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The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is
discussed. The gauged nonlinear o model, which is the limit of the linear model as the Higgs-boson mass
goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the
SU(2), X SU(2), symmetry of the Higgs sector is preserved, these effects are found to be small, of the order
of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by
the W mass. We work in the context of a simplified model with gauge group SU(2),; the extension to

SU(2), X U(1) is briefly discussed.

I. INTRODUCTION

The evidence for a unified theory of weak and
electromagnetic interactions, based on a spontan-
eously broken SU(2), X U(1) gauge theory, is im-
pressive. Unfortunately, although our under-
standing of gauge theories has continued to devel-
op, we have made very little progress in under-
standing the origin of spontaneous symmetry
breakdown. For the most part, the Higgs mechan-
ism continues to be described by the ad hoc intro-
duction into the Lagrangian of elementary, weakly
self-coupled scalar fields. In the minimal model,'
a complex SU(2) doublet is used, providing three
Goldstone bosons (longitudinal W bosons) and one
physical massive scalar.

Even though the dynamical mechanism underlying
symmetry breakdown is not really understood, one
can anticipate some qualitative features which
should be present if the Higgs quanta are not ele-
mentary. The necessary existence of zero-mass
Goldstone bosons suggests the presence of strong
forces and that, in turn, leads to a natural guess
for the mass scale of the physical spectrum in the
Higgs sector. A rough estimate can be gotten in a
variety of equivalent ways. The relation ﬁGF
=(¢) 2 between the Fermi decay constant and vacu-
um expectation value of an effective (or elemen-
tary) scalar field gives {¢)=~300 GeV and so this
must be a natural scale for the Higgs sector. If
the forces are of unit strength on this scale, then
masses on the order of or somewhat more than
300 GeV are to be expected. Alternatively, in
terms of the conventional complex-doublet theory,
the connection between the scalar-field expansion
parameter (~A/72) and the Higgs-boson mass M u 18
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In the strong-coupling regime, A/72~1 and, there-
fore, M,~1 TeV, another indication of the mass
scale of the physical bound states or resonances
of the Higgs sector. Throughout this paper, the
words “low energy” will refer to the region E «<1
TeV.

If the Higgs sector is heavy and strongly inter-
acting, it is important to look carefully at its im-
pact on the rest of the gauge theory. This paper is
an effort to do that as systematically as possible
for the low-energy structure of the theory. Cur-
rently available center-of-mass energies are con-
siderably below 1 TeV and it will be some time be-
fore 1-TeV energies are available in elementary
channels such as e*e” or gq. It will be possible to
analyze the low-energy structure in a rather mod-
el-independent way, without having to specify in
detail the dynamical mechanism underlying sym-
metry breakdown,

The study of heavy-Higgs-boson effects has been
going on for some time. References 2-7 comprise
a list of some of the papers we are aware of. The
main goal of the present paper is to study this
problem in a more complete and general way in
order to answer the following question: What is
the strongest impact that heavy Higgs particles
can have on experiments done at E <1 TeV, as-
suming only some rather general properties of the
Higgs sector? The answer, in agreement with the
various specific computations in the literature, is
that at one-loop order [O(a=g?2/47) in the gauge-
coupling expansion], the sensitivity is at most log-
arithmic. In higher orders, the effective expansion
parameter becomes GFM,,Z/\/?WZ, and since this is
assumed to be of order one, the expansion breaks
down. Nevertheless, these strong blobs will re-
main shielded® from low-energy probes by at least
one power of a.

_ In rough outline, the present analysis goes as
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follows. It is first arguedl that the usual Higgs
theory with elementary scalar fields provides a
good low-energy description of a dynamically gen-
erated Higgs mechanism. It also provides a natu-
ral cutoff, the Higgs-boson mass M, to test for
the low-energy sensitivity to the strong 1-TeV
Higgs-boson physics that can be generated through
quantum corrections. The Higgs theory will be
used in much the same spirit that phenomenological
chiral Lagrangians® are used to describe low-en-
ergy hadronic physics. With the assumption of a
global SU(2), X SU(2), symmetry in the Higgs sec-
tor, it will in fact be precisely the usual linear ¢
model.

A convenient way to search for M, sensitivity,
which will keep the important SU(2), X SU(2), sym-
metry explicit, is to take the M, -~ limit formally
at the beginning. The resulting gauged nonlinear ¢
model is pertubatively nonrenormalizable and thus
new, in principle measurable, cutoff dependence
can be anticipated at one-loop order and beyond.
All such dependence can be searched for by listing
the counterterms allowed by the symmetries of the
nonlinear theory and then estimating and finally

computing the coefficients. The cutoff dependence
can be regarded as M, dependence or, more gen-
erally, as the sensitivity of low-energy physics to
the 1-TeV Higgs world.

In Sec. II, the program will be outlined in de-
tail. Attention will be restricted throughout the
paper to an SU(2) gauge theory although some re-
marks about the extension to SU(2) X U(1) and other
realistic theories will be included in the last sec-
tion. The important role of the gauged nonlinear
" o model will be explained.

In Sec. III, the features of this theory will be ex-
amined in more detail. General arguments based
on dimensional analysis are used to estimate the
dependence on the cutoff of the counterterms gen-
erated in each order of the loop expansion. All
possible structures allowed by the nonlinear sym-
metry which can be generated at one-loop order
will then be listed.

Section IV will be devoted to an explicit compu-
tation of the new Lagrangian terms as functions of
the cutoff. Some care is required in dealing with
the scalar (Goldstone-boson) sector of the theory,
in particular with respect to the interplay of quan-
tum corrections and the choice of parametrization
of the model in terms of the Goldstone fields.

