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The constrained relativistic Hamiltonian dynamics of Dirac is applied to two models for composite objects having a
nontrivial internal space. One model has a four-vector as internal manifold, the other a real four-spinor. The
corresponding quantum mechanics is developed, and the two models each possess a Regge trajectory (mass related
to spin) having the minimal (2S + 1) degeneracy, unlike the Regge-Hanson spherical top model with (2S + 1)
degeneracy. The spinorial model is most promising and allows (in the quantal case) electromagnetic interactions
via minimal coupling, leading, for example, to intrinsic spin magnetic moments. An extension to "relativistic SU(6)"
is shown to exist.

I. INTRODUCTION AND SUMMARY

There is considerable experimental evidence
indicating that Regge trajectories (one-parameter
families of particles with increasing spin, and
with mass related to spin) may be interesting as
objects of study by themselves. ' Since mass and
spin are the two invariants of relativistic (Poin-
care) symmetry, such a trajectory relation con-
stitutes a constraint on the dynamics; accordingly,
any such study of Regge trajectories, Per se, in
quantum mechanics is necessarily a study of con-
strained relativistic Hamiltonian mechanics of
composite objects having a nontrivial internal
space.

Similar motivations led Regge and Hanson to
write their classic paper on the relativistic spher-
ical top. ' Their paper mainly treated the classical
theory of such a system; further developments
were given in Hojman's thesis. ' There are sever-
al difficulties with the Regge-Hanson model.
First, the (2S+1)' degeneracy (where S is the
spin) —which is characteristic of the symmetric
top —is not found experimentally in hadronic Regge
trajectories. Second, there is a technical difficul-
ty in this model (which uses an antisymmetric
second-rank tensor as the internal manifold) in
that the constraint used is not linear in the mo-
menta. Third, as we discuss briefly in Sec. V,
the antisymmetric tensor characteristic of the
model is constrained to be perpendicular to the
four-momentum. As a consequence, minimal
coupling to the electromagnetic field cannot gen-
erate a magnetic moment, in contrast, for exam-
ple, to the situation in the Dirac equation. Thus,
magnetic moments have to be introduced explicitly
and in a somewhat complicated manner. Fourth,

the Dirac brackets for the position coordinates of
the top, to which Regge and Hanson were led by
their classical singular Lagrangian, 4 are nonzero.
Thus, in a straightforward quantization (replacing
Dirac brackets by commutators) one finds noncom-
muting position observables. This leads to factor-
ordering problems when one tries to quantize the
theory in interaction with an external electromag-
netic field.

In this paper we discuss in detail two models for
Regge trajectories which have only the (2S+1)-
fold degeneracy characteristic of spin S. To dis-
tinguish these models from the symmetric top
model we call them "rigid-rod models. " The first
model uses a four-vector as the internal manifold.
The second uses a real four-spinor for the intern-
al space. Both models are related to the group
SO(3, 2), but whereas the representations of the
Lorentz subgroup [SO(3, I)] are highly reducible
for the first model, the representation of this sub-
group remains irreducible for the second model.

The first model —which we call the "vectorial
model" —is discussed in its classical form in Secs.
II and III. Besides having a (2S+1) degeneracy the
vectorial model is algebraically simpler than that
of Ref. 2, and its analysis can be carried out com-
pletely. One finds, however, second-class con-
straints which lead to nonvanishing Dirac brackets
for the position coordinates x' of the particle.
Just as for the spherical top, this leads to dif-
ficulties when one tries to quantize the vectorial
model in interaction with an electromagnetic field.
The free, noninteracting model. can be quantized
and this is done in Sec. VA.

The second model —the "spinorial model"--is
very promising. The classical description of this
model is contained in Sec. IV. The model has only
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one primary. constraint and therefore the Dirac
brackets are the same as the original Poisson
brackets. This has the very desirable consequence
that the position variables commute. Thus, thexe
is no pxoblem in caxxying out the quantization,
even in interaction uith the electrom ggnetic field;
this is discussed in Secs. V B and VC.

