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A perturbation technique which is superior to the weak-coupling WEB method
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We formulate a perturbation theory for the Schrodinger equation which we believe makes the weak-coupling WKB
method in many practical'cases obsolete. In particular we show that the entire solution consists of various pieces

which are of two distinct types: one type in terms of parabolic cylinder functions (valid near an extremum of the
potential), and another type in terms of certain exponential functions (valid in regions away from an extremum).
Both types are similarly constructed and can be matched in regions of common validity. Below the turning point of
an appropriately constructed function the argument of the wave function is real, and one and the same eigenvalue

expansion is obtained together with both types of solutions. Above such a point the argument is complex, and the
wave function is formulated in terms of an auxiliary parameter determined from the secular equation. Finally it is

shown that the systematics of our approach also permits the generation of the exponential type of solution by the
second-quantization procedure in analogy to the well-known method used for the harmonic oscillator. In the
subsequent paper the large-order behavior of our solutions is derived.

I. INTRODUCTION

The WKB method has for a long time been a
useful tool for estimating the wave functions or
eigenvalues of almost any problem in quantum
mechanics, and there are standard texts ' on the
subject. It is also well known that approximations
to eigenvalues can usually be found by expanding
the potential in the neighborhood of the appropriate
minimum. However, it is not so well known that
the eigenvalue expansions derived by these dif-
ferent methods are the same and that the appro-
priate solutions are related. This connection can-
not be seen in the traditional formulation of the
WKB method. In the following we develop a tech-
nique which exhibits this connection in a trans-
parent manner. In fact, we show that two simi-
larly constructed pairs of solutions of the Schro-
dinger equation can be derived which belong to
one and the same eigenvalue: one pair in terms
of parabolic cylinder functions and the other pair
in terms of a certain type of exponential functions.
The first type of solution corresponds to the solu-
tion around an extremum of the potential, and the
second type is WKB-like. The solutions can be
matched in regions of common validity, and can
be continued into the classically forbidden domain.
Each of our solutions depends on a parameter q.
In the discrete sector of the spectrum, q is an odd
integer corresponding to the usual radial quantum
number; in the continuous sector of the spectrum,
q is a function of the energy and is determined as
the solution of the secular equation. Each of our
solutions is an expansion which is asymptotic in a
certain parameter. Owing to the systematics of
our procedure, it is also possible to formulate
a second-quantization method for the derivation

of the WKB-like discrete eigenfunctions in anal. ogy
to the familiar method used for the harmonic-
oscillator functions.

The method we shall devel. op resulted from a
detailed investigation of a large number of specific
eigenvalue problems. It will therefore be devel-
oped in a very general form without recourse to
specific examples, of which many can be found
in the literature. Originally the motivation was to
develop a systematic procedure for deriving com-
plete asymptotic expansions which allow an in-
vestigation of the large-order behavior of the
perturbation expansion and then, depending on this
behavior, the application of Dingle's converging
factors ' for the extraction of exact or almost
exact results. This program was started with a
consideration of the Mathieu equation' (i.e. , the
Schrodinger equation for a periodic potential) and
spheroidal' and ellipsoidal6 wave equations. Lat-
er, appropriate procedures were developed for
deriving asymptotic expansions for the solutions
and eigenvalues of a large number of other equa-
tions, such as the wave equation for Yukawa, '
Gauss, power, '~ and logarithmic'~ potentials andS 9.10

the Bethe-Salpeter equation of the Wick-Cutkosky
model. The approach used for these latter ex-12

amples is necessarily somewhat different from
the method used for solving the simpler Mathieu
equation,

'

but in essence it is still the same. More
recently, we have also applied the method to
multidimensional' ' and multichannel" equations,
and we expect it to be useful even in the limit of
an infinite number of dimensions. The success
in solving this large number of diverse examples,
may be taken as an indication of the usefulness of
our approach. Of course, our treatment here is
only concerned with the case of weak coupling
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which permits oscillatorlike expansions near a
trough of the potential. The case of strong coupl-
ing is much more difficult to deal with andis pre-
sumably of secondary importance in field theory.
The significance of this distinction has been dis-
cussed by Dashen et al.'

