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The first two nonlocal currents in the general two-dimensional chiral models are derived as Noether currents. The
associated infinitesimal field transformations are shown to obey a group integrability condition. A subset of the
structure constants of the symmetry group responsible for these conserved currents is calculated.

1. INTRODUCTION

Two-dimensional chiral models have many fea-
tures in common with four-dimensional Yang-Mills
theory. We expect that in addition to local gauge
invariance and the 15-parameter conformal sym-
metry the non-Abelian gauge theory has a so-far-
unknown symmetry which, when found, will yield
information about the nonperturbative sector. In
the chiral models, the signal of this symmetry is
the existence of an infinite set of nonlocal con-
served charges.

In the classical nonlinear o model there exist, in
addition to the familiar space-time conserved cur-
rents, two infinite sets of currents. The first,
given by Pohlmeyer,! can be expressed as products
of local fields. They are moments of the energy-
momentum - tensor. A symmetry group asso-
ciated with this set is the infinite-parameter
conformal group in two dimensions.? The sec-
ond set, found by Luscher and Pohlmeyer,’ is
nonlocal,

The symmetry group responsible for the nonlocal
charges has not been identified. In this paper we
exhibit nonlocal infinitesimal transformations
which (1) are symmetries of the equations of mo-
tion, (2) shift the Lagrangian density by a total
divergence without the use of the equations of mo-
tion, and thus (3) give rise to the nonlocal currents
as Noether currents.

For these infinitesimal transformations we check
the integrability condition® to see if they generate
finite values which form a group. We find that the
law of composition for the set of infinitesimal
transformations associated with the first nonlocal
current gives a transformation associated with the
second current.

This pattern is consistent with the notion that
there is a Lie group responsible for the nonlocal
conservation laws and that all the currents must
be used in order to close the algebra. This implies
an infinite number of generators which can be used
to construct the infinite-parameter group of finite
field transformations.

The infinitesimal transformations provide a

realization of these generators and thus an unambi-
guous method to calculate the structure constants.
We explicitly calculate a finite subset of these, re-
lating the generators corresponding to the first

two currents.

We stress that we have found expressions for the
infinitesimal field transformations which shift the
Lagrangian density by a total divergence for arbi-
trary field configurations, not just for field solu-
tions. We have thus demonstrated that the sym-
metry responsible for the nonlocal charges is a
symmetry of the entire space of fields not just a
symmetry of the set of solutions. This is neces-
sary for the symmetry to give rise to Noether cur-
rents in the standard fashion.

Derivation of these “hidden” symmetry currents
as Noether currents permits identification of the
symmetry associated with the analogous path-de-
pendent quantities in the functional formulation of
Yang-Mills theory. The crucial characteristic of
the nonlocal symmetry is that it has the form of
global isospin where the global parameters have
been replaced by a particular function of space-
time. The extra sought for symmetry in Yang-
Mills theory is invariance under a special path-de-
pendent gauge transformation.®

In Sec. II we display the explicit form of the in-
finitesimal transformations for the first two non-
trivial nonlocal currents in the general chiral
models. We show that their Noether currents are
equivalent to the standard expressions® for the
nonlocal currents when the fields are solutions.
We describe the method we used to find these in-
finitesimal transformations and how to use it to
calculate the relevant quantities for the higher cur-
rents.

In Sec. III, the isospinlike property of these
transformations is 'discussed in the particular ex-
ample of the O(3) nonlinear o model. To identify
the symmetry group associated with the nonlocal
transformations we check the group integrability
condition and exhibit a subset of the structure con-
stants. Calculations are performed in Euclidean
space, but can be extended without difficulty to
Minkowski space.
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II. INFINITESIMAL TRANSFORMATIONS

The Lagrangian density for the general class of
chiral models is

£(x) = fatra, g(x)d, g™ (x). (2.1)

The matrix field g(x) is an element of some group
G. The equations of motion are 8,4 ,=0, where
A,=g"9,g. The infinitesimal transformations
associated with the first two nonlocal currents are
given by

A"”g:—gh("), . (2-2)

AD=4[x®, 7], (2.3a)
A®=4{[x® T]+3[x Y, X, T}, (2.3p)
Xy, 8)=3 f dxe(y - x)Ay(x,1), (2.4a)

Xy, )= -3 f dx e(y - x)A,(x, t)

+7;‘ fdx€(y —x)[Ao(x; t)’ X(n(x’t)] ¢

(2.4b)

We define T = T°p° for p® constant and 7° the ma-
trix generators for the group G.