Several things are worth noting about the spinor-
ial model. First, since the quantized version con-
tains each value of spin, integer as well as half
integer, each once, there are relations to super-
symmetry. ' Second, magnetic moments gxe ob-
tained rig minimgl electxom ggnetic intexgction
closely analogous to what happens for the Dirac
equation. Third, the inodel can easily be extended
to produce the spectrum of the string model.
Fourth, and perhaps most important, there exists
an extension which gives a relativistic quantum-
mechanical SU(6) model with minimal electromag-
netic interactions, with the implication of nonvan-
ishing anomalous magnetic moments for the had-
rons lying on the associated trajectory.

Attempts to construct composite models are,
of course, hardly new, and we do not claim any
particular competence to present a full review of
this field. One may, however, distinguish two very
different approaches in the literature: in one, the
notion of pointlike constituents (two in the simplest
case) and the necessary independent space-time
degrees of freedom are assumed from the outset;
by contrast, the other approach, which is more
algebraic in spirit, uses the language of infinite-
component wave equations and the internal space
may, or may not, correspond to physical mass
points. The models of the present paper are of
the latter type, with the added feature that we
have a classical Lagrangian starting point. For a
more comprehensive discussion of the subject let
us cite the papers of Takabayasi, including espec-
ially his recent review. ' We would also call at-
tention to the works of Dominici, Gomis, and

Longhi, " which are, in part, too recent to appear
in the review of Ref. 6.

II. THE VECTORIAL MODEL: LAGRANGIAN AND
POISSON BRACKETS

Let us assume our object to have a world line
x'(s), where s is an arbitrary parameter labeling
the events along the world line. Let there be as-
sociated to every s also a unit spacelike vector
a~(s), g~(s)g„(s) =1, goo =-1. Thus, our object
has a seven-dimensional configuration space, with

. generalized coordinates made up of x" and g"..
the former transforms in the usual way under in-
homogeneous Lorentz transformations, the latter
is a translation-invariant four-vector. Let dif-

ferentiation with respect to s be denoted by a dot,
i.e., x~(s) = (d/ds)x" (s); clearly the fixed length of
a implies a'(s) a, (s) = a ' a = 0.

We assume the Lagrangian to be invariant for
inhomogeneous Lorentz transformations and to
contain first derivatives with respect to s only.
This implies that it must be a function of the in-
variants x', x a, x'g, and g' (a'=1, a g=0).
Let 8 be such a function; then P„, the momentum
conjugate to x', is defined by

(2.1)

u u

u2
'

u3
(2.3)

the most general Lagrangian can be written as

Z=~u, f(~, q), (2.4)

withf an arbitrary function of two variables.
The requirement of chronometric invariance is

cumbersome even for a single-point particle with-
out structure. In that case the chronometric-in-
variant action fds[ x(s)']"'-is often replaced by
the noninvariant Jdrx(r)', where r is the proper
time. ' The latter is also more convenient than the
former for path-integral quantization. ' Here,
however, as in Ref. 2, chronometric invariance
is what produces a mass-spin relation as a pri-
mary constraint. The Lagrangian (2.4) implies
therefore at least two constraints, and is called
singular. For such Lagrangians the introduction
of a Hamiltonian formulation (a first step towards
quantization) is somewhat complicated. Methods
to handle such "constrained Hamiltonian systems"
were developed by Dirac, Bergmann, Anderson,
and others. The application of these methods to
our model wi. ll be the subject of the next sections.

To restrict 2 further, we impose two additional
requirements. The first is that (2.1) should lead
to P.a=0 as a primary constraint. Since P a
depends on momenta only linearly, this require-
ment can be easily met: 2 must be a function of
only three variables,

u, =(x ~ a)'-x', u, =x ~ a, u, =g'. (2.2)

The second requirement is that the action J ds 2
must be invariant for changing the arbitrary para-
meter s to another one, g(s). This invariance is
denoted in the literature by the nondescriptive
(and rather ungainly) term "reparametrization
invariance. " A better label, we feel, is "chrono-
metric invariance, "and we shall use this term in
the following.