In concluding this introduction it may be useful
to point out some of the advantages of our method
over the usual WKB approach. Foremost among
these is the unified treatment of solutions and
eigenvalues over the entire domain of the inde-
pendent variable. Qne and the same eigenvalue
expansion is derived explicitly in association with
different solutions valid in adjoining domains. The
solutions can be matched in regions of common
validity and the discrete solutions can be normal-
ized. The solutions are obtained in a systematic
way which makes the calculation of higher-order
contributions particularly straightforward, where-
as the calculation of higher-order WKB corrections
is cumbersome. This difference can be seen
particularly clearly by comparing our calculation
of the Yukawa eigenvalues' with the corresponding
WKB calculations carried out by Boukema. " Of
course, one problem which remains the same is
the continuation of the exponential type of solutions
across Stokes singularities (corresponding to
classical turning points). This point will therefore
not be elaborated on in this paper.

II. A FIRST PAIR OF ASYMPTOTIC
EIGENSOLUTIONS: QUANTUM FLUCTUATIONS

AROUND A LOCAL MINIMUM OF THE POTENTIAL

As in classical mechanics, we are concerned
with a completely arbitary form of the potential
(which for simplicity we assume to be everywhere
continuous), except that the boundary constraint
in the discrete sector of the spectrum is the con-
dition of square integrability of the wave function.

We consider the one-dimensional Schrodinger
equation H&l)= 8&l) for the motion of a particle of
mass p, in a potential V(r). We write the radial
equation

eg/2y

The equation then assumes the basic form

d f
dz
—,+[-L +v(z)]$=0, (3)

z-z '
v(z) =v(z, )+Q .

,
' v"'(z, ) .

g't

In some cases it may be difficult to determine zp
exactly by solving v"'(z) =0. However, in these
cases we can usually determine zp in the form of
an expansion (which can be asymptotic or conver-
gent). This can be seen as follows. Suppose

v"'(z) =-f(z) =f0(z) + ~g(z),

where fo(z) is the dominant part of v'1'(z) near
8 = zp such that its zeros zp" are easily determin-
able; then 6 is a parameter which can be taken
to be small. It is now possible to calculate sp in
the form

@0=@0 + O'P) .(0)

i=i

The coefficients P; follow from the equation

&»O

O=folzo" ++0'&» I+«I zo"'++ "p
~i

which after expansion around zp
' yields

where

v(z) = ~r'l~ —V(r)]5 r =e»

Thus v(z) plays the role of the negative of a po-
tential, and a local minimum of V corresponds
to a local maximum of v. In the vicinity of this
maximum, v(z) -L1 can become positive and
the solutions therefore oscillatory as required
for the existence of eigenvalues. Thus, if v"'(z)
=—dv/dz and v "'(zo) & 0 for l & 1 and n & 0 we have

d, +~zth-v( )ly=o.dg 2p,

In applications where this equation describes the
relative motion of two particles, p, is the reduced
mass and V(r) contains the centrifugal term l(l + 1) )f
/2»»r We rem. ove the latter from V(r) and set

c(=2»E/)f, L =(l+z) .
We also set

r=&, i ( oo&z&oo)

/g')
I f&1& I &0&

p )«p

-
gg &1) gzf (2)

P2 (f(1&P 2(f (1))3
0 p -«p

and so on.
We now set

[ 2v&2)(z )] /4

and change the independent variable in (3) to

(d=h(z -zo) .
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The equation then becomes For higher powers we have

d (t& -L +v(z, } (v p v (zo)
-2i

&=22, 2i-4, ... S((q,i)4„, ,

(8)

For large values of h the right-hand side of Eq.
(8) can —to a first approximation —be neglected.
The corresponding behavior of the eigenvalues
[-L +v(zo)]/I) can then be determined by compar-
ing the equation with the equation of parabolic
cylinder functions. The solutions are normaliz-
able only if [-L'+ v(zo)]/I« =-,'q, where q is an
odd integer, i.e., 2n+ 1, n = 0, 1,2, . . . [provided
the wave function is required to vanish at infinity;
otherwise it is only approximately an odd integer
(i.e. , q =2n+1+O(1/a)) if g is required to vanish
at r =a & ~]. For the complete solution we set

and a recurrence relation can be written down
for the coefficients S;, i.e. ,

S;(q,j)=S; $(q,i -+2)(q+i + 2, q+ j)
+S;-((q,i —2)(q+j —2, q+j ).