In Sec. V, the experimentally measurable ef-
fects due to this cutoff dependence are listed, most
coming in the form of “corrections to natural re-
lations.,” Natural relations are constraints among
coupling strengths and masses which arise because
of the form of the original Lagrangian dictated by
the symmetries. The new invariant structures of

the nonlinear theory can eliminate these con-
straints since they can contribute to the same cou-
pling strengths and masses which the original La-
grangian generates. The various measurable cor-
rections can simply be read off from the counter-
terms of Secs. III and IV.

Our results are summarized in Sec. VI along
with some remarks about the SU(2) x U(1) theory.

II. THE HIGGS MODEL AS AN EFFECTIVE
LOW-ENERGY THEORY

We proceed by writing down and describing the
Higgs model to be analyzed and then discussing the
extent to which it can be regarded as the low-en-
ergy limit of a gauge theory with some strong
interaction driving the spontaneous breakdown.

The starting point is the SU(2), X SU(2), ¢ model
which will be taken to describe the Higgs sector.
The matrix field

M(x)=o(x)+it 7 (%) (2.1)

transforms from the left and right according to the
(3,%) representation of SU(2), X SU(2),. The set
¢(x)=(0(x),7(x)) transforms as a vector under the
isomorphic 0O(4) group and the most general form
of the scalar potential is

My?
877

V(¢)=%X(§TI‘M1'M _f2)2= (02+-ﬁz_f2)2’

(2.2)

where f is the vacuum expectation value. The
gauge field W ,(x) = W ,(x)-7/24 will be taken to
transform according to the SU(2), subgroup. The
gauge-invariant Lagrangian is

&,,=+3Tr(F,,)?+3 TrD ,M(D*M)"

- My?
+_§}-T

where F,,=08,W,-8,W, +g[W,,W,] and D=9,
+gW,. The essential ingredients of our analysis
will not directly involve any fermions which might
be introduced and so we dispense with them for
now. They will be included later in order to model
some interesting physical processes.

In quantizing this theory, it is most convenient to
work in Landau gauge. In that way, the Fadeev-
Popov ghost couples only to the gauge field, direct
transitions of the W into the 7 are forbidden, and
the 7 field stays massless. The Goldstone-real-
ized global SU(2), X SU(2), symmetry of the Higgs
sector is then kept manifest throughout.

The question now is what happens when M, be-
comes so large that

(z TrM™ -f?)?, (2.3)

A M2
71-2-=2—7r-5,}—2~1. (2.4)
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A key ingredient in answering this question is the
Higgs-sector SU(2), X SU(2), symmetry and the
low-energy behavior that follows from it. If this
symmetry is hidden, as it always is in the genera-
tion of Feynman rules for a Higgs theory, the
analysis can become exceedingly complicated. It
is only through the cancellation of many diagrams
that the symmetry is reinstated so that general
properties are hard to discover.

The best way to avoid these problems and to con-
tinue to keep the SU(2), X SU(2), symmetry explicit
is to take the limit M, -« formally at the begin-
ning. As far as the scalar sector is concerned,
‘this takes it from a linear to a nonlinear ¢ model
with the constraint

M'™™=MM"'=(2M,)*/g?=F2. (2.5)

In terms of the 7 field as it was introduced in Eq.
(2.1), the scalar part of the Lagrangian becomes

‘sscalar:%(au,ﬁ)z"'%(:ﬁ' au-ﬁ)z/(f2 —;2) . (2. 6)

The full theory is then a left-gauged nonlinear o
model. The full invariant Lagrangian is

Ly =+3 Tr(F ) +3D,M(D"M)* (2.7)

with M subject to the constraint of Eq. (2.5). In
addition to £__,,. ., this containg the usual Yang-
Mills pieces along with interaction terms contain-
ing one W field and 2,3,5,7,...,7 fields. To
(2.7), gauge-fixing and ghost terms must be added.
In the R, gauges,

Lop= -3 E(0, W+ gf 1/ 28)*, (2.8)

with the corresponding Fadeev-Popov ghost term.
In the limit £ -« (Landau gauge), this takes the
form

Lpp= =X OX*+ g€, (3“X)X°WE,. (2.9)

Since the nonlinear theory is nonrenormalizable,
the limit M, -« does not actually exist in pertur-
bation theory. As a result, computations with the
nonlinear theory will lead to new divergences
which force the introduction of new counterterms.
These terms must respect the SU(2), X SU(2),
symmetry and it is possible to list all such struc-
tures which can be generated at one or two loops.
It is only these new structures which can lead to
deviations from the predictions of the original the-
ory, and once they are listed, all possible new ef-
fects can be read off. The cutoff dependence of
these new terms can be computed and the cutoff
can then be taken to be M, of the original linear
theory. It is the size of the new terms in the limit
(2.4) that is of interest. The details of this pro-
gram are presented, beginning in Sec. III,

It is worth recalling that a gauge theory coupled
to the nonlinear ¢ model is formally equivalent to

a Yang-Mills theory in which a mass term is added
by hand, the so-called massive Yang-Mills theo-
ry.® The easiest way to see this is to go back to
the linear theory and quantize in a general R,
gauge. If the limit £ -0 (instead of £—, the Lan-
dau gauge) is then taken, the theory goes into uni-
tary gauge. The 7 is explicitly absorbed by the W
and the result is a massive Yang-Mills theory
coupled to the Higgs particle described by o(x).
The limit M, -~ then formally removes the Higgs
particle from the Hilbert space and the result is
the massive Yang-Mills theory. While it would
certainly be possible to examine the limit (2.4) in
the unitary gauge, it would be extremely cumber-
some. The Landau gauge is really much more
“physical” for this particular problem.