The requirement of chronometric invariance im-
plies that Z must be homogeneous of degree & in
the u's. Introducing
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In order to set up a phase space for our Lagran-
gian theory, we roust define a suitable canonical
conjugate to a", keeping in mind the restriction
a' = l. One way is to (at least locally) eliminate
a' (say) in favor of the three independent space
components a' of a, introduce three independent
momenta conjugate to these, and then define the
conventional canonical Poisson brackets (PB). An

equivalent but more elegant and globally well-de-
fined procedure is to introduce instead an antisym-
metric tensor S„„by

Bg Bg
/JP Q BiP va a

(2.5)

and regard this as the momentum conjugate to a'.
That there are only three algebraically independent
quantities here is assured by the identities

a~S +a S ~+a S~ —0. (2.6)

The nonvanishing fundamental Poisson brackets
for our system are then

(x",&„)=6,', (S,„,aJ=g„„a„-g„,a„,
( g pv) =&

p us gvn w +&so nu &uv pg '

(2.7)

The basic variables of our Lagrangian theory are
then x~, a" and their conjugate momenta P„S„„.
The algebraically independent quantities together
form a 14-dimensional phase space T'. The Leg-
endre mapping from the Lagrangian variables into
this phase space for a singular Lagrangian is such
that the range of the mapping on I' is a subset of
I', i.e. , we have primary constraints.

An even more convenient choice of a variable
conjugate to a" is the following: we define a vector
b by

We shall use the formulation in terms of a and b,
since vectors are easier to handle in the forma-
tion of invariants, etc. One may also note the re-
lation

b2 &S Sgv
2 p, p (2.12)

(2.14)
which imply by construction P„a~ =0. The con-
served generators of homogeneous Lorentz trans-
formations are

M „=x„P„—x„P +S „,
where

(2.15)

It is interesting to observe that the set of Poisson
brackets among S,„and b„namely, the last line
of (2.7) together with

(2.13)

corresponds to the Lie algebra of the de Sitter
group SO(3, 2). Thus this group appears naturally
in the kinematic structure of our model with a vec-
tor internal variables. This is an instance of a
well-known construction": S„„and a, yield a
spacelike realization of the Poincare group, so
with b, defined by (2.8) we get S„„and b„re laiz-

ing the group SO(3,2).
The connection between invariences of the action

and the conservation laws is similar for singular
and for nonsingular Lagrangians. " The invari-
ance of the Lagrangian (2.4) for inhomogeneous
Lorentz transformations implies the usual ten
conservation laws. The conserved generators for
space-time displacements are

Bg . . Bg . BgP„= . , =2I(x a)a„—x„j +a,

b~ =S a" (2.8)

Bg Bg
b~ =Q~Q

a a
(2.9)

and use it in place of the tensor S,„. One sees
from (2.5) that in terms of the Lagrangian one has

BS
uv u. .v vBa Ba

Bg . . Bg= (a~x„—a„x„) + 2(a&a, —a,a&)

(2.16)

and from (2.6) one can recover S „ in this way:

S~„=b ~ a„—b„a~ . (2.10)

(x",I'„)=5„, (a",b„)=a a„5„, —

(b„,b„)=a~b„—a„b~ .
(2.11)

Just like S,„, b, also has only three algebraically
independent components since a b = 0. One now
has the freedom to either view S „, a„as the ba-
sic phase space variables and b„as a derived
variable, or to view a„and b, as the basic quan-
tities and S„„asa derived object. With the latter
view, the fundamental nonvanishing Poisson brack-
ets for I' are

For later use, we note here the definition of the
Pauli-Lubanski vector W, in the present model:

(2.17)

III. CONSTRAINED HAMILTONIAN FORMALISM
FOR THE VECTOR INTERNAL-VARIABLE MODEL

In this section we apply the methods of Ref. 4 to
the Lagrangian (2.4). First, instead of conSider-
ing the most general Lagrangian (2.4), which de-
pends on Qy Q2 and u„we consider more limited
models where the Lagrangian only depends on a
pair of these variables. Thus in Secs. IIIA-III C,
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we consider these limited models before discuss-
ing the general model in Sec. IIID. In fact, all
these models share the feature also found in Ref.
2, that the Dirac brackets for the position vari-
ables do not vanish. This leads to problems when
one tries to write down a quantum' theory of our
model in the case where there is interaction with
an electromagnetic field, as we shall discuss in
Sec. V. Surprisingly, perhaps, the simple two-
variable models are interesting as classical the-
ories; we now proceed with them.

A. Model independent of u2

gin with

x"=2v,P" +v,a', a" =-2v, c2'(b')b",

P =0, b„=2v,n'(b')b2a„+v2P„.

As a consequence we find

C, =2v2n'(b2)P b, 4l2 =-2v, o. '(b2)P b .

