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We show how Nambu's dynamical theory of spontaneous breakdown can be applied to the quantum-
chromodynamic pion and kaon but not to the U(1) y, . We therefore suggest that the y0 is not a Nambu-
Goldstone boson.

I. INTRODUCTION

The theory of quantum chromodynamics (QCD)
describing the interactions between quarks and
gluons is rapidly becoming accepted as the correct
theory underlying the strong interactions of the
hadrons. While the large-qz structure of QCD now

has a firm foundation based on parton scaling and
renormalization-group scaling violations, the low-
@' chiral-invariant and chiral-breaking theory of
Nambu'-Goldstone' pseudoscalar bosons in a QCD
context is somewhat in disarray. The origin of
this confusion is the "U(1) problem": QCD appears
to extend the current-algebra-PCAC (partial con-
servation of arial-vector current) program so suc-
cessful for I = 1 pions and I = —,

' kaons to the I = 0
g and g' mesons, where it may noi be in good
agreement with data. More specifically QCD
"naively" appears to require the heavy U(1) singlet
s),(-900) to be a, Nambu-Goldstone boson, not a
welcome result.

In an attempt to resolve this U(1} problem, non-
conventional ideas have been tried which have im-
plications for the pion and kaon as well. In partic-
ular, nonperturbative instanton effects have been
invoked to resolve the U(1) problem' and thereafter
have been employed to explain quark confinement'
and spontaneous breakdown for the m and K.' But
technical problems cast doubt about the role and
the effect of instantons in QCD. ' ' Thus we shall
ignore instantons in favor of a more conventional
perturbative approach towards spontaneous break-
down —still nonperturbative when one sums over
an infinite set of graphs. We have, however, noth-
ing to say about confinement.

Our theory is based upon the original dynamical
perturbative summation analysis of Nambu and
Jona-Lasinio for the four-fermion chiral-invari-
ant Lagrangian, but stated now in the language of
the vector-gluon quark (chiral-invariant) coupling
of QCD. First, in Sec. II we consider the dynami-
cal spontaneous breakdown of chiral symmetry for
non-Abelian SU(3) flavor currents and QCD color-
invariant couplings. Following Ref. 8 we show that

the formal Goldstone theorem' has a dynamical
realization based upon the link between the (non-
perturbative) axial Ward identities and quark-anti-
quark Bethe-Salpeter equations. Then in Sec. III
we suggest that this dynamical realization of the
Goldstone theorem cannot be extended to the U(1)
flavor axial-vector current. In the absence of the
U(l} anomaly, the I = 0 axial-vector current would
indeed spontaneously generate a massless g„just
as in the tt, E, and ri, cases. But the A VV U(1)
anomaly does exist; it breaks the theorem and is
the dynamical origin of the q, mass in the chiral
limit.

To demonstrate that this dynamical realization
of the Goldstone theorem makes sense in pit cases
in the real (chiral-breaking) world, in Sec. IV we
review the Hamiltonian formulation of q-q mixing
in the current quark basis. ' Stated in 8 A. language,
this successful phenomenology corresponds to m„f)o
being generated by the U(1) anomaly and leading
to a U(1) decay constant of"f,-f, in the chiral
limit, also in agreement with data.

Armed with this theoretical and phenomenologi-
cal picture of spontaneous breakdown and the non-
Goldstone nature of the g„in Sec. V we investigate
the Goldstone' approach to 9 &, and the anomaly.
We suggest that the dynamical generation of the g,
mass via the anomaly does not conflict with the
general Goldstone theorem, at least not in solvable
two-dimensional field-theory models. Finally in
Sec. VI we comment upon other aspects of the U(1)
problem, including the Brandt-Preparata q„prob-
lem" and the Glashow"-Weinberg"-Crewther"
vacuum Ward-identity problem. We then sum-
marize the situation in Sec. VII.