The role being played by the nonlinear ¢ model
here is similar in some Ways to its role as a phe-
nomenological Lagrangian describing low-energy
pion physics.® With the pion as an approximate
Goldstone boson, the combined constraints of
SU(2), X SU(2), current algebra and pole dominance
are embodied in the nonlinear Lagrangian. Used
in tree approximation, it then reproduces the cur-
rent-algebra pole-dominance results for soft-pion
S-matrix elements.

If it is assumed that the Goldstone symmetry in-
volved in the Higgs mechanism is also SU(2),

X SU(2),, the same nonlinear model, used in a
similar way, will be relevant, However, the dif-
ferences are important. Here the 7’s are the Higgs
ghosts, explicitly present only because of a gauge
choice. Because they only appear virtually and
because direct W— 7 transitions are forbidden,
they enter only in loops and the momentum flowing
through them must be integrated over. Thus the
scalar theory (2.6) is being used and tested more
seriously than in low-energy pion physics. It is
still taken to represent the Higgs sector at low en-
ergies and, to the extent that the loop computations
are dominated by low energies (<<M,), it should
suffice. The problem, of course, is that the loop
computations are not always dominated by low en-
ergies. The whole point of the program we have
so far outlined and will next present in detail is to
see just how far one can go with the nonlinear
model. It might be possible to reformulate this
program using a current-algebra and pole-domi-
nance language, but that we shall not attempt here.

1II. THE STRUCTURE OF COUNTERTERMS
IN THE NONLINEAR MODEL

In this section we will examine the structure of
the divergences which appear in perturbation-the-
ory computations with the nonlinear Higgs La-

‘ grangian. These divergences contain all the in-
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formation about the effects of a strong, heavy-
Higgs-boson sector on the gauge theory at low en-
ergies. Divergences not of the form of the origi-
nal Lagrangian arise because of the scalar-field
self-couplings which have two derivatives and ar-
bitrary powers of the field.

The invariant nonlinear Lagrangian is given by
Eq. (2.7). As mentioned above, the choice of Lan-
dau gauge has the advantage of keeping the 7 field
explicitly massless at all stages of the calculation
and of eliminating direct coupling of the 7 to the
ghosts. Since the nonrenormalizability comes
only from the 7 self-couplings, this gauge choice
keeps the nonrenormalizability from infecting
graphs with external ghosts—the divergences may
be canceled merely by subtracting subgraphs with
external 7 and Wu fields only. For this reason,
counterterms necessary to cancel divergences
are expected to be local, explicitly gauge-invari-
ant functions of # and W,. In other gauges, the
counterterms would be functions of the ghost
fields also, and their structure would have to be
determined by using the more general Becchi-
Rouet-Stora (BRS) invariance.®

There is a fairly simple power-counting argu-
ment which determines the structure of possible
divergent counterterms that may arise at a given
order in the loop expansion. This argument is
made most easily by defining dimensionless scalar
fields. We first write the M matrix of Eq. (2.1) in
terms of a unitary matrix U:

M=fU. (3.1)

U is then parametrized with some set of scalar'
fields. For example, we may write

U=(1 =7/ 2+477, (3.2)

where f: #/f is dimensionless. The effective La-
grangian then takes the form

L=1f*Tr[D,UD"V)] + &, (3.3)
where
£6=3 Tr(F,, F*) + Lap + Lpp - (3.4)

In the power-counting analysis which follows, we
use the fact that there exists a dimensionful,
gauge- and chiral-invariant regulator A. (In prin-
ciple, one way to obtain such a regulator would be
to perform renormalized calculations in the linear
model. The renormalized Higgs-boson mass
could then be taken large and identified with A.'!)
Now define D as the dimension of a counterterm
which appears at L loops. D counts one for every
derivative and gauge field; scalar fields are di-
mensionless and will appear in arbitrary num-
bers, governed only by gauge and chiral invari-
ance. In addition, let » be the number of powers

of £% and r be the number of powers of the regu-
lator A which accompany this counterterm. Di-
mensional analysis then implies

D+2n+vr=4. (3.5)

The number # is not hard to determine because
f%, which multiplies the first term of the Lagran-
gian (3.3), acts basically like a loop-counting pa-
rameter. If we just use propagators and vertices
from this first term, then the usual loop-counting
argument gives

n=1-L. (3.6)

If we now allow I, propagators and V, vertices
from £, (3.6) is altered to read

n=1-L+b, (3.7)

where b=1; - V,. It is not hard to see that, ex-
cept in zero loops,

=0 (3.8)

with equality coming only when I,=0 or when L

=1 and qll vertices and propagators in the dia-
gram are from £,. That is, 5=0 only in diagrams
with no internal gauge or ghost lines, or in the
pure Yang-Mills one-loop graphs. Putting (3.7)
and (3.8) in (3.5) gives '

D<2+2L -7, (3.9)

with equality under the same conditions as (3.8).

Equation (3.9) is the result we were after. It
says that divergent counterterms with the greatest
dimension are generated in L loops by the loga-
rithmic (= 0) divergences of graphs with no in-
ternal gauge or ghost lines (except when L=1,
when the pure Yang-Mills diagrams are also lead-
ing in D—but even there, we will find that the
Yang-Mills graphs are not important for the cal-
culation of physically significant large-M, ef-
fects). These “leading” counterterms have

D=D,_, =2+2L. (3.10)

In L +1 loops, new counterterms with higher D will
appear as logarithmic divergences; the counter-
terms that first appeared at L loops can now ap-
pear with quadratically divergent coefficients (and
two more powers of f in the denominator) or with
logarithmically divergent coefficients from graphs
with internal gauge or ghost lines. Similarly,
counterterms that first appeared at L -1 loops

can now appear with quartic divergences, and so
on,

We now focus our attention on the one-loop
graphs. The form of the divergent counterterms
that appear can be rather simply determined by
the power-counting arguments given above and by
the requirement of gauge and chiral invariance.
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Equation (3.9) implies that, at one loop, there may
be logarithmic divergences with D=4, quadratic
divergences with D=2, and quartic divergences
with D=0,

The quartic divergences are easily disposed of.
Since D=0, they must be made up of 7 fields
alone, with no gauge fields or derivatives. The
only invariant is then

TroU'=1, (3.11)

so there will, in fact, be no quartic divergences.
Explicit loop computations bear out this formal
argument when care is taken to treat the loop ex-
pansion in a chirally invariant way.'?