(3.8)

(3.9)

For consistency these expressions must vanish.
To avoid both v, and g, vanishing, resulting in no
motion at all, and to avoid constraining b' by de-
manding o.'(b2) = 0 and thus making P' constant,
we are led to impose the secondary constraint4

Let the Lagrangian depend only on u, and u3,
with (2.3) we write

Z = v u, f(3)), (3.1)

X=P b=0. (3.10)

Then, a fresh consistency condition arises, as
we must have

where f is a, function of one variable. Denoting the
derivative off with respect to its argument by f',
the vectors P and b conjugate to x and z are

(f+2qf')[(x a)a, -x,],
u~ (3.2)

Let us write 4, =P ~ a, we have already secured
4, = 0 as a primary constraint. We expect the
chronometric invariance of Z to lead to another
independent Lorentz-invariant primary constraint
4 j The only available Lorentz scalars on whic h

C, can depend are

P b = 23pf'(f+2q f')u-2/u, ,

P' = (f+2nf ')', -
b2 —4q3 f l2

(3.3)

(3.5)

The explicit appearance of u2ju„ i.e., of $ ', in
(3.3) implies that in general P b will not occur in

this constraint must arise by el iminating
between P' and O'. We define the generic cgse by
the conditions f'( f+2qf') o 0, P'o constant, and
O'inconstant. Then 4, must be of the form

e, =P'+ c2(b') =0, (3.6)

BC v~4~+ v~4 ~, (3.7)

where the v's are arbitrary. (There is no term
independent of the 4's because Z is homogeneous
of degree one in the velocities. ) Hence the gener-
alized Hamiltonian equations of motion are, to be-

with a a nontrivial function of its argument. This
is a Regge relation between mass and spin, as
will soon be clear; it is a consequence of the chro-
nometric invariance of Z.

The starting Hamiltonian is then, by the general
theory, 4

X=v2P'=0. (3.11)

a' —1 = a b =P a = P'+ u(b') =P ' b = 0 .
Then the solution is

(3.13)

P,(s) =P, (0), x'(s) =x'(0) +
P P(s)

a (s) =a"(0) cosP(s) — sing(s),b~(0)

b "(s)=b"(0) cosQ(s) +a"(0) Mb i Ps(sn),

P(s) =2n'(b2)vb v„P( )=00.

(3.14)

(Note that b' is a constant of the motion. ) The
space-time "orbit" is completely known, since
just one unknown function Q(s) appears. Note that
neither "end, "x+z or x —&, moves at the velocity
of light; this is because unlike the string this mo-
del is not purely geometric.

%
~

By eliminating the second-class pair 4» X we
can set up a system of Dirac brackets (DB) to re-
place Poisson brackets (2.11). (These may be

This determines that g, =0, v, remains arbitrary,
and the constraint analysis is complete. 4, comes
through as a primary first-class constraint, ' 4 ~

and X form a second-class pair, and the Hamilton-
ian is an arbitrary multiple of 4, alone:

K =Vq@~ . (3.12)

Now we can see that in this model, due to the
secondary constraint (3.10), the Pauli-Lubanski
vector W„has a square equal to -P'b' [see (2.17)],
so that the constraint (3.6) is, as it stands, a re-
lation between mass and intrinsic spin.

With the Hamiltonian (3.12) we can give the so-
lution to the equations of motion (3.8). This solu-
tion will contain one arbitrary function of s, due
to the arbitrariness in v, . First, choose x "(0),
P (0), a (0), and b„(0) so that all kinematical con-
ditions and constraints are obeyed at s =0,
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called preliminary Dirac brackets in the sense
that no gauge constraint conjugate to 4„such as
X' =x' —s = 0, is imposed; we leave the model in
a manifestly four-dimensional form with v, com-
pletely free. ) As {4„x}=P',—one obtains the DB
(denoted with an asterisk)

{fa}*={f,Z}+P, ({f,P b}{P a, g}

implies f= const [C,= 0 in (3.21)]which again makes
P' constant, or f+ 2qf'=0 [CD=0 in (3.21)] which
gives P'= 0. Thus every nongeneric case has f
of the form (3.21) and is of no interest.

