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Massless SU(N) Yang-Mills theory in two dimensions

M. Hosseio Partovi
Stanford Linear Accelerator Center, Stanford Uni Uersity, Stanford, California 94305

(Received 17 April 1979)

An analysis of two-dimensional, massless SU(N) Yang-Mills theory initiated previously is continued and
extended. The fermion propagator in the presence of a non-Abelian potential is constructed exactly, and the

corresponding (induced) vacuum fermion currents and their divergences are deduced. The analysis of the color-
singlet current and the associated bound states reveals the nonexistence of massive color-singlet bound states. This
fact, together with the previously established existence of massive "colored" states, characterizes the spectrum, save
for possible massless excitations. A consideration of the boson-representation version of the theory reveals the
symmetry breaking and the associated mass generation to be a Schwinger-type mechanism. An Abelian model
illustrating this analogy is briefly analyzed and discussed.

I. INTRODUCTION AND SUMMARY

In a recent work' we reported the outline of a
calculation in two-dimensional massless SU(N)
Yang-Mills theory [to be referred to here as quan-
tum chromodynamics (QCD)] that showed the exis
tence of a degenerate family of PP —1 massive
"colored"' bosons. Since this massless theory is
expected to be the strong-coupling limit g» m (g
is the coupling constant, m the bare quark mass)'
ot massive QCD, the above result is implied for
the strong-coupling limit of massive QCD as well.
This behavior is contrary to what is believed to
happen in the 't Hoof t' model (i.e. , massive QCD
in the limit of large N), and it gives support to
the conjecture' that the model is not valid in the
strong-coupling regime. In this paper a more ex-
tensive analysis of massless QCD is carried out
which, among other things, establishes the non-
existence of massive color-singlet bound states in
the theory, thus yielding a particle spectrum
basically different from that of the confined phase.
How does this come about? In order to provide an
answer to this question, and before entering into
the details of the main analysis of this paper, it
is useful to consider a simple Abelian model which
will essentially reproduce the behavior described
above and at the same time will identify the mech-
anisms of symmetry breaking and mass genera-
tion which occur in the non-Abelian theory.

The model, which is a variant of the Schwinger
model, contains two species of massless fermions
q, and q~ and is defined by the Lagrangian density

7 =q i p'q, + q~i$q~ —ze(q, y"q~+q~y~q, )A,

-~ F~ F""—J~A

tions. ' With ref e re nce to the currents

Combined with the field equation for A (in the
Landau gauge), the first of these gives

s'+ —(g —&'&")(A ) =~'
27t

(6)

Again, as in the Schwinger model, and for the
same reasons, fermions have disappeared and a
massive boson has appeared. Moreover, this
boson couples to the "triplet" qq channel, with the
"singlet" channel remaining noninteracting, as
may be seen from the following propagators:

-i(o
~

T[j;(x)j".(y)]
~

o) = —,(a'""&' —s s")D(x —Y)

& t
= 2 e(qer 'qa+ q vr'qa) ~

2g= (qay qa+qb yqb) )'

appropriately regularized to ensure current con-
servation, one can calculate the corresponding
vacuum currents

(j&) = (out ~g& ~

in)/'(out~ in),

(j,")= (out ~g, ~

in)/(out
~

in),

induced by the "external potential"

(A, ) = (out~A,
~

in)/(out~ in).

In much the same way as in the original solution
of the Schwinger model, ' one obtains

= s„A„s„A,,
where J is an external c-number current provided
for the purpose of carrying out functional opera-

where n (D) denotes the (Feynman) propagator
for a boson of mass e'/2w (zero). The designa-

(8)
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tions "singlet" and "triplet" have been used in
reference to an obvious interpretation of the above
model as a broken-SU(2) Yang-Mills theory in
which all but one of the gauge degrees of freedom
have been frozen out, leaving a unidirectional (in
internal space), i.e. , Abelian, field.

Essentially, the behavior observed in the above
model, appropriately generalized to an analogous-
ly broken SU(N), will emerge from the analysis
of massless QCD in the following sections. Thus
the color-singlet quark current will remain free, '
while the color current mill develop an axial
anomaly which will serve as the source of mass
generation. These properties of the currents will
in turn lead to the nonexistence and the existence,
respectively, of massive color-singlet and colored
bound states in the spectrum of the theory.