The quadratic divergences have D=2, A little
thought convinces one that the only invariant D=2
structure is TrD,U(D*U), which is of the form of
the original Lagrangian.® Thus, such divergences
can be absorbed into redefinitions of the original
parameters (wave-function renormalization of the
field and redefinition of f) and are physically un-
important.

The only counterterms which are important at
one loop are, therefore, the logarithmic diver-
gences with D=4. There are several such struc-
tures, and it proves convenient, in their enumer-
ation, first to define the dimension-one object

V,=(D,0)U'=gW, +(8,U)U". (3.12)

V, is an SU(2), invariant and transforms co-
variantly under the gauged SU(2), as

V,~V.=G,V,Gl. (3.13)

We can take covariant derivatives of V, with the
adjoint representation operator

D,=9,+g[W,, ]. (3.14)
Using the identity
(0, U0'=-UYD,0)UT, (3.15)

we can arrange things so that derivatives act only
on U (and not on U?'). It then becomes clear that
one can construct all nontrivial, local-invariant
quantities out of traces of strings of V,’s and
their covariant derivatives, and F,,’s and their
covariant derivatives. For example, the first
term in the original Lagrangian (3.3) is propor-
tional to TrV V¥,

The candidates for the D=4 invariants are then

a b

FIG. 1. One-loop 7 self-energy.

Tr(F,,F*),

Tr(F,,D"V"),

Tr(F,V*V"),

Tr[(®,V*)®,V")],

Tr[(®, V) (D*V")], (3.16)
Tr[®,V ) (®' V)],

Tr(V,V,2"V"),

Tr(V,V,)Te(VEVY),

Tr(V,V*) Tr(V, V"),

where we have eliminated terms that differ by a
simple integration by parts, and where we have
used the simplicity of the trace in SU(2) to write
traces of four V’s as products of traces of two
V’s. The terms in (3:16) are, however, not inde-

pendent. We can use the antisymmetry of F,,, the
identities
[Du, Du]d):g[Fy,w Zp] ’ (3.17a)
®,V, -9, V,=gF,+[V,V,1], (3.17b)

and repeated integrations by parts to eliminate
all but the following counterterms:

Lo=3 Tr(F, F*),

£ =, Tr(V,V*) Tr(V, V"),

£,= o, Tr(V,V,) Tr(V*V?), (3.18)
£3= a4, g Tr(F,[V*, V'],
L=a,Tr[(®,V*)®,V")].

The structures £,-£,, which do not appear in
the original Lagrangian, completely determine the
new physical effects at one loop. The coefficients
a, —a, can be at most logarithmically divergent at
the one-loop level. (It will turn out, however, that
@, is not divergent.) These coefficients will be re-
interpreted in the linear model as proportional to
InM ;. Wave-function renormalization of the fields
inside these counterterms only appears at two
loops. Of course, £,, since it originally appears
at tree level, gets wave-function and charge re-
normalization in the usual way. We will compute
the divergent coefficients of the above quantities
in Sec. IV.

IV. THE COMPUTATION OF ONE-LOOP
DIVERGENCES

The coefficients a,,..., @, of the counterterms
£y .., 8, (3.18) will now be computed. A key
point is that since our power-counting argument
has shown that the only physically significant one-
loop divergences are logarithmic, we can use di-



mensional continuation and merely interpret 1/¢
as InA or InM,, at the end. This is important be-
cause the only obvious, dimensionful, gauge- and
chiral-invariant regulator of the nonlinear model
is the renormalized linear model in the large-M,
limit.** (See the end of this section for some com-
ments about the failure of a simple cutoff in mo-
mentum space.) However, if we were actually
forced to compute in the linear model, the whole
simplicity of our approach would be lost.

Before proceeding, we recall that £,
=1 Tr(Fm,F“") has internal charge and wave-func-
tion renormalization and gives rise to the usual
three counterterms (two of which are independent)

-3(Z;-1)(o, W2 -08,W%)?,
—(Z,-1) g™, WEWEWE, (4.1)

13
-3(2,%/2,-1) g2 CWEWEW LW,

We note that Z, and Z, are, in fact, not equal to
the corresponding counterterms of the linear mod-
el but contain additional logarithmic divergences
that appear only as M, — .

The quantities @,,..., @, and Z, and Z, can now
be calculated. The relevant vertices and propa-
gators are obtained by putting (3.2) into (3.3) and
expanding (1 -7%2)'/2 in terms of #%. The counter-
terms £,,..., &, may be similarly expanded. The
Feynman rules and the contributions of £,,...,£,
to various Green’s functions are described in the
Appendix and listed in Tables I and II.

. It is convenient to determine a, first. This is
rather easy because only £, can contribute to the
renormalization of the 7 self-energy; that is, only
£, has a term with two 7 fields and no gauge fields.
There is just one diagram, Fig. 1, for the 7 self-
energy. (Recall that, except for pure Yang-Mills
diagrams with no 7 lines at all, graphs with in-
ternal gauge lines can never contribute to the
highest-dimension counterterms.) However, in-
spection of Fig. 1 shows that it has no logarithmic
divergences, only quartic and quadratic—or equiv-
alently, that it cannot produce the four powers of
momentum present in the counterterm from £,
(see Table II) because the loop has no dependence
on the external momentum. Thus, we have a,=0,
and &, is eliminated.®

We next consider £,, which is also quite easy
to compute. £, is the only remaining counterterm
that renormalizes graphs with two 7’s and a W ex-
ternal. The only graph appears in Fig. 2, and its
divergent part is

-1
mgg% hbzfg, uRegy)—q,, (k- 4], (4. 2)‘

where ¢=4 —n. Comparison with the contribution
of £, (see Table II) gives
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FIG. 2. One-loop m7W vertex.