8. Model independent of u3

Now we choose the Lagrangian to depend on My

and u, alone and to have the form

}{Pb &}) (3.») & = KM,f($). (3.22)

We find for the basis variables

.} ={. .}'=0 (3.16)

{x",P„} = 5„", {x,a„}*= -a" ", {b,P„} = 0,

{b„,a„} =@~„—a~a„—P~P„/P', (3.17)

{x',x"} =(a "b"—a"b")/P', {x',b„} = b"P„/P—',
{b~,b„} =a„b„—a b, . (3.18)

The constraints 4, =0 and X =0 can be treated
as identities, only one constraint 4, remains, and
for any f the equation of motion is

d 8
+v,{f,4,}". (3.19)

{x„,P a}' =a, +{x„a,}'P"=0, (3.20)

which shows why {x„a„}has the value given in
(3.17). The fact that {x,, x„} cannot vanish then
follows from the Jacobi identity for x~, z, , and
Qv'

Next let us briefly look at the nongeneric cases
of the present model with 2 of the form (3.1). Ac-
tually these are all physically uninteresting, but
for completeness we mention their features.
There are three exceptional cases: (i) f'(f+2qf')
& 0, P'= const; (ii) f'(f+ 2qf')& 0, b'= const;
(iii) f'(f+2qf')=0. One finds that cases (i) and

(ii) coincide. and correspond to f of the form

f(q)=C +C,/v'q, C C, W 0. (3.21)

Note particularly that {x„x„}t0. The nonvanish-
ing of these brackets is the cause of difficulties
which occur when one tries to quantize this model
in interaction with the electromagnetic field. Let
us therefore briefly indicate the algebraic reasons
for these brackets not vanishing. First, the Dirac
brackets involving P„are fixed by the requirement
that space-time translations commute and by the
transformation rules of x, g, and b. Second,
P ~ z =0 is preserved by the Dirac bracket, i.e.,

This give the conjugate variables E'„and b„ the
values

P b= &'f'(f+ Y)
P2= -f(f+ 2)f')+ $ f"~.

Qi

(3.24)

The explicit appearance of u, /u„ i.e. , q ', in P'
means that now in general one must eliminate (
between b' and P b to find 4, . 'This generic case
is characterized by f'o 0, b'a const, P bw const.
But let us first dispose quickly of the exceptional
cases. These are (i) f'o 0, b'= const; (ii) f'4 0,
P b=const; (iii) f'=0. Cases (i) and (ii) again
coincide, and they correspond to f of the form

f($) =C,+C,/$, C, 4 0. (3.25)

This leads, after more algebra, to no mass-spin
relation at all, and can be discarded. Case (iii)
implies f= const [C,= 0 in (3.25)] and right away
gives P' constant.

We now proceed with the generic case. 'This has
two primary constraints,

O', =P b —o!(b') = 0, C, =P ~ a= 0, (3.26)

with n a nontrivial function of its argument; so
the starting Hamiltonian is

8C= v, C, + v, 4, (3.27)

with v's arbitrary. This gives the equation of mo-
tion

x" =v b'+v a" a~=v [-P"+2o."(b')b")i & i(326)
P, =0, b„=v, [P b —2&'(b')b'Ja„+ v@„.

P,= (f+2)f')[(x a)a, -x ] — $2f'a
1 1

1 Qi
(3.23)

b, = — —$2f'[(x a)a„-x J .
1

'The significant Lorentz scalars for formation of
a constraint 4, are

/

b2 )~fli2

This implies that P' is constant and therefore is
not what we were looking for; we want an interest-
ing mass-spin relation with neither mass nor spin
constrained to a single value. Case (iii) either

Cons istency demands that

C, =[P2-2a (b')P b]v, ,

4, = -[P' —2u'(b')P ~ b]v,
(3.29)
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must both vanish. As g, =g, = 0 implies no mo-
tion, we must impose as a secondary constraint

X =P'- 2o."(b')P ~ b =0

or, with (3.26) equally well,

X=P -2u(b')o"(b') =0.
For X one now finds

X=-4 (b)( (b) -(b) -(b) i..