II. DYNAMICAL SPONTANEOUS BREAKDOWN FOR
@CD

The general Goldstone theorem related to the
charge Q, associated with a conserved (axial-vec-
tor) current states that if Q, ~vac)&0, then there
must exist a massless Goldstone boson in the the-
ory. However, our understanding of non-Abelian
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+ Q(p'}p' qp'ys (2)

where we have included only chiral-invariant
terms in (2). Thus we reinterpret Fig. 1 as in

Fig, 2, again in the ladder approximation. Then
indeed the desired result emerges: the 0 binding
equations (PBE) as q-0 become identical with the
dressing equations (DE) for the quark, assuming
mp 0 The only constraint on the axial -ve ctor
current is that it must satisfy the general Ward
identity (again for m, = 0)

field theories such as QCD does not always make
this theorem transparent. On the other hand, the
alternative dynamical approach of Nambu' applied
to four-fermion theories can be extended to other
chiral-invariant field theories by exploiting the
role of the axial Ward identity. ' In this section
we review how dynamical spontaneous breakdown
of chiral symmetry works for non-Abelian QCD.
The theory is sufficiently complex that it is help-
ful to introduce the key notions in stages.

(a) Summation of ladder graphs F.irst we sup-
press all internal-symmetry labels and consider
only massless vector-gluon exchanges with dressed
quark lines determined by the general inverse
fermion propagator

S '(p) =Pm' -+ Z(p) = C(p') + D(p )P' . (1)

The idea of Nambu and Jona-Lasinio is that if the
bare quark mass is zero, nzp= 0, so that the bare
Lagrangian is chiral invariant, then there exists
a formal identity between ladder summations of
pseudoscalar bound-state Bethe-Salpeter graphs
as q-0 and quark dressing graphs. For three-
point couplings such a possibility is 'depicted in
Fig. 1; it cannot be achieved.

It was shown in Ref. 8 that this goal is not quite
realized because of the homogeneous nature of
the Bethe-Salpeter equation associated with the
composite wave function Py, . A constant inhomo-
geneous term is missing in this composite wave
function which prevents P from being linked with
C of Eq. (1).

(b) Axial Ward identity (AWI). The next refine-
ment is to identify the general pseudoscalar com-
posite wave function with the divergence of the

I
axial-vector quark current in the spirit of PCAC,

4' (p) —.iq F (p; q) = I'(p }y,+ A(p') g y,

I
eg

FIG. 1. Inequivalence of Bethe-Salpeter ladder graphs
for pseudoscalar coupling and quark dressing diagram.

Now the power of the Ward-identity method is
that (3) is valid (still ignoring Abelian anomalies)
beyond the ladder approximation and perturbation
theory. Thus (4) are presumably general identi-
ties, a fact that we now verify.

(c) Lou-energy theorem. The relations (4) are
quite obvious when one makes a low-q expansion
of (3}, leading to the general form for the axial-
vector current

5 . 2C(p')

»'(p')p, 4y. o(q')

Then contraction of (5) with q" and comparison
with (2) immediately reproduces (4). At this point
we also recognize the characteristic "induced
pseudoscalar" structure of the zero-mass 0 pole
in (5), with -C(p')/D(p') corresponding to the
dressed fermion mass in the resulting Goldberger-
Treiman relation (f,g =mg„with g„-1).

Thus if the quark acquires all its mass via lad:-
der (and nonladder) diagrams such as the right-
hand graph of Fig. 2 so that C(p'= m') 0 0 in (5),
then a zero-mass Nambu-Goldstone pseudoscalar
automatically appears in the theory, i.e. , in (5).
That is, (4) implies that the equations that bind a
quark and antiquark in an s wave at q= 0 (through
the first duo leading orders in q} correspond to
the equations. ,that dress the quark and give it a
mass

PBE ~, ,=DE. (5)

This relation (6} is the thrust of the Nambu and
Jona-Lasinio approach to spontaneous breakdown.

While this "if-then" proposition and (6) are
simply realizations of the Goldstone theorem, our
discussion will be very illuminating for the U(1)

-iq"1"„(p;q) = S '(p+ ~q) y, +y,S '(p —aq) . (3)

After much algebra, we find that Fig. 2 makes
sense, providing the form factors in (1) and (2)
are related in the ladder approximation as'

Rp') = 2C(p'), A(p') =D(p'), q(p') = »'(p').
(4)

FIG. 2. Equivalence of Bethe-Salpeter ladder graphs
for axial-vector current as q 0 and quark dressing dia-
gram.
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where V'„arecolor vector gluons and

Ga S Va S Va ++fabcVb Vc (8)

is the non-Abelian field tensor. On the other hand,
the axial-vector quark current is characterized by
the flavor symmetry matrices T', where for U(3),
i=0, 1, . . ., 8, i.e. , J'„',=gT'iy y, g. Working in an
axial gauge, the dressed axial-vector quark cur-
rent still satisfies (3) for the non-Abelian SU(3)
flavor configurations, i = 1,. . ., 8,

problem. As we shall show in a separate section,
the Goldstone theorem is subtle to apply for the
U(1) axial-vector current. However, the dynami-
cal criterion (6} remains clear and simple in that
case too.