1 1
a3 = (T‘gﬁ) i‘z'—€ . (4.3)

A check on this result can be obtained by calcu-
lating the graph of Fig. 3 with two W’s and a 7 ex-
ternal. £, is the only contributor to the renormal-
ization and one again arrives at (4.3).

The remaining coefficients @, and @, may now
be computed in a variety of ways. We outline
three independent calculations because each is in-
structive in its own right. First, consider only the
graphs describing the interaction of the W’s, the
physical particles of the present theory. From
Table II we see that the 2W and 3W one-particle-
irreducible (1PI) Green’s functions can be used to
determine Z, and Z,, since a, is already known.
Then the 4W function will determine o, and a,.
Now each of these Green’s functions receives con-
tributions both from 7 loops and also from pure
Yang-Mills graphs which give the same contribu-
tion to Z, and Z, that they would in an unbroken,
pure gauge theory. (The contributions do not de-
pend on M, as a simple power-counting argu-
ment shows.) Since the latter theory is indepen-
dently renormalizable, the contributions from the
pure Yang-Mills diagrams will be absorbable into
Z, and Z, and will have no effect on the new phys-
ically important quantities, the o,. Thus, we may
totally ignore the pure Yang-Mills graphs in cal-
culating a;. The only remaining graphs are shown
in Figs. 4, 5, and 6. Their divergent parts are
given by

. 1 \ig?
Fig. 4: - (1_6775)% 6ab[guvk2 "ku.kv] ’ (4.4)
. 1 g3 be
Fig. 5: - 167%) Toe €’ [gw(k—q)x"'gn(q—")u
+gu(r=p),1, (4.5)
q b,v
C + crossin
a,p  k r >sing

FIG. 3. One-loop nWW vertex.
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k()
a b

FIG. 4. One-loop W self-energy.

. 1 \ig*
Fig. 6: +(\167r2)§—€ [Gab60d+permsl[guugxc

+perms] .
(4.6)

After dividing (4.6) into the two tensor structures
that appear in the 4W counterterm, these results
may be compared with Table II. The result is
four equations in the four unknowns: o, «,, and
the m-loop contributions to Z, and Z,. Solving for
@, and a, then gives the values

_ (_1_>_1_
A= -\167% J12¢ °

< 1 1
Note that the nonvanishing of o, and a, and the
equivalence, mentioned in Sec. II, between the
present theory and massive Yang- Mills theory,
immediately show that the latter theory is pertur-
batively nonrenormalizable. The divergent part

(4.7)

14
1672 3¢

where f,u are the usual Mandelstam variables.

We have separated off the terms which vanish
when ¢,%= 0 for an important reason: It is known
that in the nonlinear ¢ model the one-loop diver-
gences off mass shell are not invariant under the
naive nonlinear symmetry.!” One way to cope with
this problem is to redefine the symmetry—or,
equivalently, to redefine the 7 field-—order by or-
der in the loop expansion, As is usually the case
in field theory, redefinitions have no effect on the

K c,\

+ crossings

b,v d,o
FIG. 6. One-loop 4W vertex.

a,u b,v
k q

C, A

FIG. 5. One-loop 3W vertex.

of the 4W vertex has a tensor structure (4.6)
which is not of the form of the original Lagran-
gian.'® It is, in some sense, a simpler structure
since the Bose symmetry is found separately in
both the internal indices and the Lorentz indices.
The 4W vertex will be discussed further in Sec.
V in assessing the physical consequences of the
cutoff dependence.

We now compute o, and «, in a second way.
The logarithmic, D=4 divergence in the 47 1PI
Green’s function comes only from the graph in
Fig. 7. This is a pure nonlinear-¢g-model diagram
and the coupling to the gauge theory is totally ir-
relevant here. The divergent part of Fig. 7 takes
the form

[04,0,0a,0,(t*+ 4+ ut) + perms] + terms which vanish when ¢,%= ¢,’= ¢,*=¢,°=0, (4.8)

I

on-mass-shell amplitudes, where the symmetry
is manifest. This and other subtleties of the loop
expansion in the nonlinear ¢ model will be dis-
cussed more completely in a forthcoming paper.®
Even if the reader accepts the fact that it is con-
venient to work on-shell with manifest symmetry,
he may be troubled by the following question:
What do we mean by “on mass shell” for the pres-
ent gauge theory, where the 7 is not a physical
particle but a Goldstone boson which is absorbed
by the Higgs mechanism? The answer is simple
in Landau gauge. If we insist on calculating graphs

a, ‘1 q as
g, 3
S + crossings
d2 da
az aag

FIG. 7. One-loop 47 vertex.
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with external 7 lines, then “on mass shell” means
¢°=0, where the 7 propagator has a pole. (The
pole remains at g?=0 even in higher order be-
cause Landau gauge is not renormalized,'® which
means that there is always a spurious ¢%=0 pole
in the W propagator. Therefore, the 7 pole—and
the ghost pole—must also remain at ¢%= 0 to can-
cel it.) At the pole, the graphs will be invariant
under redefinitions of the 7 field and hence the
symmetry will be manifest. Of course, one may
wish only to calculate graphs with physical ex-
ternal particles. In that case, there will be no
source coupled to the 7 field, and the generating
functional W[J] will be at least formally invariant
under all redefinitions of the 7 field. Thus the
symmetry will be automatically manifest, as ex-
emplified by the first calculation of ¢, and a,.