The first approximation Q = Q'0' then leaves un-
compensated terms amounting to

R' '= 2A-g '
(t& ( }(z)( )

=2ng, -~
I,( ~ ~ S,(q,j)g,„((z),

i =3 j=2i «2i-4« ~ ~ ~

~ [-L'+v(zo)] =-'q+ & ~
h

(9)

where we have set
(16)

v'"(z„)BP =2hQ -~ n&
-"

(-3 v (z()) i!h'
where

2

n =--2 +-,~ -q.
cf (d

(10)

The quantity a in (9) vanishes in the limit!&-
and remains to be determined. We proceed as
follows. Substituting (9) into (8) we have an equa-
tion which can be written

v" '(z„) 1
S((q,j}= (, )

" —, S,(q, j) .
v (z()} i!

We rewrite (16) in the form
QO -22R"'=,'- q q ~, -. ,-, -

i =3 jCi, 2i -4f .~ .

where for i & 3, —2i (j ( pj,

(17)

(12)

We have
2

) 2( -3&I4 -qq i4&l,
(q i)/2 4 7 2t

Equation (10) is now in a form suitable for the
application of a perturbation method. To a first
approximation, (t& =(t&'0' is simply a parabolic
cylinder function D. (. &~&(~), i.e. ,

A

Q' '=Qq D(, ()gg(((&)& 3——),pq ——0 .

[q q+j)(-~=-S((q,j),
with the exception that

[q, q],= 2n h- S,(q, 0).

(19a)

(19b)

Since S,„=B,-j, X),p, „=jp„,, a term pQ„& in
R '0' can be removed by adding to Q

"' the contri-
bution p. Q „./j, except, of course, when j=0.
Thus the next order contribution of Q becomes

-2i

where 0 is a confluent hypergeometric function.
The function (t&, is well known to obey the recur-
rence formula

Z
jAP

[q,q+ j], ,
(20)

((&4& =(q q+2)(t' +g+(q q 2)4 -2

where

(q, q+2) =1, (q, q-2) =-', (q —1) .

In its turn this contribution leaves uncompensated

p ($) ~ ~ Eqpq 2&i-2 + (p)
2

i~o

and yields the next contribution of g!

q&o -2i '

[q,q+il( [q+j q+j+j ]'-~
2 i'-2 q+& +9 '

g'=22', 2 i '-4
(22)
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Proceeding in this way we obtain the solution

y (0) + y (( ) + y (2 ) ~,
which is an asymptotic expansion in descending
powers of h valid for

1
z —zo ——0 ~-, ~&0

h
(23)

[q, q+j]( 2

or

x
h( -~ [q+j&q](-2+. ~ ~;.@ h

0=- [q, q],
1
h

+~h lq q]2+ Z ' . [q+j,q],
[q, q+ j],

i=8, 2, ...
j/0

(24)

This is the equation from which 4 and hence the
eigenvalues are determined. We find

1 (q2 + 1) v '4'(z, ) (15q2 +7) v (3'(z, )
2h 2 v" '(zo) 2'3 v" '(z )

i.e., around the minimum of the potential at z =so
(for the determination of a see Ref. 10). How-
ever, the sum of the contributions (1)

' '

is a solution only if the sum of the terms contain-
ing Q, in 8,'O', R,"', . . . (left unaccounted for so
far) is set equal to zero. Thus

served that the oscillatorlike solutions derived
here are not (as they stand) identical with the
usual textbook Rayleigh-Schrodinger expansions.
Except for the first term, each term contains
contributions of higher order than its own leading
contribution. Thus only after further expansion
will our expansion become identical with the Ray-
leigh-Schrodinger expansion.