The rest of this paper is organized as follows:
In Sec. II we formulate the theory in a functional
framemork and proceed to construct the quark
propagator in the presence of couplings to exter-
nal SU(N) and U(1) gauge potentials. In Sec. III
this propagator is used to derive the induced
vacuum currents and their divergences. An alter-
native derivation of these current divergence re-
lations is also given here. The above-mentioned
properties of the currents, mhich essentially
characterize the spectrum of the massive states,
are deduced in this section. The fermion-anti-
fermion equation derived previously within a new
bound-state formalism is employed in Sec. IV to
establish the nonexistence of massive color-
singlet states. In Sec. V, the theory is written in
boson form, and the existence of massive colored
states is deduced from the infrared behavior of
the theory. Concluding remarks are presented in
Sec. VI. To make this paper self-contained, part
of the material in Ref. 1 will be repeated here,
often in a more detailed manner.

4»"(x) =B,."(x)—i
6Z, x (14)

Note that the gauges for U and B have been left
unspecified.

While the solution of Eq. (12) in the absence of
the non-Abelian coupling (i.e., g=0) is straight-
forward and well known, the solution of the full
equation is a nontrivial matter. Thus, following
Schwinger, ' we make the transformation

S(x,y) = exp[4 (x) —4 (y)]S'(x,y),
where

e(x) = e fdx S(x —x')X'"(')„(x'), (16)

thereby eliminating the Abelian coupling and leav-
ing

The rest of the notation is defined by g"= —g" = 1,
y =0'3, y'=is„y'= y'y'=o„and & '= 1, where
&"" is the antisymmetric tensor. The extraneous
objects J and Uwill, of course, serve an auxiliary
function and will be set equal to zero for arriving
at physical results.

The first step in the analysis is the elimination
of quark variables by means of functional meth-
ods. ' Thus we consider the vacuum expectation
value

B, = (out)B,
)
tn&i&out) tn&,

and proceed to calculate the vacuum currents in-
duced by B,„and U. Defining the quark propagator
in the usual way by

S(x,y) = —i(out~ T[q(x)q(y)]~ in)/(out~ in), (12)

we obtain the Schwinger equation'

y„[ia~ —e U "(x) +g&,.A»~(x))S(x, y) = 6(x —y), (13)

where

H. CONSTRUCTION OF THE QUARK PROPAGATOR 3 „[i8„"+g&, A, ,"(x)]S'(x,y) = 5(x —y) . (17)

The Lagrangian density for massless QCD, in-
cluding a coupling to a c-number colored current
J," and a coupling of the color-singlet quark cur-
rent to ac-number potential U", may be written

Note that S, appearing in (16) is the free fermion
propagator given in Eq. (21) below.

The solution of Eq. (17) is achieved by consider-
ing its light-cone decomposition

Z=qi)iq ——,Gf"G» +B,„(j,"+J(~) —ej„U", (9) S' = S"+S', S"= A~S', A' =
2 (1 z y'), (18)

where

G» ~ ='.B».—'B( +gf((aB» B» &('=«3"~»q

j = qy q, [»(.„X»]=if((»X„, tr(X(A() = q6((,

(10)

Here a contraction over color as well as spin in-
dices is implied in the definition of the currents.

( 1 („S;(x) = ——X, (p —ee'ee"'(x, )e(x.)), (20)

where P denotes the principal value, e gives the

and by writing

S'(x 3) = &.(x)&. '(y)SO(x-y) & (x)& '(y)S.(x-3),
(19)

with
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sign of its argument, and the definition a, =a'=ao
+ g, for the light-cone components of ~ „has been
adopted. Note that 8, =28/Bx, and that S,' was ob-
tained from Eq. (18) and

S (x) =-—y x"/(x'-ie).
2m

(21)

The equations obeyed by V, emerge upon insert-
ing (19) in (17); they are, in differential and inte-
gral forms, respectively,

(22)

X(x),= ( e fdx ''(exx')[-)(x;A, ,(x')]X,(x'),

(23)

where s', is obtained from S; by omitting y, /2 from
the latter. We now observe that the gnsgtze

7;(x) = T, (x)7,(x,),
(24)

T, (x) =)'Iexe (Xx,. fd x ()"''('x—x,',)e(x, —x'.)A, ,(x')

where T denotes ordering with respect to the non-
trivial integration in (24), and a careful partial
integration in (23) using the property

iB,T, =-I &,.A, ,T, ,
lead to

1 1
P, (x) =1+v;(x) —— dx,', . 7' (x' =+~,x')—

277 X —X' +'46

The use of Eq. (24) in (26) in turn gives

7,(x,) = 1 —— dx', , [T,(x,' = ~, x,') —1]r,(x', ) .i, 1

1
—X' —l6

v (x'=-~ x')