We do not have to put the W particles on shell (al-
though the Landau gauge condition will, in gen-
eral, be necessary —see below).

Returning now to the second calculation of o,
and @,, we may set ¢,>°=0 and then compare (4.8)
with the appropriate counterterm in Table IL A
little algebra and the fact that s+ ¢+#%=0 when ¢,°
=0 then reproduces (4.7). It is important to re-
iterate here that when ¢,?#0, it is impossible to
choose a, and «, to absorb the divergences in
(4.7). As described above, the naively invariant
counterterms are not sufficient of “mass shell”—
a redefinition of the symmetry will, in general,
be required. We note that the quantities @, and

a, have been calculated previously in this context

of the pure nonlinear ¢ model.}”*%°

A third computation of @, and @, provides an
additional insight. Consider the Green’s function
with 3W’s and one 7 external. It is given by the
graph in Fig. 8, which has divergent part

1 3
(ma) ‘§—€- (0260048 ula + & urkv + 8l ) + perms]

+terms proportional to &, g,, or 7,. (4.9)

The terms proportional to 2, ¢,, or 7, will van-
ish when contracted into the Landau gauge propa-
gators on the external lines. We can then com-
pare (4.9) with the appropriate counterterm in
Table II: the result is again (4.7). This shows
the importance of the Landau-gauge condition; as
emphasized in Sec. III, the counterterms will
otherwise not possess simple gauge invariance but

C,A
a,u k "

b,v p 2

FIG. 8. One-loop TWWW vertex.

d + crossings

only BRS invariance. Here, we would be unable
to absorb the divergences of (4.9) into the gauge-
invariant counterterms without the Landau gauge
condition.,

Perhaps a few final remarks are in order on the
questions of quadratic divergences. In Sec. Il we
argued that these divergences are always of the
form of the D=2 part [TrD,U(D,U)'] of the origi-
nal Lagrangian, However, if a computation is at-
tempted with a simple momentum cutoff on the
Feynmann integrals of the nonlinear theory, prob-
lems soon arise. For example, the quadratic di-
vergences in the 7 self-energy and in the 2r-W
vertex have relative strengths which are not com-
patible with the counterterm. (It would seem that
a Ward identify is being violated.) The difficulty
here, however, is not in the theory but in the
method of regularization. The momentum-space
cutoff seems to be akin to a 7 mass term and hence
to be chirally noninvariant. An invariant cutoff
(for example, returning to the linear model and
taking M, ~«) gives results compatible with the
invariant counterterm. We will discuss this ques-~
tion further in Ref. 18,

V. EXPERIMENTAL EFFECTS

All possible one-loop sensitivity to a heavy-
Higgs-boson sector can be read off from the
counterterms £,, £,, and £, of Eq. (3.18). The
coefficients o, @,, and o, are given by Eqgs. (4.7)
and (4.8) and the dimensional continuation param-
eter 1/¢ may be reinterpreted in the linear model
by the replacement

1_1 M,

—=——-In

< TTon 9, 6.1

where M, represents any low-energy scale enter-
ing the computation. The convention adopted so
far is that £,, £,, and £, are counterterms, that
is, each is the negative of a cutoff-dependent
structure generated by the nonlinear theory. Thus,
each £; must be multiplied by -1 in listing mea-
surable effects.

The model described so far contains no fermions
and we first discuss the in-principle measurable
effects there. We then make some remarks about
the inclusion of fermions. This brings the model
closer to reality but does not change the essentials
of the analysis. The further extension to the
SU(2) x U(1) theory is briefly described in Sec. VI

Without fermions, the only light physical parti-
cles are the W bosons so all the new physical ef-
fects can be extracted from £,, £,, and £, by
setting 7=0, thatis, M=fI and V,=gW,. £ and
£, then produce 4W vertices and £, produces a
3W and 4W vertex. Their explicit forms are
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shown in the third and fourth entries of Table II
along with the conventional counterterms arising
from rescalings in £,. Inspection of these ver-
tices shows that £; contributes tensor structures
which are identical to those coming from £,. It
is only through the introduction of additional par-
ticles such as fermions that o, can be isolated
and that will be considered shortly.

£, and £, give rise to 4W vertices with dif-
ferent tensor structures as shown in Table IIL
Explicit computation (4.7) has shown that a,=2a,
=—-(1/167%)1/6¢, corresponding to the cutoff-depen-
dent vertex (4.6). The tensor structure in (4.6)
corresponds to the Bose symmetry existing inde-
pendently in the internal and Lorentz indices and
is to be contrasted with the rather different Bose-
symmetric structure of the original 4W vertex
(Table I). It is useful to discuss the 4W vertex in
terms of these two structures (the “new” one and
the “old” one), although any linear combinations
of the two would do equally as well.

The “old” structure can be used to define a re-
normalized direct 4W coupling. Choosing the 2W
and 3W counterterms (Table II) to cancel the 7-
loop (along with the usual gauge particle loop)
contributions to these Green’s functions, the cou-
pling g is defined to be the renormalized 3W cou-
pling strength. Now consider the 4W counterterms
of Table II. The quantity (Z,%/Z, - 1) + 2, ap-
pearing in both pieces has already been fixed and
the m-loop contribution to it is, in fact, zero.
That is just as expected since the 7-loop contribu-
tion to the 4W vertex (4.6) has no “old” part at
all; it is purely “new.” The result of all this is
that the renormalized 4W coupling constant g,
can be taken to be g2 up to possible M ,-indepen-
dent corrections. Thus, with our prescription for
.y, the tree-graph relation g, =g,,” is pre-
served by the one-loop corrections in the nonlin-
ear model, i.e., it is not sensitive to M, as M,
—000_

The new cutoff dependence is found completely
in the “new” structure (4.6). It is summarized by
the effective interaction

1 1

=5 o Tae

(Trv,V*Trv,v”
+2TrV,V, Trv*vY), (5.2)

where 1/¢ can be replaced by InM,/M,. The cor-
responding contribution to the S matrix for Ww
scattering is formed by multiplying (4.6) by po-
larization vectors. An appropriate set of mea-
surements would then isolate the interaction (5.2)
which is logarithmically sensitive to M.