Another important point should be observed with
regard to the eigenvalue expansion (25b). We can
rewrite this expansion in the form

1 a h
(f + —,') =v(zo) exp —,, ~+,„2 ~+

v(zo} h (h

a 1(a2
=~(*a)-„~ +g I:;,-)i)+h g2vjz, j

(25c)

where the coefficients a, b, . . . can be deter-
mined by comparison with (25b). The form (25c)
demonstrates very clearly the nonanalyticity of
the eigenvalue at h =0. Infield-theory models with
coupling constant g this corresponds to the non-

analyticity of an eigenenergy F. -8 " ' at g'=0.
The expansion therefore corresponds to the so-
called "nonperturbative" expansion (meaning
perturbation theory in terms of g ). See, for
instance, Dashen et al."

Finally, we reformulate our solutions in terms
of Fock-space crea, tion and annihilation opera-
tors. Of course, for the simple harmonic os-
cillator this formulation is well known. Here,
however, we are interested in its extension to a
case involving an arbitrary number of anhar-
monic contributions, and particularly in its re-
lation to the corresponding formulation of the

WEB-like solutions to be discussed later.
Thus, using the variables introduced above, we

have

+ol~hl (25a) = ~ ~

d(d

and hence

—(l+2) +v(zo)

1 (q'+1) v"'(z„) (15q'+7) (v(3)(z„))'

Defining creation and annihilation operators a,
a by

da'= -i +—w,
d(d

(27)

+opl . (25b)
d iQ= 1 Q7

d(d

We have thus obtained one large-h asymptotic ex-
pansion of the eigenfunctions of the Schrodinger
equation (valid in the region around z =z() or in@

=zo). A second linearly independent solution in
the same domain is obtained by changing the signs
of q and h2 throughout or by replacing co by —w .
The corresponding eigenvalues, of course, are
unaffected by this interchange. It should be ob-

we have

[a,a'] =1 .

It is easily verified that

&,—= X, -q, where R=2ata+1.

The vacuum state l0) or ground-state wave

(28)

(29)
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function (&u ~0) is defined by

a ~0) =0, i.e. , a(u&)(&@ ~0) =0 . (30)

dm

2.+ [v(z) -v(z, )+ ~qh'+»']&]&= 0.

It is convenient to make the substitution

(34)

Inserting a of (27) we find

(&v~0)=e" ~ ~Q(, (31)

(d
g=8 Z.o h

Then Eq. (34) can be written

(35)

apart from a normalization constant [P, being Q,
of (12) for q=1 or n=0]. The radial excitations

Q3, Q&, . . . are now obtained in the usual way by
the action of creation operators on the vacuum,
1.e. ,

(~~a'~0& =0, -3(~) -=4.-((~),

(~ (a'a'
~

o& = 4,=~(~) = 4.=2(~),

4 w(y ) = v (z 0) -v (~ ) . (37)

With (5) we have equivalently as the expression
defining the function w(y)

d'4 y)
dy' 4

——w(y) 4 (y)+ (-'qh'+»')0(y) = o, (36)

where

and so on. Hence (inserting —i for convenience}
h' " y'—w(y) = — —.

,
v")(z,)4 . p 0 (38)

and

(~-q)(M ~(-ia'}"""
~0) =0

(32}

and (6) shows that the first term of this expansion
is of O(h'). We therefore remove this term by
the following substitution:

(~ ((-ia')" ""
[0& =4,(~) .

Again we treat the anharmonic terms of (10) per-
turbatively. This requires a recurrence relation.
The relation corresponding to (14) is

$(a at)( iat)(q 1)!2
~())

=(- ia')""~
~
0) +-,'(q —1)(- ia')" 3)~'

[ 0) ,

(33)

h
g(e)=x() )exp e

e f lee)) )I'"de). (39)

The exponential factor corresponds only roughly
to the exponential factor in the usual WEB pro-
cedure. We do not specify a path because this has
already been taken care of by incorporating the
behavior (9) of the eigenvalues on the assumption
that h is large. Thus, substituting (39) into (36)
we find that x(y) satisfies

l.e ~ )

~y, =(q, q+2)0„, +(q, q —2)4,-2, dy' dy 4 w"'(y),+ h'w'~'(y) —+—,&, X+ (—,'qh'+»')X = 0.