(d) T2vo dime-nsional model field theori es. The
axial Ward identity (3) and low-q expansion (5) are
valid in any dimension. Thus it is useful to search
for a counterexample in solvable two-dimensional
model field theories —subject to the Coleman the-
orem' which states that there is no Goldstone pion
in two dimensions. In particular, in the Gross-
Neveu 1/N expansion" of the (p|t)' —(gy, g)2 La-
grangian, it would appear that (qq)a 0 0 in lowest
order. The Coleman theorem, however, requires
that high-order terms in the 1/N expansion again
reinstate the (qq},= 0 no-pion condition. But then
the mean-field approximation still generates an
effective fermion mass term proportional to
([q(1+iy,)qq(l -iy, )q]' '), in the mean-field La-
grangian —an apparent contradiction to (4), (5)
(i.e. , Cx0 but no pion). Not so. Indeedby a boson
representation of the theory one could easily show
that the Gross-Neveu model contains a decoupled
massless Goldstone boson. " This massless par-
ticle would not show up in any boson Green's func-
tions (other than its own), but could appear in fer-
mion Green's functions such as I"',.

Next consider the two-dimensional Thirring mod-
el" with Lagrangian (gy g)'. In this case the fer-
mion remains massless but the pion exists —again
an apparent contradiction to (4}, (5), but in the
opposite fashion as the Gross-Neveu analysis (i.e. ,
C= 0 but a pion}. Now, however, the pion is a
free particle and as such does not violate the Cole-
man nor our low-q theorem (4), (5).

(e) Non-Abelian QCD: Since we can find no ob-
vious contradictions to (4), (5) or equivalently (6)
in lower dimensions, we proceed to one final gen-
eralization by introducing internal coiox symmetry
matrices X, a=1, . . . , 8 into the ehiral-limiting
QCD Lagrangian, now in four dimensions,

2= g(i4+g2X'Y')g--,'G'„,G'a", (t)

The important point concerning color vs flavor
matrices is that they commute. In particular,
Fig. 2 applies in the non-Abelian as well as the
Abelian case because VT'A. '= VX'T'. Thus Eqs.
(4)-(6) remain unchanged for SU(3) flavor cur-
rents satisfying (9). Consequently all the u, d, s
flavor quarks can acquire all their mass in the
chiral limit via the self-energy-type dressing re-
lations. Then by (6') there must exist a Nambu-
Goldstone 0 SU(3) v, K, and 7), in the theory.

III. U(1) @CD INCLUDING ANOMALIES

As is well known, the essential difference be-
tween i = 0 U(1) flavor axial-vector currents (and
also the axial-vector current in QED) as opposed
to the non-Abelian i & 0 currents is that although
the latter currents are conserved in the ehiral
limit

8 J 5 0
y g 1

p ~ ~ ~ y
8

the former currents are not, but instead satisfy
the anomalous relations""

e2

g litem . ~o,gy6y emblem16m' ag y6 &

6 2

Sad i=O 8 agybGa Ga
a ~b

(11a)

(lib)

Here G's is given by (8) and I'„„=S V„' -B,V'„.
Now given that the dressing relations for the

flavor quarks are equal to the q- 0 binding equa-
tions associated with the i = 1, .. ., 8 flavor cur-
rents as represented by (6), we do not see how it
is possible for these same dressing relations also
to be equal to the different U(1} binding equations
associated with the i = 0 flavor current. Put
another way, the U(1) axial-vector Ward identity
(9) is modified by the anomaly (lib) as depicted
in Fig. 3 to leading order in vector-gluon ex-
change. The left-hand graph is topologically equi-
valent to the right-hand graph and the latter ex-
plicitly contains the triangle anomaly. While this
observation is certainly valid for the ladder graphs
depicted in Figs. 2 and 3, we suggest that it is
also true for nonplanar diagrams as well. That is,
it is difficult to imagine the U(1) anomaly not al-
tering (6) as q-0 because the binding-dressing
equations (4) are derived for the leading t2vo or-
ders of q in (6).