Suppose next that fermions are introduced. The
mass generation mechanism will involve the cou-

pling of these fermions to the Higgs sector® but if
the mass is small compared to M, it is reason-
able to neglect it to first approximation, We shall,
therefore, restrict our attention to a massless
SU(2), doublet coupled only to the gauge field.
There are no new invariant, one-loop-generated
structures involving the fermion field so the list
(3.18) remains unchanged.

The fermion, however, plays the important role
of a probe, allowing the isolation and measure-
ment of

£3= anger[V”, VV] .

We compare the 3W coupling g,, and the fermion-
W coupling g, through the one-loop level. They
are, of course, identical at the tree level. As
mentioned above, the 3W counterterm of Table II
can be (and has been) arranged so that g;, =g
through one loop. However, the corresponding
counterterm for the fermion-W vertex does not
contain a, g2 It contains only a term correspond-
ing to the (Z, —1) piece of the 3W counterterm, It
follows that

B 1 _ggrieemlo B LnMa L
P 1-a,g%+ 1 16#2121nMW+

(5.3)

Equation (5.3) describes a one-loop deviation (de-
pending-logarithmically on M) from the natural
relation gy, =gy. This is possible because of the
new interaction £, in the list (3.18) which contri-
butes to one coupling strength but not the other.
Since gy, and g, can be independently measured,
the relation (5.3) is experimentally meaningful.

All the information contained in £,, £,, and £,
has nowbeen extracted. Since these terms contain
all the one-loop sensitivity to M, there can be no
further sensitivity in the models considered.
There will be new structures generated in higher
orders, however, as well as corrections to the
one-loop structures. Since the loop expansion pa-
rameter is

A= g ®M %/ 812 M, 2= M %/ 2m2F?

the higher-order corrections will not be small if
M, is so large that A/7®~0(1). These corrections
correspond to the quadratic and higher-power di-
vergences of the nonlinear theory, described in
Sec. IIL. In the /7%~ 1 regime, relations like (5.3)
can at most be taken as rough guides: The cor-
rection is of order (g2/19272) InM,/M,, times a
number of order one. If, on the other hand, A/7?
is somewhat less than one, Eq. (5.3) can be taken
more seriously.??
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VI. SUMMARY

It has been shown that the low-energy sensitivity
to a heavy-(~1 TeV)-Higgs-boson sector with an
SU(2), X SU(2), symmetry can be completely char-
acterized to any order in the loop expansion. By
utilizing a nonlinear ¢ model to describe the low-
energy Goldstone bosons of the Higgs sector, the
sensitivity to the heavy physical Higgs particles
can be summarized in terms of the cutoff depen-
dence generated by the nonlinear theory. This de-
pendence can be written in the form of new La-
grangian terms which must be both gauge invari-
ant and chiral invariant, A complete list of the
new terms which can arise at one loop is straight-
forward to assemble and once that is done, all
possible physical effects can be read off.

For the SU(2) model considered above, the list
consists of £,, £,, and £, (3.18). We repeat the
list here incorporating the calculated values of
the coefficients @,, a,, and @, and a factor of -1
to compensate for the counterterm convention used
in Eq. (3.18):

(11 My ) ,
_£1— (IGWZEIDW)TI‘V“V TI‘VVV ,

-£,= (-I%F%ln%—:>TrVuV?TrV”V", (6.1)
g, (_ﬁ liz m%) g TrF,,[V*, v*],
where V, is given by Eq. (3.12). Physical pro-
cesses involve only external W’s and are, there-
fore, described by setting V,=gW,. This leads
to the two measurable effects described in Sec. V.
They are of order (g7167%) L. InM,/M,, a small
effect even in the limit (2.4). Since the list (6.1)
is complete, there can be no further one-loop sen-
sitivity to a heavy, strongly interacting Higgs sec-
tor.

In higher orders, new structures can be gen-
erated and there can be corrections to the one-
loop structures. The analysis of Sec. III has shown
that when a new, higher-dimensional structure
first appears in the loop expansion, it will be at
most logarithmically sensitive to the cutoff. This
is essentially because all the available powers of
1/f?, the expansion parameter of the nonlinear o
model, must compensate the higher dimension of
the generated structure. There are none left over
to compensate possible powers of M’ The ex-
pansion parameter for higher-order corrections
to structures of a given dimension will be

&M /81 M 2= M %/ 2n%f?

and, in the limit (2.4), the expansion will break
down.

Nevertheless, the following important conclusion
can be drawn: In any measurable effect, there will
be at least one power of the weak coupling strength
g?%/1672, which is uncompensated by a power of
M ?/M,? The effect is at most (g?2/19272) InM %/
M, times a factor which cannot be reliably com-
puted in the loop expansion but should be, at most,
of order unity. The physics of the heavy, strongly
interacting Higgs sector is shielded from the low-
energy probing of the light particles by at least
one power of the coupling constant—except for
possible logarithms.

