energy traj ecto' F which de-
scribes how the energy depends on the coupling
constant.

(b} In order to analyze the map A: f-& we use,
in place of the classical analytical tools of power
series or Fourier series, a representation for
f as the envelope of a family of well-understood
potential shapes. This leads eventually to a recipe
for upper and lower bounds to J" given directly in
terms of the potential shape f itself.

(c) The methods of Ref. 2 are applied to extend
(a) and (b) to the N body pro-blem.
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For the special case %=2 the results we have
given in this paper as illustrations may be
strengthened since a Gaussian trial function is not
required for I' ~: specifically, we may replace
y, (p) by y, (p) and, of course, y, (p) ~y, (p) with
equality only for p= 2.
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