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Multimonoyole solutions in the Prasad-Sommerfield limit
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A variational search for multimonopole solutions of the Yang-Mills-Higgs equations in the Prasad-Sommerfield
limit is performed. An ansatz where two monopoles are superimposed at the origin is shown to lead to a minimal

energy differing by less than one percent from the Bogomolny bound, with the discrepancy attributable to the
truncation error. Thus strong numerical evidence is obtained for the existence of two-monopole solutions, the

symmetry properties of which are discussed.

I. INTRODUCTION

The existence of classical, static multimonopole
solutions to the SU(2) Yang-Mills-Higgs equations
in the limit of vanishing Higgs potential' has been
conjectured since the discovery that there are no
long-range Coulombic forces between equally
charged monopoles. ' Furthermore, formal proofs
have been given that the interaction energy must
decrease faster than any power of the distance, '
that the energy of any field configuration with n
units of magnetic charge is bounded below by pre-
cisely n times the mass of a unit monopole, ' and that
any solution to the equations for the saturation of
the bound (and tt fortiori also a solution to the
Yang-Mills-Higgs equations) would admit a number
of infinitesimal deformations compatible with the
existence of noninteracting multimonopole field
configurations. ' However, thus far no analytical
proof or numerical evidence has been given that
these solutions do indeed exist and nothing is
known about their actual symmetry properties.

In this article we present a study of multimono-
pole field configurations done by analytical and
numerical methods. We consider the limiting
case in which all the monopoles are superimposed
in a single location and show the following:

(i) It is possible to write an ansatz for the fields
which is regular and analytic everywhere for any
integer value of the magnetic charge, which is
symmetric under axial rotations and parity re-
flections, and which satisfies all the appropriate
boundary conditions.

(ii) A variational search for a charge-two solu-
tion to the equations of motion within this ansatz
produces an interaction energy which is less than
1% of the total energy of the system and which can
be consistently attributed to the truncation error.
Thus, we obtain strong numerical evidence that
configurations of two noninteracting monopoles do

indeed exist in the limit of vanishing Higgs poten-
tial and are able to explore some of their proper-
ties.

The paper is organized as follows: In Sec. II
we present the axially symmetric ansatz and de-
rive the equations of motion and boundary condi-
tions leading to the n-monopole solution. In Secs.
III and IV we illustrate the variational procedure
and the numerical results. In Sec. V we present
final considerations.
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and the asymptotic boundary condition
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(2.l)

(2.2)

(2.3)

(2.4)

is imposed. (Throughout this paper, summations
over repeated indices are implied. )

After rescaliqg

(2.5)

the dependence of on any parameter reduces to
an overall factor e'v' and the total energy 8 of the
system becomes 4ttv/e times a pure number. In
particular, for static configurations with no elec-
tric fields (E;.,=0)

(2.6)

where

II. THE AXIALLY SYMMETRIC ANSATZ

The SU(2) Yang-Mills-Higgs Lagrangian density
in the Prasad-Sommerfield limit is
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and we have dropped the prime from the symbols
of the rescaled fields. Equation (2.6) may be re-
arranged into the form

d +B';+ Di@ ' +— d +B', D

The second term in the right-hand side,

d xB'; D;@' '= +— d x 8; B';O' —O' DiB; '

d3 B Ca (2.9)

is the integral of a divergence and equals + n,
where n is the total magnetic charge of the system.
The resulting inequality

rotational invariance requiring explicit symmetry
under transformations generated by J,+ nr„where
J is the total angular momentum of the system, I
the generator of global isosp'in rotations. This, of
course, guarantees invariance of all physical
quantities under rotations around the z axis.

It is straightforward to verify that the symmetry
requirements imply W', = W', = W,' = W', = W,'= Q, = 0
and that the six residual expansion coefficients 8"';

W,', Q; (i = 1, 2) must depend only on r and z. The
boundary condition C '4'- 1 as

~

x
~

- ~ reduces to
(t),'+ (t),'- 1 as (r'+ z')'~'- ~. If this condition is
met and the fields are regular throughout space,
the topological winding number of the Higgs field
is n, which also equals the total magnetic charge
of the system.