(40)'
where we have used (28), and the coefficients are
the same as in (14).

III. A SECOND PAIR OF ASYMPTOTIC
EIGENSOLUTIONS: THE %KB-LIKE SOLUTIONS

We now derive a second pair of large-h asym-
ptotic expansions for the eigenfunctions of the
wave equation. This pair is valid in regions of
large ~z -z, ~, i.e. , away from z„where the ex-
pansions obtained above are no longer applicable.
The corresponding eigenvalue expansion, however,
will be seen to be identical with (25) above.

Our starting point is Eq. (3), in which we insert
for L' the expression (9) in terms of the quantity
& which is again to be determined by iteration. In
the usual formulation of the WEB method, this
substitution corresponds to assuming that devia-
tions of the particle from its classically allowed
path are of O(1/h). We then have the equation

~,X= —.
d .+»'Xl,2 d'x

h'd' (41)

where

Q = —2'
y

—g2 (d

and

2w' 'd/dy =w'd/dw' '.
(42)

By construction»' is at.most of O(0) in h', and
w'~'=O(h'). Hence for h'- ~, i.e. , to a first ap-
proximation, the right-hand side of (41) can be

From now on we consider only the equation for
the upper signs. The equation for the lower signs
leads to another solution which can be obtained
from the solution we shall derive by changing the
signs of q and h' throughout. Thus, choosing the
upper signs in (40), we can rewrite the equation
in the form
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neglected and we can write for the solution to that
order

2 (i&
(;)(0) & (&n)

=„(a&z )
~

X =Xq p

where X, is the solution of

This, of course, is simply the expression defining

w(y}, i.e. , (38). We then have for the integral in

(43} (apart from an additive constant)

~,X, =O,

i.e. ,

1 'dy
lj 2=2 lny+ p.y

w i=1
(47)

Cfq "dy4= )&4 exp~ 3 asm I i
where y,- are easily calculable coefficients. Sub-
stituting (47) into the relation

where C is an overall multiplicative constant which
we ignore in the following except in the context of
normalization. It should be observed that in view
of (37) and (38) the function X(q) is singular at
z =z, or y = 0 (this is here the Stokes singularity),
and the domain of validity of the solution there-
fore excludes a region around this point.

Proceeding as in the derivation of our first so-
lution, we evaluate d X,/dy' and obtain(, 5 w" qw' q' w")

dy '
~( 18 w' 3w'" 4w 4w ~

''

and reversing the resulting series, we obtain
(after squaring)

Xa-(2i+1 }
2i+1

~

~

~

i=0 q

with coefficients d2 '1' where

I & (3&(& )
dl y d3 (2) y

% ~ 0

\

(48)

(44)
Inserting (48) into w(y) and inverting the series
we obtain

Looking at the solution (43) we observe the follow-
ing relations:

1 Xa+2i
2i

WV ~ i-2vl~O Xq
(49)

Xqij Xq+1} Xq+)( X()

X, (X~ j X, X,-y

Further, since

+a+5 q

SqXq, g
= jXq

(45) with coefficients 52i. In a similar way we find

wf2 'O

Xa+2i

w i =2g lp op ~ ~ e Xq

with coefficients v2i,

Cl CQ

Xa+2i
2i

i =2y ly Oy ~ ~ ~ Xq

(50)

(51)

it is desirable to reexpress (44) as a sum over
various X,„& because then the perturbation pro-
cedur'e parallels that of the first solution and be-
comes particularly simple. Since X, =y "+)&~'[1

