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Origin of Higgs fields
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We show that Higgs fields can be interpreted as the extra pieces of gauge fields arising from viewing them
as connections in a fiber bundle. This geometrical interpretation restricts the number of independent Higgs
components.

Ever since the Weinberg-Salam model was in-
troduced there has been a mystery about the origin
of the Higgs~ fields. ' ' We shall show that if one
adopts the view that conventional gauge fields are
pieces of connections in a fiber bundle, "the
Higgs fields have a natural interpretation. Since a
fiber bundle is a higher-dimensional manifold,
gauge fields on these manifolds have extra compo-
nents. Those extra components can be interpreted
as Higgs fields. With this interpretation the num-
ber of independent components for a Higgs field is
restricted to be the number of gauge group genera-
tors, N, plus one. The extra component goes away
in chiral models.

We shall describe the situation for a simple ex-
ample. The gauge group is SU(2). In this case one
imagines that the. physical world is essentially a
seven-dimensional manifold, P, which we shall
call the bundle" [in fact P = R' xSU(2)]. However,
this seven-dimensional manifold has. an action by
the group SU(2) (called right multiplication, see
Appendix). This action sends points around orbits
generated by SU(2), which are isomorphic to the
group manifold for SU(2). These orbit spaces are
called the fibers of the fiber bundle. See Fig.
1. If one takes the equivalence classes formed by
identifying all points in a single orbit, one finds
the four-dimensional manifoM O'. Thus we write
P(/SU(2) = R'. The map sending points p~P into
their equivalence class representative x Q R is
called the canonical projection z, z:P- R'."

If one were to write down a gauge field in this
seven-dimensional manifold, P, one would natu-
rally give it seven times three components, naive-
ly, that is, in terms of a global coordinate patch
for P with x" the R' coordinates and 9) the SU(2)
coordinates. We use n =exp((/)'A, ), and we will be
as cavalier as usual about coordinate singularities.
We ean write

with 4x 3-components in the first term and 3 &&3

components in the second and

with

dn((/)) = B.n((p) d(/)' . (4)

Here A„depends only on x. We can write

n(+) e(i /2) (4' a)) )

A section of P is a choice of slicing R' through
P, so that one point in each orbit is picked
(smoothly varying by neighbors). See Fig. l. It
amounts to setting y' equal to a (smooth) function
of x. We shall write the fields on the section,

n(x) —e(( /2) 8' (&)&), ) (6

B„(x)A dx" = n '(x)A.„(x)dx n(x)

+ n '(x)dn(x),

and now dn(x) = s„n(x)dx".
The curvature of the bundle is essentially the

Yang-Mills field tensor

G=4B+ B~B
= n '(dA +A ~A) n

= 0-'EQ.

In components

G~,A~ = Q 'A,.QP'~, ,

Fq„=8))A,' —egq + e,'„A'qA, .

(8)

We take g, the coupling constant, equal to one. If
not, divide P' by g . The kinetic part of the ac-
tion, 9,„is given as the Hilbert square of the cur-
vature

8, =
~

tr(*Gt& G)

t

tr(G~q, A~G' A )g ~g'~d4x

One can show that because of the orbit action
for SU(2) a considerable simplification must occur.
Indeed, as we explain in the Appendix,

8'(x, p)A, = n '(p)A„(x)dx" n((())+ n '(p)dn((/))

(8)

(2) ~ Fq,F' ()()~,g""g d x. (1O)
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SU(2) Section + Orbit or Fiber& P"- IR xSU(2)

I

Thus we can write the functional 8'as

W=JI [dB]exp i f tr(*G~(2 G+ ,'m'*B-td2B)
lm

FIG. 1. Portrait of a fiber bundle as a Young cylin-
der.

The definition of the Hodge dual (generalized Max-
well dual), *, is found in Ref. 4.

We add to 9,, an action 9, which gives a kinetic
term for the choice of section, 0(x). The section
field 0(x) will be the Higgs field,

8, = m' —,
' tr(+Bt12 B)

where

[dB] = [dA][0 'dQ][0 'dQ][0 'dQ].

Use the relationship between 0 and P to write

d ~d 5 -m'

«xp i (=,'Z'„,S'"„'+i&g+Api')d'x,

+nP+BII

(17)

(18)

m' —,
' tr(Bq~B, )g" "d'x .

m must have dimensions of mass, but is otherwise
undetermined.