It is convenient to define

x r j x z

B;=+(D (C)', (2.11)

(2.10)

is known as "Bogomolny's bound. "4 Saturation of
the bound corresponds to a solution of the first-
order equations

W =V,
w'= -~

r '

W =
3 r

a=1, 2
(2.15)

a situation which is well known both in the study
of multi-instantons and in the study of multivortex
solutions to the Ginzburg-Landau equations.

We wish to investigate the existence of axially
symmetric solutions to Eqs. (2.11) with magnetic
charge n. For the purpose, we introduce a set of
orthonormal vectors

and to adopt the convention that, whenever the
functions x, (t), V, or q are involved, indices
run only from 1 to 2. Then one finds

1
(Sn la( —6 n() Va'g())u„un"

~ pa&(S V)u((i/a(n)
3 3

(2.16)

u',"'= (coen(t), sinn(t), 0) -=(u,""'),

u (n) (0 0 1)—(ua(n))

u',"'= (sinn(t), —coen/, 0) =- (u,""'),
(2.12)

(D @)a (S y & V y )u((i)ua(n)

+ —(g„(t. )l,)u,'"'u ("),

and Bogomolny's equations reduce to'

where ((() =arctan (y/x) is the polar angle. Defining
r = (x'+ y')'i', one easily finds

a (n), i (1) a(n)
i Q 3 Of2T

(2.13)

1-~""(s,U -c., V,)l )=(s.(t -~. VA,),r
1&""(s,V,)=-e ()(t) n() .r

(2.1'7)

abc 5(n)+c(n) a(n)
Qg E O, gy+@

We expand then the fields as follows:

A'= n'")u"")W ~
i cR j3

@a ua(n)yn
(2.14)

This still implies no restriction on the field con-
figuration: the 12 functions A', , 4' have been
simply reexpressed in terms of the 12 expansion
coefficients W~„$ . But we now demand invari-
ance under rotations around the z axis and parity
reflections. One always has to be careful in the
definition of symmetry properties in the presence
of gauge degrees of freedom. We impose axial

This is a set of five equations for six unknown
functions but there is a residual Abeliap gauge in-
variance

cosy+ &,(t), sing,

cosX+ q ~ q~ sinX,

V, - V, = V, +~~X ~

(2.18)

= h(t)

+Et

V, =A„—q ()Q 8„$~,

(2.19)

It is possible to express Eqs. (2.1V) in gauge-
invariant form. Defining
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we obtain the gauge-invariant set of equations
1—z „„(8~/+A ~E) = B„h,
y

—g„„(B„E-A ~)) = -A„h,1
(2.20)

q „„B„A„=——fgF .1

h is the norm of the Higgs field and asympotically
obeys a massless scalar particle equation; the
potential g enjoys an analogous property, while
the scalar field E and the vector field A„are ex-
ponentially damped. Thus the asymptotic equations
of motion (i.e. , the equations satisfied outside the
"core" region where the monopoles are located)
are simply

1—q„,B„(=B„h. (2.21)
y

'The most general asymptotic behavior with proper
boundary conditions at infinity is then found to be

the following expansions:

y, = r "F,(r', z'),

y, = zF,(r', z'),

q, = zr"p(z')+zr"'E, (r2, z'),

q, = n+ r'E, (r', z'),

V, = zr" 'p(z')+zr""v, (r', z'),

V, = r "v,(r', z'),

(2.23)

where n is the total magnetic charge and Ey& E2&

P, E„E„v„v,are regular functions of their
arguments. The equations are completely con-
sistent with the behavior expressed by Eqs. (2.23)
and perturbative solutions may be constructed
order by order in r' and z'. The perturbative so-
lutions must be supplemented with a gauge condi-
tion. For instance, the Coulomb-gauge constraint
B,.A',. =0 takes the form

I

—B„(rV")= —,q,
1 g n

(2.24)

a, (t —1) 'dP, (t)

(2.22)

where p =
(r'+z')'~' is the three-dimensional radi-

us, t=cosB =z/p, and P,(t) are the Legendre poly-
nomials. Unfortunately, this gauge-invariant
formulation [equivalent, by the way, to a unitary
gauge choice Q = (0, 1)]makes use of fields [such
as h = (P,'+ &f&,

')'~'] which do not have good analyti-
city properties at the origin or along the z axis
and we are forced back to Eqs. (2.20) to discuss
the regularity conditions to be imposed on the
fields.