(25)

(27)

With v, thus given by this one-dimensional integral equation, we have completed the construction of the
quark propagator in terms of ordered exponentials and the solution of Eq. (27). For later reference, we
record here the full expression for the quark propagator

S(x,y) =exp[4(x) —C(y)][T,(x)r, (x,)r, '(y, )T. '(y)A'+T (x)r (x )7 '(y )T '(y)A ]S,(x-y). (28)

We pause here to call attention to the fact that in going from (22) to (23), the usual causal boundary con-
ditions were incorporated into the solution. That Eq. (22) admits of a wide class of solutions only one of
which satisfies (23) emphasizes the fact that, as usual, care must be exercised in constructing the causal
propagator. Moreover, it must be pointed out that the above construction is valid for any gauge and that
the appearance of light-cone coordinates notwithstanding, it is not committed to light-cone quantization.

HI. THE INDUCED QUARK CURRENTS

In this section we shall derive expressions for the induced singlet [U(1)] and colored [SU(N)] quark cur-
rents defined, respectively, as

(j~) = (out
~
j "~ in)/(out

~
in),

(j;.) = (out ~g,." ~

in)/(out
~

in) .
These are in turn related to the propagator by the formulas'

(j "(x))= -i lim tr fz [1+ ie U"(x)e„]S(x+ e /2, x —&/2) j,
6 ~0

(j~ (x )) = ig li m t r—(y~ A, [1 —igX,.A",.(x)e„]S(x + c /2, x —e/2) j .

(29)

(30)

(31)

(32)

Note that the appropriate line-integral factor ensuring gauge invariance for each current has been included.
It is at this juncture that an essential simplicity of the massless two-dimensional theory surfaces; to

wit, each of the U(1) and SU(N) currents depends on its corresponding field only. Accordingly, the induced
U(1) current is calculated from Eq. (31) to be

(33)

which, save for the factor of N accounting for color multiplicity, is precisely what it would be if the non-
Abelian coupling were absent. Similarly, when the implied operations in (32) are carried out, one obtains



22 MASSLESS SU(N) YANG-MILLS THEORY IN TWO DIMENSIONS 2035

(j",. (x)) =—A(~(x)+—tr X,
' K, '(x)o("+X,. 2' '(x)(2,", o((," = (1,+I) (34)

where the trace is to be taken over the color indices. Clearly, this current only involves &, , as asserted
above.

Indeed, the decoupling just demonstrated may be used to factorize the generating functional (out
l
in) in a

rather trivial way. From Eqs. (9) and (29), one obtains
I

(j "(x))=— ln((out
l
in)) = — (g~ —8~5")U„(x) .

e 6U„(x)

This functional differential equation is easily integrated to give the factorized form

( 2

(out
l
in) = expl d'x d'x'U'(x)(g„„&„5„)U"(x')

l
[(out

l
in)], .

k 2m pP V v

(35)

(36)

A A= ——(g~" —8"s")6(x —x')

one can see that

j"(x) = —(Nlw)" 'e '"S„Z(x),

(37)

(38)

with g a canonical pseudoscalar massless field,
in accordance with a free fermionic current.

We return now to Eq. (34), and consider the vec-
tor and axial-vector divergences for the current
(jf(x)). These are most usefully expressed in the
implicit forms

(39)

where the dual vector g" is defined to be &""g„.
As expected, these relations may be rewritten .

concisely in terms of the gauge-covariant deriva-
tive

(41)

The result is

D,"„(g)( ) =0, (42)

Clearly then, the color-singlet current j"is (in
the physical limit e =0, which will henceforth be
enforced) as it would be in the free case. ' There-
fore, from the propagator

-i&0
I &[j "(x)j"(x')]I0& =-, „.. &j"(x»1

2'„S(x,y) =6(x -y) . (17')

Let n" be a unit vector, n„n" = 1. Then the sought-
after equation may be written

[g(1)g+(1)+ g(2)g-(2)]S( )C 0 (46)

where C is the charge conjugation matrix, and
where the superscript (1) [(2)] indicates matrix
multiplication onto the first [second] set of spin
and color indices carried by SC. Furthermore,
the characteristic simplicity of the spin algebra
requires that S& commute with y', with the conse-
quence that (46) may be simplified to

Before proceeding further, it will be useful to
provide an alternative derivation of Eqs. (42) and

(43) and the corresponding result for the color-
singlet current. This alternative method will
avoid the elaborate construction of the quark
propagator and, relying on differential properties,
will lead directly to the expressions for the cur-
rent divergences. Though limited in its results,
it will provide an independent verification of the
preceding calculations.