This result relies critically on the SU(2),

X SU(2), symmetry of the Higgs sector. If the
symmetry is relaxed, it is possible to generate a
power-law dependence on the heavy-Higgs-boson
mass. An example of this has been provided by
Toussiant,? who used two complex doublets of
scalar fields. By an appropriate choice of param-
eters not respecting the SU(2), X SU(2), symmetry,
a measurable one-loop effect can be generated,
which depends quadratically on one of the Higgs~
boson masses. It is easy to see that the effect
disappears if the symmetry is reimposed. There
are, of course, many ways to break the SU(2),

X SU(2) , symmetry (e.g., a mass term for the 7
field) and it would be useful to study the heavy-
Higgs-boson effects that result in various cases.

In examining the one-loop corrections to the
gauged nonlinear ¢ model, a number of subtleties
were encountered. The most troublesome was
the fact that the invariant counterterms (6.1) are
not always sufficient to remove the one-loop log-
arithmic divergences off mass shell. This is al-
ready a feature of the usual (nongauged) nonlinear
o model and can be seen, for example, in the 47
amplitude. The only relevant counterterms are
£, and &, (6.1) and while they render finite the on-
shell 47 amplitude, off-shell divergences remain.
This fact has been observed before'” and will be
discussed more extensively in a future paper.®

Finally, we emphasize that the kind of analysis
developed here can be applied to any gauge theory.
The simplest realistic one is the Weinberg-Salam
SU(2), X U(1), theory, which is currently being ex-
amined.? We include here only a few preliminary
remarks about this work.

As pointed out in Sec. V, the one-loop heavy-
Higgs-boson effects can often be regarded as cor-
rections to natural relations. The best known, and
only experimentally tested, natural relation in the
Weinberg-Salam model involves My, M,, and
cosd,, (defined by siné,=e/g, where g is the W*
coupling strength). At the tree level,

2

My 2
—= cos?6 =1, (6.2)
‘IWW2 ¥ tree
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This prediction, which follows from the SU(2),
X SU(2), symmetry of the Higgs sector,® has been
checked by low-energy neutrino scattering (where
My, and M, are defined to be zero momentum in-
verse propagators). It is found that®®

M2

—t—— | =0.981+0.037 6.3
M 4% cos®,, * ’ (6.3)

exp

in good agreement with Eq. (6.1). The prediction
(6.1) is, however, corrected at one loop by a
term of order (a/7)InM,/M,.** The logarithmic
sensitivity to M, can again be understood in terms
of dimensional analysis of the gauged nonlinear ¢
model. The SU(2), X SU(2), symmetry of the Higgs
sector continues to be the key ingredient; an ex-
plicit example® has shown that without it there

TABLE I. Partial list of Feynman rules for the Lagrangian (3.3). (All momenta flow out of

vertices.)
a B b iéab
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01/‘; ANAN ﬂkﬂ AN b,‘v" —i045 (g ky Ry )
N 2 2 - 2
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q l' q
S | 3 )
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a,u
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| 2
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Virs
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can be a one-loop correction to Eq. (6.2) depend-
ing quadratically on M.

It is not hard to see that the list (6.1) will not
suffice to explain the one-loop correction to Eq.
(6.2). The basic process by which the quantity
(M ,3/M,?) cos?8,, is measured is single W or Z
exchange between a lepton and a quark. The one-
loop corrections to this process, which can in-
volve the Higgs sector, can only be W and Z
propagator insertions, since the fermion mass is
being neglected. Since £,, £,, and £, (6.1) give
rise only to 3W and 4W vertices, they clearly can-
not produce corrections to Eq. (6.2). However,
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since the total symmetry of the theory is only
SU(2), X U(1),, there are many new structures
which are now allowed. A one-loop example is
[Tr(D M), M']? where M is given by Eq. (2.1) and
D, is the covariant derivative appropriate to both
the SU(2), and U(1), gauge groups. In the gauge
sector, this term produces a Z-mass contribution
which effects the type of deviation from Eq. (6.2)
discussed above. A complete analysis of such
terms, as well as those that will be relevant above
W and Z production threshold, is being carried
out.

TABLE II. Contributions of the counterterms Ly, ...,L4 to various Green’s functions. (All

momenta flow out of vertices.)
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APPENDIX

Here we state the Feynman rules for the non-
linear SU(2) gauge theory. We also write down
the contributions of the counterterms £,,...,£,
to various Green’s functions with low numbers of
external lines.

The full Lagrangian for the theory, obtained by
putting (3.2) into (3.3), is

]MW2 7 2 - (;ﬁ. au_}_?)z
o=t Tem W (0.0
2
_Z?g W?;[iubc(auf_b)lc*‘(auza)(l _-1—12)1/2 _E_aau(l _i2)1/2] + £GF+ £FP , (Al)

where £ and £, are given by (2.8) and (2.9)
with Landau gauge (£ —«) implied. As usual, a
term from £4; will cancel the 7-W mixing term
in (Al1). From (Al) we can easily arrive at the
Feynman rules. (With dimensional regulariza-
tion, the naive Matthew theorem is correct even
in derivative coupled theories™ and the Feynman
rules follow directly from the Lagrangian.) In
Table I, we give the propagators and also those
vertices which are necessary for the calculations
of Sec. IV. We emphasize that there are no “sea-
gull” vertices involving two W’s and two 7’s, in
contrast to the linear model. This is because #*
+ 02 has fixed magnitude. Interactions not involv-

ing the 7 field are, of course, the same as in the
usual gauge theory; they are included here for
completeness.

The contributions of £,,...,£, to various
Green’s functions are easily determined by insert-
ing the definition of V, (3.12) and the parametriza-
tion of U (3.2) into (3.18). The resulting counter-
terms for the Green’s functions computed in Sec.
IV are listed in Table II. Except in the 7 self-
energy, we assume that o, has already been found
to vanish and, therefore, we do not include the £,
contributions. Note that all these counterterms
have D=4, counting one for every power of mo-
mentum and one for every gauge field.
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