The advantage of the reparametrization provided
by Eqs. (2.14) and (2.15) is that the new fields have
simple transformation properties under the resi-
dual Abelain gauge symmetry; singular factors,
however, had to be extracted. The requirement
that the original fields should be regular imposes
then boundary conditions on the functions Q„ri„V,.
Additional constraints come from the symmetry
of the equations under parity reflections z - —z and
r - —r. Assuming that the actual solutions are
also symmetric under these transformations, one
concludes that the fields should transform as fol-
lows: V„g„q, should be even, V„Q„q, odd
under z -z. As to parity under r--x, if the
total magnetic charge is odd, V„Q„q, should be
even, V„g„q, should be odd, whereas V„$„
Q„q should be even, V, odd if the magnetic
charge is even.

These various constraints are summarized by

and turns out to be compatible with the regularity
conditions.

An in-depth analysis of the equations in the Cou-
lomb gauge shows that the perturbative solution
still depends on an arbitrary choice for the values
of three functions on the z axis, i.e. , P(z') may
be arbitrarily chosen and only the following con-
straints hold:

n[v, (0, z') —F,(0, z')]+ z'P(z')F, (0, z') = B,zP(z'),

2E,(O, z') = B,zF, (O, z'). (2.25)

The possibility of matching the perturbative solu-
tion with the boundary conditions at infinity seems
to be related to this freedom. '

Finally, it should be noticed that Eqs. (2.23) im-
ply a zero of order n at the origin for the three
components of the Higgs field @'. This zero fol-
lows from the assumed symmetry, angular be-
havior, and regularity of the field configuration.
Thus, the ansatz describes a situation where n
magnetic monopoles are superimposed at the ori-
gin. Additional zeros along the z axis cannot be
excluded, but they would correspond to pairs of
magnetic monopoles and antimonopoles and are
unlikely to be found in a solution which minimizes
the energy. The multiple zero at the origin, how-
ever, cannot be resolved into more zeros along
the z axis without introducing root type of singu-
larities. The symmetry properties we have as-
sumed, in particular the axial rotational sym-
metry, allow only for configurations of superim-
posed monopoles. ' The zero may be factored, but
only in a direction different from the z axis and
therefore at the expense of axial invariance.
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The basic idea of a variational computation is
straightforward. Equations (2.14) and (2.15) pro-
vide an ansatz for the fields. The ensuing ex-
pressions for 8', and (D,4)' are inserted into the
formula defining the energy, Eq. (2.6) or Eq. (2.8),
and one looks for the minimal value that the energy
takes as the arbitrary functions in Eq. (2.14) are
varied. In particular, if this minimum equals the
bound ~n

~

then Eqs. (2.11) are solved. In this and
the following section we shall restrict our atten-
tion to systems with total magnetic charge n=2.

In practice, the computation must proceed
through a numerical analysis and one encounters
the obvious limitations arising from the fact that
only a finite-dimensional subset of the space of
all available functions may be explored. Thus we
face the problem of further restricting the ansatz
by an expansion of the functions Q, q, and V„,
which will make them dependent on a finite number
of variational parameters. In the formulation of
this expansion we shall be guided by the require-
ments that the large-p asymptotic behavior ex-
pressed by Eqs. (2.19) and (2.22) and the proper
boundary conditions, Eqs. (2.23), be maintained.
We must also fix a gauge

A radial gauge where

y, =-a(r, z),

y, =-a(r, z)
z (3.1)

leads to a very simple asymptotic configuration of
fields [we recall the definitions' p = (r'+z')'~'= ~x ~,
t =zip= cos6]. However, such a gauge is not com-
patible with a regular behavior of the fields along
the z axis. We have therefore modified the gauge
prescription, defining

rR(r, z) „( )j.
p

gauge exponentiaQy as one leaves the core of the
monopole, but at the same time preserves the
small-r behavior P, = r'

T. he function R is also
used to ensure a proper boundary behavior of the
other fields, which are defined as follows:

q, = zrRa, (r, t),

q, =2-r If,(r, t),
V, =zR(2-R')~, (r, t),
V, =rR~, (r, t).