The alternative method is based on a "two-body"
equation which is derived within the context of a
formalism developed recently. "" To introduce
this equation, we define the operators 2' accord-
ing to

y[is„" +xg,. A,
.'( )x], Z„=x,[is„"-gX,*. A",. (x)],

(45)

so that Eq. (17) may be written as

2

D;,&J,„)=g. &~, ), (43)
i(B„"+ 6;)y„S+gA;(x)&,y„S -gA,"(y)y,Sy( =0,

(47)

where

P(,. ) =-,&'"(s„A,.„—s,A, „+gf,,,A, „A) ) . .(44)

Equations (42) and (43) are, respectively, , state-
ments of gauge invariance and axial-vector anom-
aly for the theory. '

where now ordinary matrix multiplication is im-
plied for all indices. Note that in arriving at (47),
we have assumed g,. to be Hermitian.

Equation (47) can now be used to derive expres-
sions for the divergence of various currents. We
will present the derivation for the divergence of
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limS(x, y) =So(x,y ) . (48)

The result is

the axial SU(N) current, and state the result for
the remaining cases. To start, we rewrite the
analog of the definition (32) for the axial current
using the property [valid for the two-dimensional
massless case; cf. Eq. (17)] that

2

( j('($})=—A('($) —ig limtr[y y "S((+q/2 )$ -q/2)] .
4m

(32')

Next; we multiply Eq. (47) by Z,y' and take a dou-
ble trace over spin and color indices while sub-
jecting the coordinates to the conditions x= (+&/2,
y = $ —&/2, and e-0. The equation thus obta, ined is

I

lim i8;tr[g)y y,S($ + g/2, $ —q/2)] +gA, ($) lim tr] [X»X;]y y, S($ + e/2, $ —e/2)]
6~p 6 —+p

+-,'ge„8' lim tr[(y,y(+y;X&)y'y, S($+q/2, $ -e/2)] =0. (49)
8A;(4)

V 6~p

As a consequence of Eq. (48), this equation reduces to

2

[5,()( +gf;, A, ($)](-ig) lim tr[X&y y„S((+&/2, $ —&/2)] +—
(& A„"($)=0,

6~ p

(50)

which, upon using (32'), reproduces Eq. (40). Equation (39) is obtained in an entirely analogous manner,
and the corresponding divergences for the U(1) currents (in the limit e =0) are given by the free-field ex-
pressions

8.&j"&=,0, 8„&j"&=0,

in confirmation of Eqs. (37) and (38).

(51)

IV. THE ABSENCE OF MASSIVE COLOR-SINGLET BOUND STATES

In this section we shall establish the nonexistence of massive color-singlet bound states. To study these,
we shall use the bound-state formalism referred to in the previous section. In particular, we rewrite the
fermion-antifermion equation [Eq. (7) of Ref. 11 or 12] for the quark-antiquark system of the present the-
ory. Using the definitions given in Eqs. (45) and (46) and the explanatory remarks following them, we can
write the equation as

(52)

where

E';(x) = K(J)
5Z;, x (53)

E (J) =(out
~

qq, in)/(out
~
in) . (54)

Here ~qq, in) stands for the bound state in question
as an incoming state in the presence of the exter-
nal source J', , and X is the associated "wave func-
tion" defined by

X(x,y) =(out
~

T[q(x)q'(y)]Q ~qq, in)/(out
~

in) (55)

I

The fact that, according to Eq. (38), j' is essen-
tially a massless field implies that either the
color-singlet states are massless, or that the
left-hand side of (57) vanishes. It is therefore suf-
ficient to pursue the latter possibility.

From the definition (55) and the construction of
S in Sec. II, we can assemble y in the form

X(x,y) =iRS(x,y)C +[7',(x)A'+ 7 (x)A ]'()

x[g'*, (y)A' + 7*(y)A ]X(&(x,y),

where Xp satisfies the interaction-free equation

and y (1&P (1) ~g(2)P(2)) (x ) 0 (59)

Q = 1 —
~

in)(out ~/(out
~

in), (56)

where q' is the charge conjugate of q.
A useful identity" relates y and the co1or-singlet

current:

lim tr[y'X(x+e/2, x -e/2)C]