The transformation (2.2) shifts the Lagrangian
density by

AML=FtrA, 5,1"™, (2.5)

Equation (2.5) can be expressed as a total diver-
gence without using the equations of motion:

AME =8, tri(3e [0, Y, X V] + €4 AT, (2.6a)

AL = au_;. tr{(ew[fivx‘”, x‘2)]+ewér[[8.,x“’, xu)]’ X(l)]

+e,, A, xVDTE. (2.6b)

Using the equations of motion, one finds the change
in £ for Ag=-gA\™ is

AML =9 §trA ™. 2.7
I [

Equate (2.6) and (2.7) to derive the conserved
quantities

08, (3trdPT)=0, (2.8)
where

3:;1)= [Au’ Xm] - €uvAv - %5 uv[avx(l)’ x(l)] ’ (2.9&)

g(uZ)= [A“, X(Z)]_{_%[[A‘“ x(l)]’ X(l)] —€y v[avx(l)’ X(Z)]

_ %euv[[avxu)’ x(l)] s x(l)] - €W[Aw x(l)]. (2.9b)

Since A, is an element of the Lie algebra of G,
A, (x)=f%x)T*, the matrix currents ;" are also
conserved:

83,dM=0. (2.10)
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If we now use the equations of motion, then
aux(l):-_ —€uvAuv (2 11)
3“x<2)= . %€uv[Aw x(l)].

Note that in (2.11), x™ is only defined when 8,4,
=0. In (2.4), x™ is defined for all A,. Since
previous derivations®” of these symmetry currents
made use of equations similar to (2.11), it is clear
that those derivations could only discuss the sym-
metry on the solution set. In the derivation pre-
sented here, this restriction is eliminated. The
charges Q™= f_: dyg{™(y, t) formed from (2.9) are
the nonlocal charges in standard form. The cur-
rents ™ however are different from the expres-
sions in the literature®” in that they are defined
for all field configurations. For solutions, the
currents ' reduce to the standard form.

The infinitesimal transformations (2.2) are valid
for the general class of chiral models. We guessed
this form from the following considerations of
the restricted case of the O(N) nonlinear ¢ model.
In their theory, g,,(x)=0,, —2¢,(x)d,(x), with ¢*
=1, i.e., gt=g. Using the Dirac brackets of the
charges with the field to generate the infinitesimal
transformations, we found

{Q(")’g}DiracE"’ 6(n>g= - [A‘"’,g] ,
where we use the charges
QW= f ay{-A, 09,0+ 3[A,09, 0, XM, O]},
(2.13a)

(2.12)

Q@= [mdy{_[Al(y, ), x Yy, t)]

- %[x(l)(y, t)) ‘_Ao(y’ t)y X(U(yy t) ]]}
(2.13b)
and A™ is given in (2.3). We then relaxed the con-
straint g =g. The condition that 6"g in (2.12) be
an invariance of the equations of motion (i.e., if g
is a solution so is g+ 6™g) is
A"+ [g9,87,2,07]=0
and
DA™+ [4,,8,A™]=0.

(2.14a)

(2.14b)

Equation (2.14a) is the condition when 6™g= Mg
and (2.14b) comes from the part 6™g= g™,
Equations (2.14) are equivalent for g=g™. For the
general models, we chose the transformation
5Mg=AM™ g=_gA™ with A given in (2.3) and found
that it is a symmetry of the solutions and of the
Lagrangian density.

The infinitesimal transformations for the higher
currents (r>2) can be found in this manner. To
show that A™g= —g)\™ shifts the Lagrangian densi-
ty by a total divergence is a complicated calcula-
tion which differs significantly for each n. Owing
to the tedium involved we have not calculated ad-
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ditional transformations, and we have not been
able to simply generalize our results for arbitrary
n.

III. GROUP PROPERTIES

The nonlocal transformation discussed in Sec. II
is similar to the known global invariance of (2.1)
except that the global parameters are particular
functions of space-time. For example, for the O(3)
nonlinear o model, the finite global isospin trans-
formation is @(y, )= exp(\,€ 4. )@Y, £) with A, con-
stant. This has the infinitesimal form

0¥, )= M€ apo @Y, 1) . (8.1)

Clearly for A, not constant, (3.1) is in general not
a symmetry. From (2.3), however, a transforma-
tion in terms of the ¢, (y, f) field coordinates is also
given by (3.1) with X, = 3¢ g, ALY, £):

APy, 1) =Xy, (v, 8) . (3.2)

That is to say, for the specific space-time func-
tion A{{(y, #) the infinitesimal global isospin be-
comes local and nonlinear in the fields.