(3.4)

The new functions h, H„H„'U„and ~2 are now
expressed as a sum of asymptotic terms, which
reproduce the multipole expansion of Eqs. (2.19)
and (2.22), plus core corrections, which decay
off exponentially as e ':

=Z„-(r', z )+Z, (r', z'),

(3.5)

u,.= u, „(r',z')+Z. ,„(r',z'), i=1,2.

We introduce auxiliary functions

p2I2

g„(p) =
( ), (cosh p) ',

f.(p) = 1 —gg„(p) .
(3.6)

The functions g„(p) are used in the expansion of the
core part of the fields; the inverse of the hyper-
bolic cosine is used as a cutoff rather than an ex-
ponential to preserve the correct parity proper-
ties. The functions f„(p), which approach 1 ex-
ponentially for large p but behave as p~" near
the origin, are used to modify the inverse powers
of p appearing in the expansion of the asymptotic
part, so that this conforms to the regular behavior
expected near the origin. We then expand

zh(r, z)
2

(3.2) tanhp 2fo(p) ~ f,(p)
8S 2 ~ l l 2 l

l-2 P

where the function R is given by

R= (r'+ X'/cosh2p)'@ ' (3.3)

Z 2f.(p) ~ f (p) d&,(t)
1Ns p2 ~ l)tp l+2

2fo(p) ~ f (p)t dI' (t)
2,ai 2 ~ l ) l+2 dt

(3.7)

R approaches unity exponentially as p becomes
large, but vanishes like r as one approaches the
z axis. It has a regular expansion for small r and

z, is odd in r and even in z. X is a scale para-
meter which may also be varied; in the limit X=0,
R becomes identically one. Equation (3.2) guaran-
tees that the chosen gauge approaches the radial and

f.(p)
p2

f.(p)
2

p
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n=O l=2n
Cyn, lgn ~ I l t

g„(p)(t' —1) dI' &(t)

lt dt

actual numerical computations the variational pro-
cedure appeared to converge reasonably fast, with-
out instabilities. The results are illustrated in
Sec. IV.

IV. NUMERICAL RESULTS

n=0 l=2n

2N

g„(p)(t' —1) d&,(t)
4'n' ' lt dt

g„(p)t dP, (t)

(3.8)
We have performed variational searches for a

minimum energy with %= 1, 2, and 3 (and therefore
15, 30, 50 independent variational parameters,
respectively) and have found the following results:

/ ranges only through even values in all sums.
The variables a, and c, „,are variational para-
meters, but Eqs. (2.23) demand c, „,= ~c, „,.
in the definition of 8 [Eq. (3.3)J, must also be con-
sidered a variational parameter. The integer N
determines the cutoff in the expansions. For given
N, the number of variational parameters is
—,
' [5(++1)(X+2)].

Given the expansions, it is only a matter of
straightforward (although tedious) algebra to find
the integrand to be inserted into the formula for .

the energy. We have used Eq. (2.8) to evaluate q,
rather than the original expression Eq. (2.6). The
second term in the left-hand side of Eq. (2.8)
equals 2 (for n=2); the first integral was computed
numerically by Gaussian quadrature. A 9-point
interpolation formula was used to cover the range
of cos6 (between 0 and 1); this guarantees the ex-
act integration of polynomials in cosh of degree- 17; the function 8, however, does introduce a
nonpolynomial dependence. The subsequent in-
tegral over p was evaluated by dividing the range
0 ~

p ~ 10 into six parts and using a 10-point inter-
polation formula in each. The advantage of Eq.
(2.8) over Eq. (2.6) is that the integrand in the
first term of the right-hand side becomes expon-
entially damped when the fields have the correct
asymptotic expansion, and integration over a finite
range is sufficient for great numerical precision.
Qccasionally we have compared results obtained
by numerical integrations of Eqs. (2.6) and (2.8)
to check the accuracy. This and other tests have
convinced us that the error in the. integration never
exceeds a few parts times 10 4.