+ O(1/h)) for h- ~, this type of expansion im-
plies simply a reshuffling. of terms on the right-
hand side of (44) in terms of a suitable set of
functions. In order to derive this expansion we
have to use X, and express y in terms of X, . It
is not difficult to convince oneself that the series
reversion which this step impliesj is possible only
if ~(y) is expanded around a point y =y, for which
both

&u(y, ) = 0 and ~'(y, ) = 0.

with coefficients z2i, and
~ 00

Xq+2i
K2i

i =2) l)Ov ~ ~ q

(52)

Q

~ + &h X, = Q (q, q+ 32)X„gg ~

dy $.=2r lp Oy ~ ~ ~

(53)

where for j 0

(q, q+38=)Bra + 3)(a +
4 5a —~&~. (54)

with coefficients I('2i. These expansions can now
be substituted in (44). Then

Looking at (37) we see that y, = 0, i.e. , z =&,.
'Then

and for j=o
2

(q, q) = Ah + )ceo+ —)(o+ 4
—5o-4&0. (55)

~Q) Q (d(()(0)
gf

where for j= 2, 3, . . .

Thus the first approximation X"'=X, leaves un-
compensated on the right-hand side of (41) a sum
of terms amounting to
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(O) (q, q+ 2j)X...&.
f=2e lpOy ~ ~ ~

(56)

Using (46}we see that these terms can be taken
care of by adding to X"' the next-order contribu-
tion

(, j 2 ~ (q, q+ 2j)
X =h2 ~ 2. X +

f 2yly ~ ~ ~

fAO

(57)

X=X +X +X +'''
in descending power of h'. The corresponding
equation for 4 and thus for the eigenvalues is

(56)

o=(q q)+ —, g ' . (q+2j, q)+" . (»)2 "
(q q+2j}

f=2ylyooo 2j
fPO

Solving this equation for 4 (note that the terms
on the right contain 4), one obtains an expansion
which is termwise identical with the expansion de-
rived from (24), i.e. , by means of a completely
different method. For explicit verification up to
a nontrivia, l order see Refs. 8, 9, and 11 and the
Appendix of Ref. 10.

Successive contributions X "', X "', . . . of X form
a rapidly decreasing sequence provided that

2 Xa~2( 1h' X,

z.e. ,

dy l
exp +,]2 &. 2h'.w' ')

This relation allows arbitrarily large values of y

(since h'- ~) but excludes the region around y = 0
or z =z, in view of the logarithmic term in (47).
The latter region is, of course, precisely the
region in which our previous expansion is valid,
i.e. , the region around a local minimum of the
potential. However, the solution X has a further
restriction which we did not encounter in the case
of the first solution. From (43) we see that the
solutions X possess singularities at the points
where w(y) = 0. Singularities of this type are well
known from WKB solutions, where they represent
classical turning points. The solutions X can
therefore be defined only in sectors between suc-

excluding, of course, the term in X, . The coef-
ficient of X, in (56) set equal to zero, i.e. ,

(q, q) = 0,
yields an expression for 4 to the same order of
approximation and is identical with the expression
obtained previously for our first solution, as we
have demonstrated explicitly for several exam-
ples 8 11

The complete solution is obtained in our stand-
ard fashion as in Sec. II, leading to the sum

cessive singularities of this type, and the complete
solution requires the matching of these branches.
It is well known that the proper comparison func-
tions for the matching in these regions are Airy
functions, as was shown long ago by Langer. "
This is, however, a very intricate problem (see,
e.g. , the critical evaluation by Dingle') and re-
quires a separate detailed investigation. In any
case it should be noted that the two branches to
be matched depend on the parameters (i.e. , q, h)
associated with different extrema.