Introduce

There is a constant Jacobian in the transformation
(2m ') which we omit. [5(P~(x)(t)(x) -m')] denotes
the functional 5 function. There are two standard
ways of rewriting this constraint:

(1) [5(gtp -m')]= lim exp —A, d'x(P~P -m')'
&~m

y(x) =mQ(x)u

with

(12) (19)

(2) l [da]exp a'(x)d x)[ll((dad —m')-a(x))]
2 J

or

—,
' tr(AtA, .) = 5,.~

=utA~A, .u. (14)

The fields P are "chiral" since they satisfy'

PtP =m'utQ"Qu

Then

~2m'tr(Bq~ B„)g""=

(sory+

Aq p) t(s„&+A,g)g"'.
(I 3)

The proof is a calculation using

—,
' tr(B B) =utBt Bu

=exp' —
2 Jr (ptp -m')'d'x . (20)

The first way is analogous to finding the integral
form for the gauge constraint [5(s A)]. The second
way amounts to broadening the gauge constraint to
[t)(S A —a)]; then integrating the functional over the
class of a' s. In the second case one need not take

~; instead it is an arbitrary constant. This
second procedure owes its relevance to the fact
that the coefficient m' appearing in 82 [Eq. (11)]
need not, have been a constant; instead we could let
it be an arbitrary function of position p. (x). Case
2 above amounts to letting p,'(x) =m'+ a(x) and then
integrating over all a(x).'

Thus our final functional is
I

W= [dA][dg~][d(II)]exp i d x -,E„F~"+ i&/+A(t -i'--(iPj'-m')
]

(21)

This is the usual Higgs action.
When one sums over all fields, one includes fields A'=AAA '+AdA ' and sections 0'(x) =A(x)0(x). For

this particular pairing of fields and sections the action is, of course, invariant. It is this set of transfor-
mations which we call gauge invariance. We mention this seemingly obvious point since in the literature'
one can find the statement that the W' and S bosons are the gauge transforms of the massless field. This
is not true. If we start from isp+Api' and write p =Qpu and W=O 'AO+0 'dQ. Wis not gauge covariant;
it is gauge invariant. If P goes to AP, A., goes to AAA '+ AdA '. Indeed the whole theory can be expressed
in terms of gauge-invariant fields. Gauge-invariant fields are not gauge transforms of gauge-covariant
fields.
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There is no 2 x2 representation in which

—,
' tr(Bt B) =u~Bt Bu (22)

when B takes values in SU(2) x U(1).
There is a four-dimensional representation in which it is true. But since the two-dimensional right-hand

side is what we are interested in, we simply include that as the contribution to the action,

8, = t ut(*B~AB)um

u BpBumg d x ~

J

Here u is as before [Eq. (12)]. The field B„ is now given by

B= Q '4„dx"Q+ 0 'dQ,

Q —~(& /2) (0 &&)

(23)

(24)

with

v„= (I,o)

The final action, after replacing m' bye'(x) =m'+g(x) and integrating7 is
P

[ &]ldO'][de]em ~„d'x --,'~„„S".+ (sy+ay~'--(~y~'
Isa

(25)

so that

=m'(1+ ~in detQ~')

=m'(1+ ~tr 1nQ)') (26)

a(x) =m'(~tr 1nQ~' —1) =m'[—,'(y')' —1]

with p' the component arising in Eq. (24), and
therefore

(27)

ut(*Bt a B)u m' [~tr inQ~' —1]. (28)

The fourth function can be extracted this way
since the three SU(2) parameters suffice to cover
the constrained manifold.

It is more conventional to take the adjoint Higgs
fields to be not the group element 0= e @ but the
algebra element P = (dQ/dm ')

~

—1 O=mlnQ. The
group covariant derivative of P is defined as

Dqp = ", =,[Q '(BqQ+AqQ)]
dB„d
dm' -i o

dm' m-~ =O

In this case it is interesting to note that the fourth
degree of freedom can be obtained from Q, though
in an unnatural way. We take

p,'(x) =m'+ a(x)

Inclusion of fermions is straightforward. '
Thus we have seen that the Higgs fields can be

ascribed to the extra degrees of freedom that come
from viewing a gauge field as a connection form.
The Higgs fields are the section fields. A restric-
tion on the number of Higgs fields arises. There
are essentially as many as the number of genera-
tors in the group. One can include one extra field
by exploiting the difference in dimensionality be-
tween + and B . We must multiply B' by some-
thing of dimension rn'. If that something is made
into a field, we can obtain the conventional Higgs
action. If not, we obtain the chiral Higgs action.
The chiral Higgs action certainly seems more
natural in the context we have described. It is in-
teresting to note that recent progress in its quan-
tization has been made. "

This work was supported in part by the United
States, Department of Energy.