The upshot of this discussion is that given the
validity of (6), a similar U(1) relation cannot be
simultaneously valid, i.e. ,

(12)

-iq "I"'„',(p; q) = S '(p+ ,'q) y,T'—
+ T*y,S '(P 2q)

'. — (9)

Thus we conclude that because the m, A, and q,
are dynamically generated Nambu-Goldstone bo-
sons by (6), the U(l) rt, cannot be a Nambu-Gold-
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FIG. 3. Additional term in the U(1) Bethe-Salpeter axial-vector-current divergence equation generated by the U(1)
anomaly.

stone boson due to (12). Moreover, given X from
Fig. 3 (in lowest order}, the qp mass in the chiral
limit is generated via

&o~a zp~qp&=f (m'")'

= &o ix/ri, &.

(13a)

(13b)

That is, only in the absence of the anomaly would

gp be a Nambu-Goldstone boson, satisfying a re-
lation similar to (10). We cannot, however, turn
off the U(1} anomaly in QCD and so we have not
unequivocably demonstrated the existence of the

gp —except to suggest in (13) that qp alone prevents
the U(1) axial-vector-current matrix elements
from being conserved in the chiral limit. The re-
cent work by Witten' on the I/K expansion helps to
justify the existence of the go. Alternatively, we
may turn to quark-gluon QCD phenomenology to
reaffirm the existence and compute the mass of

goy

.m, '+ 2P W2P

W2Pp 2mr' -m, '+ P~.

m 0

. 0 m„,'.

Now for the I = 0 pseudoscalar mesons we follow
the analysis of Ref. 9 and references therein to
write

&q„,~X ~g„,&= (2~;+2P„ (16a)

«. l~'I&.&= (2 .""p. (16b)

where q~z = (uu+ dd)/v 2, qz = ss, and P~ is the
strength of the quark-gluon annihilation graph of
Fig. 4 which couples to all qq channels. In princi-
ple, the two gluons exchanged in Fig. 4 represent
the sum of even numbers of gluons coupling to 0 '
mesons. Next we eliminate the unknown mo, m~
factors in (16) in favor of the m and K masses from
(15}and then rediagonaiize the resulting I = 0
pseudoscalar mass matrix as

IV. QCD PHENOMENOLOGY AND THE U(1)
PROBLEM

While our insight into the non-Goldstone nature
of the U(l} pseudoscalar meson was based upon
dynamical ladder graphs, real world phenomeno-
logy presumably corresponds to summations over
all QCD graphs. We now demonstrate that phe-
nomenology also suggests that go is not a Nambu-
Goldstone boson and that m„ is generated by the

'lp

V(1}anomaly.
In Hamiltonian language the current quark mass

matrix

If the quark-gluon graph of Fig. 4 makes sense,
.then the tgvo constraints on P~ in (17) must lead to
the same value for P~. Indeed this is almost so,
for the trace of (17}requires P~= 12.7m, ' while the
determinant of (17}implies p~= 14.5m, '. A slight
bit of multiplicative SU(3) breaking (due to the fact
that mp, » mp) in (17) of the form P~, xl8~, x'I8~ in
the &S, WS-S, and S elements'" then leads to a
unique value of P~ and the corresponding 1-8
pseudoscalar mixing angle of

P~ = 14.7 m, ', e~ = -13'
K'= q3gq= mpuu+mp~Zd+mp ss+ ' ' '

is the origin of the Nambu-Goldstone m and K
masses

2m. , (15a)

along with x= 0.8. The mixing angle in (18}is
reasonably consistent with all data. '

The important point of this analysis for the U(1)
problem is that Pz does exist and indeed generates
the bulk of the physical g and g' masses. In par-

«(X' (A&= m, '= g(m,",+~,"), (15b)

where kp=p (mp„+m«). Here m„m„arerenorm-
alized chiral-breaking quark masses which vanish
along with m, and mz in the chiral limit. Also $

is a flavor-independent scale factor and n is the
power of quark mass that enters the hadron mass
matrix. While $ and n are model dependent, PP our
considerations of (15) will be model independent.