=-&out~ j'(x}~qq, in)/&out~in). (57)

and can therefore depend only on x -y.
The simplicity of the y-matrix algebra and the

fact of masslessness again cause a decomposition
of the space of wave functions (looked upon as ma-
trices in spin indices) into two subspaces, one
spanned by y' and the other by y y" (&i, v =0, 1).
The corresponding components of y, to be desig-
nated by X and y'"'", respectively, are
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X""(x,y) =[&,"'(x)&-*"'(y)A'

+ v ' '(x) K,*' '(y)A lyt (x' -y), (60)

y'""(x,y) = iXS(x,y)C

+[V' (1 &(x) 7 g (2 )( )A

+ 7'"'(x) 7'*"'(y)A ]X,'"'(x -y),

(61)

where now ordinary matrix multiplication over

spin indices is to be understood.
Let us consider X' first. It is easy to see that

if actually represents a mutually noninteracting
pair by observing that V',(f' ) involves only A,(A ),
and that one of the latter may be taken to be zero
as a choice of gauge. As for X'"", we proceed by
taking the trace of Eq. (61) over color indices in
order to extract the color-singlet component of X.
In so doing, we utilize the fact that X, must be
proportional to the unit matrix in color indices.
Hence

y,'t,"„„(x,y) =iR tr[S(x,y)]C + ftr[7', (x) 7',(y)]A'+tr f
V' (x)7' (y)]A]xo,","„„,(x -y), (62)

where the dagger denotes the adjoint matrix.
The mass of the state represented by (62) may

be determined by examining the dependence of the
wave function upon x+y. This dependence can be
gauge invariantly determined by considering the
x=y limit, were it not for the possibility that

X, may be singular there. However, Eq. (57) and
the remarks subsequent thereto assure us that in
fact Xp vanishes in that limit since the factors

('. )='~t x. ' r ( )
7T ex

(71)

(69)

Equation (34), on the other hand, implies the fol-
lowing pair:

lim tr[7',(x)7',(y)] =tr[7',(x,)r',(x,)],

Iimtr[V'gx)7" (y)] =tr[v (x )7/x )]

are positive-definite, and, moreover,

lim tr[S(x,y)] =0.

(63)

(64)

(65)

Combining Eqs. (69) and (70), we arrive at

ig S7,(x)
28 '&,, =—tr X,.

' &, '(x) +J, ,
+

which, in view of the relation

B,,(x) = -2i ln((out
~
in)),-x

(72)

Note that in deducing (63) and (64), we have used
the property that T = T '. Finally, since

2 trfr, (x,)7,(x,)] =8 tr[r (x )i (x )]=0, (66)

we are assured of the absence of massive color-
singlet bound states.

is equivalent to the following functional differential
equation for the generating functional:

6'-- +-tr x; ' v'. '(x) -iz, (x)Ia 5 g ~ '~.(x)

x(out~in) =0, (74)

V. BOSON REPRESENTATION AND THE EXISTENCE
OF MASSIVE COLORED STATES

&9 B,, =j] +4] (68)

The results of Sec. III suggest that the nontrivial
part of the spectrum is to be found in the color
sector. Moreover, with the induced quark color
current given by (34), one can conveniently de-
scribe this sector in a boson form. To do this, we
fix the gauge by adopting the light-cone condition

B,. =O. The corresponding relations for the func-
tional quantities are

B( =0, A, =0, A, , =Bi, —2i5/LTi

Furthermore, the field equations reduce to the
constraint equation

where A, ,(x) [which enters the definition of 7;(x)
in Eq. (24)] is to be replaced by -2i5/~. (x) with
in the square brackets. Equation (74) is thus an
equivalent boson formulation of the theory in that
the vacuum expectation value of all the time-or-
dered products of the gauge potential may be ob-
tained from the generating functional in the usual
way.

It is actually possible to reduce the theory fur-
ther to an equation similar to (74) but in terms of
gauge-covariant quantities. This is most conven-
iently accomplished in terms of the field strength
G„ the pseudoscalar dual to B,„, which is gauge
covariant and (in the light-cone gauge) simply re-
lated to the gauge potential by [cf. Eq. (33)]

or, in functional terms, (G( ) = 2s B(.~ (75)
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To realize a corresponding reformulation of (74),
we introduce a new source function I~ defined by

J~(x) = SI-,(x),

in terms of which we will have

(76)

(G,(x)) = is -ln((out fin))
k- x

i-ln((out
f
in)) .

x (7, 7)

pinally, Eq. (74) takes the form~

~

e e —tr x, '
r( )xeie l,(x)f

g sv'. x)
5I~(x) r &x,

x(out
f

in) = 0 . (78)