The search for a minimum of & was performed by
a standard minimization routine, which follows a
method introduced by Fletcher and Powell. ' The
basic idea is to evaluate the gradient of the energy
in the space of the variational parameters and to
move in a direction opposite to it. Metric cor-
rections, which aim at taking into account the
curvature of the energy surface, are, however,
performed to improve convergence. In all our

N=1, q ~=2.0353,

N=2, q . =2.0253,

N 3 j &mm 2e 0182 e

(4.1)

TABLE I. Values of the variational parameters at the
minimum for N =3 with A =0.3500, e;„=2.0182, a2

- =-0.0004, +4 =0.0017, +6
=0.

C2,n, l C3, n, l C4,n, l Cg,n, l

0 0 -0.1217 -0.8932
1 0 0.0522 -0.0601

2 0.0640 0.1266
2 0 -0.0299 0.0184

2 -0.0281 -0.0602
4 0.0011 0.0001

3 0 0.0091 -0.0041
2 0.0055 0.0129
4 0.0008 0.0003
6 0,0005 0.0001

-0.0489
0.0248

—0.0695
-0.0071

0.0214
0.0032
0.0028

-0.0088
-0.0015
-0.0001

-0-0609
0.0261
0.2289

-0.0149
-0.0811

0.0002
0.0045
0.0187
0.0009
0.0007

0.9068
0.0922

-0.2019
-0.0331

0.0619
0.0061
0.0076

-0.0116
-0.0027

0.0002

These numbers give strong evidence that the ab-
solute minimum of & is 2, i.e. , that Bogomolny's
bound may be saturated. Of course, proof of this
statement is beyond the reach of a numerical com-
putation, but the minimal values are indeed very
close to 2 and, what is more relevant, they de-
crease as N increases in a way compatible with
the difference & . -2 being entirely due to the
truncation error.

The values of the variational parameters at the
minimum for N=3 are reproduced in Table I.

We have performed checks to assess the im-
portance of various elements in the computation.
A minimization with N=3, but only the terms with
l=0 in the expansion, produced q . =2.1078, which
indicates the relevance of the angular dependence.
A computation without the constraint c.. .= 2c. . .
gave q . =2.0247 (versus e = 2. 0253) for N~2.
This shows that the boundary behavior g, = r~, as
r-0 (see Eq. (2.33)], which one expects of the ex-
act solution, is closely satisfied also by the min-
imum in the truncated space of functions.

Another interesting test consists of performing
a minimization with A. = 0 (i.e. , equating to 1 the
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FIG. 5. The energy distribution of the minimal config-
uration with X =0.

V. CONCLUSIONS

posing the correct boundary conditions through the
function R. In formulating the ansatz, we have
tried to interpolate between the small-r and the
large-p asymptotic behaviors of the fields, both of
which could be determined analytically. The
ansatz being complete, any function with these be-
haviors may in principle be reproduced. But the
possibility of approximating an assumed solution
with few terms in the expansion depends on the
specific interpolation chosen. Apparently; our
ansatz becomes unsatisfactory, from this point of
view, near the z axis. We believe that developing
a better interpolating formula could provide an
important clue for the determination of an analytic
solution.

The field conf iguration obtained with & = 0, even
if it produces a slightly higher total energy, prob-
ably gives a better representation of what the en-
ergy distribution of a true solution would be. This
is displayed, seen under a different perspective,
in Fig. 5. One notices that the energy distribution
of the two-monopole configuration peaks away from
the z axis and that it departs markedly from spher-
ical symmetry. '

may be replaced by a single superpotential equa-
tion, which has not proved to be very'useful for
the numerical analysis, but is perhaps appropriate
for an analytical discussion.