APPENDIX

The claim that the gauge field in the bundle can
be expressed as

= a„y+ [~„,0]. (29) B(x,qr) = Q (p)A, (x)dx"Q(P) + Q (y)dQ(y) (Al)
There is no intrinsic constraint or potential for
Assuming reflection symmetry, the general poten-
tial is'

2

V(P) =—trP'+~ (trQ')' +'trP . —
2 4 4

is merely an application of the definition of a con-
nection form on a principal fiber bundle. Since
the notation is probably unfamiliar we shall
briefly review some definitions.

I et I be a manifold and G a Lie group. A.
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principal fiber bundle with group G consists of a
manifold P and an action of G on P such that we
have the following:

The "forms" 9s satisfy the dual of Eq. (A2).
That is,

d94+ lfA 98~ 9c 0 (A6)
(Bl) G acts freely on the right (u, A}cP x G

-uA=R~u(= P.
(B2) M is the quotient space of P induced by G.

Its canonical projection v .P-P/G =M is differ-
entiable.

(B3) P is locally trivial. For every x in M
there exists a neighborhood U such that tj): w '(u)

uxG diffeomorphically, if'(u) = (w(u), y(u)} and

y(u)A = y(uA).

In our simple example P= R &&SU(2). It has a
"global" coordinate form and triviality, since we
can give coordinates everywhere as u=(x, Q) with
Qc SU(2). The property (B3) yields this fact.
Furthermore (Bl) amounts to ((x,Q),A}-(x,QA)

and (B2) amounts to projection of (x,Q) onto x.
Since R„(x,l) = (x, Q) we see that x can be used to
label the equivalence classes under group multi-
plication.

Now we shall define a connection as a splitting
of the tangent space T(P) to the bundle P into ver-
tical V(P) and horizontal H(P) sectors T„(.P)
et al. denote the tangents at u(= P:

(Cl) T„(P)= V„(P)+H„(P) for uc P
(C2) H„~ = (R„)~H„(see below) .
(C3) H„varies differentiably with u.

These are the Maurer-Cartan equations. d is the
exterior derivative; thus

d8 =dM, & dp'

8M,
dp ed+'

Bpb

—:+g) ~dp & dp (A7)

A& B3 fABAC

we can write

=8 A~.

(A6) becomes

de+ene =0.

(A8)

(A9)

(Alo)

This is easily solved by 8=~ dO.
The set of vector fields (B/Bx', L„) form a basis

for T(P). Thus to every & in the algebra, 9 (of G)
we can assign a fundamental vector field w* in
T(P) as follows:

r=v A~ 7*=r Lq. (All)

Adenotes antisymmetrized tensor multiplication.
If we introduce A&, a set of matrices represent-

ing L» and thus satisfying

The condition (C2) requires that the connection is
invariant by right multiplication, R„. (R~)„de-
notes the action of right multiplication induced on
the tangent bundle T(P) as opposed to R~ which
denotes the action on the bundle P.

Given a set of generators for SU(2), such as the
angular momentum operators, which satisfy

We note that

9(r")=9"A„(7'L,)
=A„7'&9"

~

L,&

(A12)

~~J Lsl=f~sLc (A2)

8L„™„'(y)By, , (A3)

where M„' is a 3x3 matrix function of p'. Intro-
duce dy' as a dual basis to B/By' satisfying

dp' = 5' (A4}

Set 9 =M", (y)dy' where M,"(y) is the inverse
matrix to M'„(y). Then clearly

=M~ M~

we can find a dual basis for the linear functions on
SU(2). In terms of angles (e.g. , Euler angles)

Now we are prepared to define a connection form.
Every Xc T(P) can be split into vXc V(P) and hX
c H(P) by the connection. Define the connection
form &u(X) to be the unique r c Q such that r* is
equal to vX. Clearly ~(H) = 0 if and only if II is
horizontal. Thus the connection ford &u satisfies
the following:

(Fl) ~(&")=&,
(F2) (R„)*(o=(og(R„)~ =A '(uA=—ad(A ')(o,
(F3) &u is a differentiable form.

These are equivalent to (Cl), (C2), and (C3).
Since &u(H) vanishes when H is horizontal, (Fl)
=(Cl). (F2) is merely the statement that ~ res-
pects right multiplication; thus (F2) = (C2).

If we begin by writing &u=(B„dx +9 )A„and
then use 9"A„=Q 'dQ to satisfy (Fl), we see
that

B (A5) B",dx"A„= Q 'A„(x)dx"Q (A13)
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in order that (F2) is satisfied for them R~Q= QA,
With + C G Rnd

(R„)*(u=(QA) 'A d~~(QA) +(QA) 'd(QA)

=A '(0 'A dx 0+ 0 'dQ)A

Any other dependence on 0 would violate either
(F1) or (F2). We set B—= &u.

From these facts one sees immediately that the
curvature form d&oh =d&+ ~ n, v is horizontal. '

=A ~A

=ad(A ') (u . (A14)
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