FIG. 4. Quark-antiquark annihilation gr aph contribu-
tion to the I= 0 pseudoscalar mesons.



2058 ADRIAW N. PATRASCIOIU AND MICHAEL D. SCADR05

ticular, the determined parameters (18) imply'
that Pp corresponds to 26% of m„'and V1% of m„,'.
Moreover, in the ehiral limit with m„m~-0 in
(16) along with m„'+m„,'= m„'+m„', the chiral-
limiting q mass is

(mc")2= 3P mcL- 900 Mey. (19)

Thus we see that QCD phenomenology implies that

m„ is not zero in the chiral limit, i.e. , that g0 is
0

not a Nambu-Goldstone boson.
To reinforce this result, we link up the phenom-

enological quark-gluon annihilation graphs of Fig.
4 with the dynamical U(1) anomaly of Fig. 3 and

Eq. (13). "Tying together" one qq pair in Fig. 4

indeed corresponds to multiplication by f, times
m„,; i.e., f, times quark-annihilation graph=
anomalous divergence. Following Ref. 10 we fur-
ther note that a factor of m„,2 also appears in the eval-
uation of the right-hand side "diamond diagram"
of (13), with the result that m„'cancels out of the
calculation [but mcLco by (19)]. The resulting
analysis, including an asymptotic-freedom QCD
cutoff of the relevant Feynman integrals, then leads
to the scale"

(20)

in the chiral limit. The conclusion (20) is also
reasonably consistent with the data, the latter giv-
ing' f„/f,= 1.18 a 0.09 and f,,/f, = 1.05 a 0.23.

V. U(1) PROBLEM AND GOLDSTONE'S THEOREM

The standard lore concerning the U(l) problem
for QCD is that the anomaly is "soft, " i.e. , con-
tains the divergence operation, so that it does not
circumvent the Goldstone theorem. Stated in a
more quantitative manner, define the U(1) cur-
rent"

(2la)

p, = p, + 2 B A=, B d'~U r-x xB r,
(23a)

j,= j,+,A && E+, U(r -x)E(x) B(r)d'r
4m' 4@2

2

4@2
E(x) U(r -x)B(r)d'r

2

+ B(x) U(r -X) E(r)d'r
4m2

(23b)

[with U defined by their Eq. (3.19)] is both gauge
invariant and locally conserved. Applying Gold-
stone's theorem' to (23), one concludes that if

Q,
'

~0) to, then the theory requires the existence
of a Goldstone boson. Kogut and Susskind argued
that since

Q~= Q5

and one certainly hopes that

Q,'io&~o

(24a)

(24b)

(25)

(as an I= 0 analogy to the I = 1, —,
' cases of Sec. III),

it must be that Q,'~0)ao. Hence one would expect
q0 to be massless in the ehiral limit. Since this
conclusion is opposite to our dynamical (Nambu)
generation of the g0 mass via the anomaly, we are
obliged to investigate this problem further.

While in the absence of ariy computations it is
difficult to prove or disprove the Kogut-Susskind
conjecture, we offer the following comments:

(a) To derive (24a) from (23a), one discards a
surface term. We question this procedure in an
operator equation. In particular, consider the
two-dimensional Schwinger or Thirring models
where one writes j = & „8"g,so that

W6 '~
& ""v'(s v'+-.'gf'"v'v')

64&2 @ ~ 8 r 3 8 r (21b)
While [Q, P] = [Q, g] = 0, one obviously has for
charged fermion fields

8 J,=O, (22)

for which there "ought" to exist a Goldstone bo-
son, the g0. As is well known, the possible loop-
hole in this argument is that K„of(21) is gauge
dependent (because V is gauge dependent, while
G, is not). Clearly one does not want the exis-
tence of a U(1) Goldstone boson to depend upon a
specific gauge.