The potential formulation is derived from the
gauge-invariant equations, once, after elimination
of A„, these are rewritten in the form

a, (E'+ g') —r'a„h' —r&, „a„(httL) = 0,

1 r&„,a,h —a„ttL
+&gv~p, gr

Defining

A=h'= Q

B=E+g =rl q

C =hg= q'P

D=h&=& 'y g'

(5.1)

(5.2)

one obtains

r-B„A——&„B+q„„&„C=0,2r

y eB C reA—D —— "
q 8 ——g — " 1=0

2 B "" 'D (5.3)

A=1 — a, (r ,—a) r—a,a,r,1

r '
B=n'-r'(a, a,r+ a, a,r)+ra, r, (5.4)

and rewriting the second equation in the form

(D')' — a,B(A a,C ——-', Ca,A) + a,B(A a, C———,'C a+)

D2 D2
ra, (ra—,A) — r' a, a~—A

r2
+ —a Aa D'+ —a~a D'=0

C2+D =AB.

This system is already interesting because the
functions&, 8, C, D are gauge invariant and
regular everywhere. But one may proceed further
solving the first equation by means of the super-
potential r(x„x,) (Ref. 6):

While we think that our arguments should give
anyone a reasonable confidence on the existence
of multimonopole solutions, a formal proof would
obviously be welcome. One of our hopes is that
our results may stimulate and encourage such a
search, in analogy with the case of the multivortex
problem in the Ginzburg-Landau model, where the
numerical indications of existence" were ulti-
mately superseded by the formal proof given by
Taubes. ' '" We must add that, as in the vortex
problem, the system of equations we have studied

Only O' =AB —C' appears in this last equation.
Substituting Eq. (5.4) into it, all of the original
equations are reduced to a single, but unfortun-
ately highly nonlinear, partial differential equa-
tion for the superpotential 7.

A final consideration is about the symmetry
properties of multimonopole solutions. It is in-
teresting to observe that even after the complete
superposition of the two monopoles, a preferential
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direction is still present and, correspondingly,
the number of degrees of freedom is five, two of
which are rotational. This leads us to reconsider
Weinberg's result' on the number of parameters
of an n-monopole system, which is seven for v= 2.
Thus, the two superimposed monopoles must ad-
mit two nontranslational and nonrotational zero-
mode fluctuations. We argue that these zero-en-
ergy modes should correspond to non-axially-sym-
metric deformations and that no axially symmetric
solution of spatially separated monopoles exist
(see also Ref. 7).

Indeed, let us remember that the locations of the
monopoles are associated with the zeros of the
Higgs field. " In our case this field has a double
zero at the origin, where it behaves as

@,1 x2 y2

@ -2xy,
43-z.

Now, while it is possible through the replacement
4'-x' —y'+a' to get two single zeros on the x or
y axis, and therefore to separate the monopoles
in the plane orthogonal to the z axis, there is no

way to split the zero along the z axis and thus,
apparently, it is impossible to preserve the sym-
metry once the monopoles are taken apart.

A formal argument may also be given by con-
sidering the problem of two separated monopoles
with axial symmetry in terms of the previously
defined gauge- invariant functions. The quantiza-
tion condition for the Dirac string implies that the
function g may assume only the values + 1 on the

z axis when the monopoles are separated and must
change its sign at each monopole location. But if
we insist on a physically motivated up-down sym-
metry we find that the gauge-invariant function
hg= q, P must be discontinuous when s =0, since
h is chosen to be always positive and its asymp-
totic behavior determines the asymptotic behavior
of P:

g- —cos8, —cos8, +const.

The constant in Eq. (5.7) is forced to change
through the z= 0 plane:

(5.7)

-cosH~ —cosH2- 1, z & 0

cosHy cosH2 + 1, z & 0 ~

Although a jump in P is per se irrelevant (only P
is a gauge-invariant, regular function), this dis-
continuity reflects on the gauge-invariant quantity
hP and it is not acceptable. Thus any search for
spatially separated monopoles must face the full
system of Bogomolny's equations, with none of the
simplifications arising from the existence of a
continuous symmetry.
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