(80)

This equation, combined with the constraint equa-
tion (69), in turn leads to

2

(6; s, +gf;;,A,,)( s'A —J ) = ——s A;, —. (81)

Since g is the only dimensional parameter in this
(finite) theory', we can deduce the infrared and
ultraviolet behavior of the theory by considering
its strong- and weak-coupling (i.e. , g-~, 0)
limits, respectively. Thus in the latter limit,
the free-field result

—,'S 'A~ —J~ =0 (g-0, ultraviolet limit) (82)

For completeness, we record here the correspond-
ing expression for T„ in terms of which V, is
defined in Eqs. (24) and (27):

r, (x)=r(exp gx, fd ii(x —x'x')e(x. -x', )

(79)

where the ordering is with respect to x'. Once
the generating functional (out fin) is obtained from
(78) in terms of I, the various gauge-invariant
Green's functions of the field strength G may be
calculated by means of functional differentiation
according to (77).

Although an extensive simplification has been
achieved in reducing the theory to the boson form
(78), its exact solution is prohibited by the fact
that the order of functional derivatives extends to
infinity by virtue of the exponential terms. How-

ever, by considering the limiting values of the
coupling constant g, we can infer the existence of
massive colored states. To that end, it is conven-
ient to consider the quark current divergence rela-
tions in the light-cone gauge. These may be ob-
tained from Eqs. (39) and (40), or alternatively
from (70) and (71); they lead to

is obtained, which implies a bare propagator and
asymptotic freedom. The infrared limit, on the
other hand, is obtained by neglecting the linear
term in g relative to the quadratic one; this gives

z(&'+g /2m)B A,, = B,J,. (g- ~, infrared limit) .

(83)

This equation may be transcribed as one expres-
sing the gauge-invariant Green's function for the
field strength G according to (75) and (77):

-f(0
f
T[G, (x)G,. (y. )] fo)

= 6.,s'a(x —y) (g fx —y f

—~), (84)

where 6 is the propagator for a boson of mass
g~2m. Equation (84) implies the existence of an
(n' —1)-fold degenerate family of massive, col-
ored, ' pseudoscalar particles. Note that only the
lightest of such states would be revealed in Eq.
(84). Therefore if quarks were liberated with a
mass less than half of the mass appearing above,
the threshold of the diquark continuum would be
revealed in Eq. (84). Massive quarks, on the other
hand, would not in general be compatible with a
free color-singlet current. Thus quark liberation
at any mass is ruled out and quarks are confined.

VI. CONCLUDING REMARKS

The analysis of two-dimensional massless QCD
with an arbitrary number of colors in this paper
has characterized the theory as one whose essen-
tial properties are determined by a Schwinger-type
mechanism. Whereas these properties are under-
standable in terms of the quark current operators
and particularly in terms of the axial-vector anom-
aly as the source of symmetry breaking and mass
generation, the essentially Abelian character of
the underlying (broken) structure presents some-
thing of a puzzle. However, the observation that
the large-scale properties of the theory, as seen
in Eq. (81), for example, are determined by the
anomaly term with the non-Abelian (i.e. , involving

f,,„) contribution being relatively unimportant con-
firms the nature of the underlying structure. The
small-scale properties of the theory, on the other
hand, are determined by noninteracting quarks,
thus making the non-Abelian nature of the coupling
inconsequential for both small- and large-scale
properties of the theory, hence the relevance of the
Abelian analogy.

If one considers the above picture as the strong-
coupling limit of massive SU(N) Yang-Mills theory
in two dimensions, then indeed the 't Hooft model
must be representative of a different phase, while
the usual weak-coupling limit (i.e. , as given by a.

perturbation expansion in g/m with N considered
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finite and arbitrary} presumably corresponds to
a third regime. The relevant lesson gained here
is that the various limiting cases produced by the
extreme values of the dimensionless parameters
gjm and Ado not commute.

Are there other states in the color sector higher
in mass than the massive "gluons" of the preceding
section2 One would certainly expect there to be
a (probably infinite) family of such states since,
unlike the Abelian analog, these are intexgcting
gluons. The latter fact is evidenced by the pre-
sence of a characteristically non-Abelian inter-
action term in the boson versions of Sec. V. The
interesting feature encountered here (in contrast

to the massive Schwinger model, for example) is
that both the mass and the interaction terms are
driven by the (original} coupling constant of the
theory [e.g., see Eq. (81)].
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