To try to get around this problem, Kogut apd
Susskind" noticed that the current J,', ~ (p„j,)
with

so that 8 K is the anomaly term in (12b). Then in
the chiral limit, J, is divergenceless,

[Q, 4] ™0«. (26)

The analogy of (26) for the Kogut-Susskind model
is that charge-operator relations could differ
from charge-matrix element relations such that
Q,'0 Q,

' as an operator relation. The Goldstone
alternative for g0 would then be avoided.

(b) As another possibility, we suppose that

Q,
'

~0) t 0 is indeed vali. d. Then one way to evade
giving g0 zero mass is to have the resulting Gold-
stone boson have a free field. Recall that this
circumstance occurs in the Thirring and Neveu-
Gross models, where the vacuum breaks chiral
invariance, yet there is a free-field Goldstone
boson. To be more specific, the state Q,'~0) could
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be a free massless particle that decouples from
the ri, which perhaps could be Q,

'
~0&.

(c) Kogut and Susskind argue that long-range
"vacuum seizing" gives g, the nonhero mass.
They make the analogy w'ith the two-dimensional
QED (Schwinger} model. However, that case
could also be regarded as an example of the Higgs
mechanism: the massless photon absorbs the
would-be Goldstone boson and becomes massive.
Of course, it so happens that in two dimensions
the Coulomb potential confines. Therefore it is
not clear whether in the Schwinger model the
evasion of Goldstone's theorem is just another
case of the Higgs mechanism or instead is really
due to confinement. If confinement were indeed
responsible for the nonzero g, mass (in four di-
mensions}, one would wonder what it may do to the
other eight SU(3) Nambu-Goldstone bosons.

(d) As a concrete counterexample to the conjec-
ture that Q,'~0&= Q,'~0&e0 implies the existence of
a Goldstone go, we offer our dynamical and phenom-
enological analysis of Secs. II-IV in terms of
which s J", '= 0 generates eight SU(3) Nambu-
Goldstone bosons but 8 J,WO keeps go massive
even in the chiral limit.

In summary, in spite of the softness of the U(1)
anomaly, the associated gauge dependence of the
axial charges obscures the application of the Gold-
stone theorem to the U(1} pseudoscalar meson.

V I. OTHER ASPECTS OF THE U(1) PROBLEM

Any puzzle associated with g and g' —their decay
modes and relative positions in the pseudoscalar
mass spectrum —is often blamed on the U(1}
problem. Since we have disposed of the latter in
the previous sections, we feel obliged to comment
upon these other problems as well.

(a} Radiative decays. The recently measured 2y
decay rates of g and g' yielding' "I', = 324+ 46
eV and I'„,= 5.9+ 1.6 keV are reasonably consis--
tent with SU(3}-invariant decay amplitudes, the
m'yy rate of 7.9 eV, and our deduced mixing angle
of 8~= -13 . As previously noted, in terms of the
em triangle anomaly these rates predict f„.f

„-f„consistent with (13) and (20}.
(b) g'-gvn decay. The 6(980) meson controls

this process" via g'- 6m and 6- gn, leading-to an
acceptable rate.

(c) Sutherland q„puzzle The g„am. plitude
vanishes for" X, =KJJ Electromagnetic mass
splittings, however, require a I, tadpole" to exist
in X, =X«+&~,. Then the g„amplitude does not
~vanish.

(d) PCAC and rapidly varying g„amplitude.
Even with a u, tadpole in 3C, , the soft-pion limit
for 7I' or m' in g, , leads to different amplitudes,
suggesting again the Sutherland puzzle. " The

where M„=if,'&v'v"
~
[Q,', R, ] ~7i&. Reducing in a

second pion in a similar fashion leads to the same
total on-shell amplitude as obtained using nonlin-
ear Lagrangian techniques in the tree approxima-
tion. "

(e) Relation of g„amplitude to vanishing
&mm

~

8 2"e
~q&. It has been noted" "" that the u,

tadpole in K, implies for q, -O

&~v (Wav, +v, (q& &vv ~e ~"' ~q&-0, (28)

which vanishes by momentum conservation. It
turns out, however, that this is irrelevant for the
on-shell q„amplitude in (27) because M„
—M~(q, - 0) vanishes identically whether M„does
or not. " In all cases, the physical amplitude is
the sum of on-shell pole amplitudes

Mon, =MD (29)

Thus (28) is not an example of the U(l) problem.
(f) Magnitude of q„rate. Assuming rl = r4 along

with the naive scale &w' ~X, ~q, & = (b.mz'-b. m, ')I
v 3, the pole amplitudes (29) lead to I"',";=70 eV.
The combined effects of g —g' mixing with 8~=-13'
(due to quark-gluon-photon annihilation graphs for
the &m' jX, ~g& transition) leads to the predicted
rate'

I', ,=126 eV,

only 2—,
' standard deviations below the measured

value of 201+ 29 eV. Thus the g„ratedoes not
appear to be a manifestation of the U(1) problem.