Finally we observe that since (as pointed out

above) a linearly independent solution is obtained

by changing throughout the signs of q and h', the
joint "eigenvalue equation" (which is, in general,
simply an equation determining the auxiliary pa-
rameter q) must also be invariant under this
change of signs (as is, in fact, verified by ex-
plicit calculation). Of course, the choice of the
exponentially damped (square integrable) solution
makes q (exactly or approximately, depending on

the explicit form of the boundary conditions") an

odd integer.
Next, we develop the Fock-space formulation for

these solutions. We define the following operators
for j+ 0:

Q f= —, eXP — lj2 S
(60)

Qa:.f= X)aeXp
2 112 ~

ee„exp
~

—-' f "~„) =j e x(p- f"„,)-'
one finds

a+f a-f & (62)

i2 2

a+& & a+f
&

a+&+f &
[n . n ]='..~ n

(63)

and

[,, +,]=~ ~,*,„.
~

. ~ „,X'e'~ . (64)
a

It is readily verified that these operators satisfy
the relations (jpj: 0)

[+. na. j]= jnp. j
(61)

[I),n* j]=+jn*j .

We see that & * seems to act as a creation op-
erator and n as an annihilation operator. In order
to check this, we look at the commutators of &

and &* among themselves. Using the relation
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For i =j these relations correspond to (28), i.e. , and the solutions of Sec. III are

[n„„n„,]=. 0, [n,*„,, n,*., ]=0,
[n,+) ) n,*+~]= 1 ~

We now let
~
0}be the vacuum state defined by

n,., ~o}=o,

i.e. ,

(65)

(66) Q, (q, h', y) = (()),(-q, -h';y),
(71)

4.(s) ', ) ) =&(s, ) *) ~w — &v(~(v))"'Ix(s, ) ';v)

~, (y
~

o}=o.
Then

(y
~
o}=x, (67)

in our earlier notation, apart from a normaliza-
tion constant. Using (62) we obtain

where we have introduced normalization constants
A, B, and the variables and parameters are de-
fined as above. The constant A can be related to
the constant B by going to a region of common va-
lidity of our solutions. Thus, inserting the large-h,
asymptotic expansion of ())),((()) into Q„ i.e.,

~ ( ), 2g,„(, , )g, 1 (q —1)(q —3)
8(d

1 ( j. dy

1
qXqyg y

= -y'~'exp
( y,. y'

~

(69)
j

on using (47). Expanding the exponential and re-
versing the series we obtain y' ' and hence y as
a sum over powers of n,~, and n„,. On the right-
hand side of (44) we expand the coefficient of )(,
in powers of y and then reexpress the latter in
terms of n,"„n„,. Then, using (66) and (68) we
again obtain R,(o) as in (56).

IV. MATCHING OF THE SOLUTIONS

In the preceding sections we derived two pairs
of linearly independent solutions of the wave equa-
tion which are valid in complementary domains of
the independent variable. The solutions Q of Sec.
II are (observe that in general these solutions are
valid in different domains)

4,( Iq', ~)=&(q, I )4(q, A', ~)

aIld

@,(q, I ', ~) = 4,(-q, -I ', ~),
(70)

We have thus shown that any function X„& can be
generated by the repeated action of the operator
n,*„on the vacuum

~

0}. Finally, in order to com-
plete the perturbation theory in terms of the op-
erators (60), we have to reexpress powers of

y in terms of these operators. From (62) we have

dy l
n.*-x+ no+i= e"p & i&21w' 2)

[recall that &u= h(z -z,) = hy and h is assumed to
be large] we see that (()), behaves as

(t) (q h'~)=&(q h')e" " '(hy)" " '[I +O(l/h)].

Next we insert (38) and (43) into (71). Then

Q ( qk' )y=B(q h')e ("""~'y""~'[I+O(l/h)]

(74)

where B(q,h') =B( q, -h'), e-tc. Since (t)„(t), must
be the same in the domain where they overlap we
have

B(q, k') =A(q, h')A" " 2[1+O(1/h)] .
Clearly, it is easy to calculate the first few terms
of the expansion on the right. The relation (75)
thus establishes the continuation of the oscillator-
like solution of Sec. II to the WEB-like solution
of Sec. III.