It is this qualitative feature which is relevant to
functional Yang-Mills theory. In that case, the
functional Lagrangian is symmetric under (1)
arbitrary local gauge transformations [the analog
of global isospin (3.1)], and under (2) a specific
path-dependent gauge transformation [the analog
of the “hidden” symmetry (3.2)].

We now return to the general chiral models. To
see that the infinitesimal transformations associa-
ted with the nonlocal conserved quantities meet
the necessary conditions to generate a group, we
check the integrability condition as follows. As-
sume that §,(g) is the infinitesimal form of a finite
transformation law T,(g). Then T,(g)=g+ 6,(g)
+0(p?). Since T, is a group element we can define
its inverse as T,-; and it must be that

(T T(T () = T(a), | (3.3)
i ]

(M, Mg = f d®y A‘"’(g(y»

where 7 is also an element of the group. The in-
finitesimal form of (3.3) is the integrability con-
dition

8,(g+ 6,(2)) - 8,(2) - 8,(g+0,(2)) - 6,(g)=d,,(g),

_ (3.4)
where d,, must be an infinitesimal transformation

in the group. For 5,(g)==gx¥ from (2.2) we ex-
plicitly find in (3.4)

doo(g)= Cbcapbo’cé A:zé) ,

Aff’(y,t)=4{§ [mdxe(y = x)[Box M, 1), T°)
+3 [oodxe(y - 0)[Aolx, £), x Vx, )], T*]

XMy, ), [x Ay, 1), T“]]}- (3.5)

Here C,,, are the structure constants of the Lie
algebra of the group of fields G: [T°, T°]=C,,,T"
Equation (3.5) is a different infinitesimal trans-
formation from 6,(g)=-gx{?. It is, however, a
symmetry of both the equations of motion and the
Lagrangian density and gives rise to (2.13b), the
second nonlocal charge, as its Noether charge.?

Thus we see that the infinitesimal transforma-
tions from the first nonlocal charge (2.13a) do not
generate a group by themselves but mix with those
of the higher currents. We speculate that it is the
infinite set of infinitesimal transformations which
close the algebra.

From these considerations it is now easy to
calculate the structure constants between the first
two sets of generators. The generators M™ can
be constructed from the nonlocal infinitesimal
transformations in standard fashion.® For A™g
=p°a,"(2),

mP=— [ aty 8 gloN—m (3.6)

ég(y)

To derive the structure constants, compute the
commutators [M, M™]:

o (far spean2s) - fax A('")(g(x))ﬁ 5 (Jars seetomzgtys)

fd A A(g(x)+ AP (g (x)) - A""’(g(x))]5 ) fd A (g () + AT (g())) - A""(g(y))]

Whenever the infinitesimal transformations
AY)(g) obey the integrability condition (3.4), the
structure constants are defined as 7% ™’ ¢/) such
that

5
og(y)’
(3.7)

-
(2, ) =y G U .8

For A% =_o2® and A%g=_ g% we find using
(3.5)
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(MO, MP]=C e ME. (3.9)

Thus the structure constants f{)M@=C,, = the
structure constants of the field group G.

Finally, integration of (3.4) gives finite trans-
formation laws for the fields.'® These are finite
in the group parameters pg". One such law is
given for the O(3) nonlinear ¢ model (for simplici-
ty) by the formal expression

oit) = exefenep, [ 4% 0050 ool

(3.10)

For global isospin symmetry the formula analo-
gous to (3.10) is

ea(y)= eXp[e.,,cp,, fdzx wc(x)gfm]%(y) .
(3.11)

Owing to the linearity of (3.11), it is easily shown
to be equal to the familiar useful equation

@ ¥) = explease Ps) Pl ¥) - . (3.12)

IV. CONCLUSION

The new results of this paper are the derivation
of the first two nonlocal currents in the general
two-dimensional chiral models as Noether cur-
rents and the exhibition that the infinitesimal field
transformations giving rise to these Noether cur-
rents are related by a group integrability condi-
tion.

The two-dimensional chiral models have many

features in common with the non-Abelian gauge
theory and it is thus natural to expect an analog of
the infinite set of conservation laws, or corre-
spondingly, an associated symmetry group in the
physical theory. As a step towards this goal we
have chosen to examine the two-dimensional mod-
els in the familiar language of continuous symme-
tries. This is a new step, since although these
theories exhibit infinite sets of conservation laws,
they are derived using techniques like Bicklund
transformations which restrict the calculations to
the space of solutions and obscure the underlying
symmetry.

Furthermore, the search for this symmetry in
four-dimensional gauge theories by mimicking the
inverse scattering techniques has led to singulari-
ties in the functional field calculations.'* These
difficulties should be avoided by computing the
hidden-symmetry currents as path-dependent
Noether currents.’
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