(g) U(1) Vacuum Ward identity. Glashow, "
Weinberg, "and Crewther" have noted a possible
inconsistency in the vacuum matrix elements of
chiral-breaking Ward identities involving the o-
term operators [Q,', is A') for i=3, AS. We refer
the reader to Ref. 13 where the following U, (1) re-
lation is derived:

m 'f, '= 4«v'))+ O(m, '), (31

with (& v'&) the average of the square of "topologi-
cal charge p." Crewther then uses the %KB ap-
proximation to evaluate

«v'»~, = O(m, '), (32)

where m, is the nonstrange current quark mass.
He then assumes the "strong PCAC'"' chiral-

PCAC hypothesis, however, should only be applied
to smoothly varying amplitudes. Separating out
the rapidly varying m, g, and g' poles for the
transitions &w ~X, ~ri, g'& and applying pion PCAC
to the g„background amplitude then leads to the
same on-sheQ amplitude no matter which pion be-
comes soft" with

(27)
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breaking dependence m, '=O(m, ), which is obvious-
ly inconsistent with (31) and (32) since f,= O(nz, ').

Two comments come to mind:

(i) Assuming instead "neutral PCAC'""" "with

m, '=O(mc'), (3l) and (32) are in fact consistent
with one another. " So perhaps this is an indica-
tion that strong PCAC is not applicable in the real
world.

(ii} There are serious doubts as to the validity
of the WKB approximation stemming from the
boundary conditions used to evaluate the fermion
determinant. 6

In passing, we also note that the additional Wein-
berg" problem of' a light I = 0 (unphysical) Gold-
stone boson of mass m~~ v 3m, never arises for
us because the gp not being a Goldstone boson
eliminates an additional and unwanted f,m„'term
in (31).

In any event it is our contention that the sum
rule (31) is not a U(1) problem. Rather, this U,(1)
construction should be used as a guide to the cor-
rect chiral-breaking scheme. But this occurs,
logically speaking, well after one understands
spontaneous breakdown in the chiral limit and the
non-Goldstone origin of the gp mass.

VII. CONCLUSION

In this paper we have attempted to resolve all
aspects of the U(1) problem. Our major conclu-
sions are the following:

(i) Dynamical spontaneous breakdown of chiral
symmetry for non-Abelian QCD corresponds to
the quark dressing equations with mp= 0 being
identical to the 0 qq binding equations at zero

four-momentum for i = 1, . . ., 8 SU(3) flavors. This
dynamical realization of the Goldstone theorem is
linked with w, K, and g, being Nambu-Goldstone
bosons.

(ii) The A VV anomaly for i= 0 prevents the U(1)
binding equations from being the same as the quark
dressing equations for mp 0 Thus the 0 gp is
not a Nambu-Goldstone boson; instead, its mass is
solely generated in the chiral limit by the U(l)
anomaly.

(iii} The phenomenology of quark-gluon annihila-
tion diagrams resolves the g'-q mixing problem
and reaffirms that the U(l) anomaly is responsible
for the chiral-limiting gp mass.

(iv) The "soft" structure of the anomaly does not
necessarily void the above results (ii} and (iii) via
the Goldstone theorem. Two-dimensional field
theory models provide guidance in this respect.

(v) The U(l) vacuum Ward identity is not a. U(1)
problem. Instead it provides a severe restriction
on the correct scheme of chiral-symmetry break-
ing. If the WKB approximation is correct, then
"neutral PCAC" is favored over "strong PCAC. "

(vi) The q„PCAC structure and rate are not
U(1) problems once one accounts for the rapidly
varying poles in M„„andincorporates quark-
gluon-photon annihilation graphs in the evaluation
of (v'iu, i').
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