We have pointed out at the beginning that a min-
imum of the potential V(r) of the Schr'odinger e(lua-
tion corresponds to a maximum of the function
v(z) of our basic etluation (3). The parameter A

defined by (6) is therefore real if z, is the value
of z=lnr corresponding to a minimum of V(r), and
it is complex if z, corresponds to a maximum
(i.e. , point of instability) of V(r); in fact, in the
latter case h' is.pure imaginary. Thus, in the
region between the minimum of V(r) at z =z, and
the nearest Stokes singularity at (say) z =z, , we
have a domain d(z) in which the two types of so-
lutions which we have derived merge. into one
another, the oscillatorlike solution being valid
around z, and the WKB-like solution away from
z p Moreover both solutions are real and q is
(at least approximately) an odd integer. In the
region above the Stokes singularity [this is the
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point where ce(y) of (37) changes from positive
to negative] but below the next extremum, i.e. ,
maximum of V(r), we again have two pairs of
solutions as before, but this time they are com-
plex and q is a complicated function of E obtained
by solving the secular equation. Thus from (25b)

Solving this equation for q = q(E) by iteration and
inserting q(E) for q in our previous solutions, we
obtain the solutions valid in the domain above z, .
Clearly this procedure can be repeated for any
number of wiggles of the potential. Of course,
in the case of a periodic potential' (in this case
the Schrodinger equation is the Mathieu equation)
the solutions simply repeat themselves. The
complex pieces of these solutions describe the
tunneling of the quantum-mechanical particle
from one trough of the potential to the next. The
states associated with these troughs are weakly
coupled (in symmetric cases one has a degener-
acy) via the exponentially damped tunneling ampli-
tude. We are therefore here concerned with the
case of weak-coupling, i.e. , weak inharmonic con-
tributions, as pointed out at the beginning. "

V. CONCLUSIONS

In the preceding sections we have developed a
method for deriving complete sets of asymptotic
solutions of the Schrodinger wave equation in any
part of the domain of the independent variable,
and we have shown that the two sets of solutions
can be matched in regions of common validity.
We have also shown that a Pock-space formula-
tion can be found in each case; for the oscillator-
like solutions this formulation is well known; for
the WKB-like solutions this is new. Another new

aspect of the method is the explicit demonstration
that oscillatorlike solutions and the WKB-like so-
lutions are asymptotic expansions in one and the
same parameter. Moreover, one and the same
eigenvalue expansion is obtained in conjunction
with either type of solution. We have demonstrated
elsewhere' that iri the case of scattering poten-
tials, the solutions can even be used to construct
the 8 matrix. In a separate paper we show that

the eigenvalue expansions have the large-order be-
havior conjectured long ago by Dingle, ' which has
also been found for the corresponding expansions
of the eigenvalues of the Mathieu and other equa-
tions. '

The general form of our solutions shows that
the coefficient of a term of order 1/h' can be
written down from a consideration of all possible
moves from q to q+ t in at most i steps. In the
case of the corresponding coefficient of the eigen-
value equation, these steps go from q to q and
may be associated with closed paths in a one-di-
mensional Euclidean lattice space. It is obvious
that in the multidimensional generalization of
our perturbation theory the coefficients of the ei-
genvalue equation are associated with closed paths
in the appropriate multidimensional Euclidean
lattice space.

In concluding it may be interesting to observe
that it is also possible to derive solutions of the
wave equation in rising powers of h. These ex-
pansions are either convergent or else asymptotic
in a parameter v related to the I loquet parameter
of the Mathieu equation. The general features of
these solutions will be similar to those of corres-
ponding solutions of the Mathieu equation. "'"
In particular, a relation between v and the radial
quantum number q can be calculated. ""

Note added in Proof: A procedure for matching
our solutions across Stokes discontinuities due to
classical turning points, i.e. , where f(z) = L —v(g)-
of Eq. (3) changes sign, can be seen as follows.
classical WEB matching' extends (e.g.) the approx-
imate solution

74 exp f dz
1

beyond the Stokes singularity. By rewriting f as

and expanding f', f' in the domain of z far away
from zo, the WKB solution and our appropriate
%KB-like solution become proportional. The
matching therefore proceeds along the usual lines.
The classical turning point (apparently shifted to
an extremum) is only hidden in our solutions.
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