(3.30)

If we do not set v, = 0, its coefficient here must
vanish, but that leads to a constant P'. To avoid
this, we must choose v, = 0; then 4, survives as
primary first class, 4, and X form a second-class
pair, and v, remains arbitrary. With the result-
ing equations of motion, b' and P ~ b are both con-
served. The space-time trajectory of the system
can again be explicitly exhibited. As P" is con-
stant, it proves expedient to resolve 5 into its
components parallel and perpendicular to P:

(3.31)

a&(s) = a"(0) cosP(s)+ '»&, sing(s),

b,"(s)= b,"(0)cosQ(s) a&(0)(b,')-'~'sing(s),

b,", (s) = b "(0)

P(s) = 2(b, ')' '&'(b')v„g(0) = 0.
(3.34)

(Note that b,' is a constant of motion. ) When com-
pared with the solution (3.14) in model A, the in-
teresting point is that now the motion of x" has a
rotating component that was previously absent.

In the present model the trajectory relation
(3.30) is not, as it stands, a relation expressing
the squared mass as a function of the intrinsic
spin. This is because now, combining (2.17) and

(3.32), we only express W' as some function of
Q2 ~

~(b2)2 2b2~( 2)~b1( )b2 (3.35)

One must eliminate b' between (3.30) and (3.35),
get a relation between P' and 8, and identify

Then, if a choice of x "(0), a"(0), b"(0), and P" is
made so as to obey all the constraints and kine-
matic conditions at s = 0,
a' —1 =a ~ b =P ~ a=P ~ b - o.(b') =P' —2n(b )o"(b') = 0,

(3.32)

the solution to (3.28) (with v, = 0) is

P„(s)=P„(0),
P" a"(s) —a"(0)

4~ '(b') P
+

2 '(b')

(3.33)

-W'/P' with the square of the intrinsic spin, to
get the conventional trajectory statement.

Of the Dirac brackets obtained on eliminating
4', and X we will only mention two points: (i) the
Dirac brackets now depend on the function o.'(b')
so that unlike model A, there is no longer a clean
separation of kinematic and dynamic constraints
in the four-dimensional sense; (ii) the bracket
(x,x„j*does not and cannot vanish, for the
same reasons which were discussed in Sec. IIIA.

C. Model independent of u&

When we assume the Lagrangian to be dependent
on u, and u, only, we find, by arguments similar
to those in the preceding subsections, that the
mass spectrum is of the form P' constant in all
cases, generic as well as except'ional.

D. General model

To return to the most general case, with La-
grangian (2.4): 2= vu, f($, q). In this case the
algebra is more complicated, we shall not pursue
it in all details as again it leads to Dirac brackets
for the position variables which are nonzero. One
calculates again P, , b and the three quantities
P', b', and P ~ b The two. parameters $ and g
can, in general, be eliminated between these three
quantities, producing a primary constraint of the
form

0 = 4, =P'+ u (P b, b'),

which joins the other primary constraint

0=4,=P ~ a.
This gives again a Hamiltonian with arbitrary
coefficients v„v,: 5C= vyC y+ v 42 Consideration
of d4, /ds =v,(4 „4$, and dC, /ds = -v,{C„4'$
leads to the secondary constraint

0=X =(C,C.},
as one does not want to eliminate all motion with
the choice v, =v, =0. The demand that O=dX/ds,
leads to v, =0. Therefore, 0=4, is first class
and the pair 0=4» O=X is second class. The con-
straint 4, is first class iri all these models as it
corresponds to chronometric invariance in the pa-
rameters.

IV. SPINORIAL MODEL

The model developed in Secs. II and III describes
a relativistic object which, after quantization and
in its rest frame, exhibits a spin spectrum with
each integer spin value appearing just once. This
was achieved by asking for P 'a=O as a primary
constraint, in addition to the consequence of chro-
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nometric invariance. This fact led directly to a
nontrivial constraint analysis, the emergence of
a secondary constraint, the existence of a second-
class pair, and values for Dirac brackets differ-
ent from Poisson brackets. As a consequence,
the x" are noncommuting operators in the quantum
theory, resulting in difficulties with interactions.
'The spinor model now to be developed is simpler
in its constraint algebra: the x" remain commut-
ing quantities and interaction with the electromag-
netic field exists.

Consider two conjugate pairs of variables q„p,
q„p„ to be denoted on occasion as q„q„q„q,.
We can form a column vector

(4.1)

and the Poisson brackets may be written as

The generators of this SO(3, 2) realization obey
several characteristic identities:
S „Sc= 0, i.e. , V „V"= 0, S,,S"„=V,V„(S,P 1'"= 0),

(4.7)

g BcDBS S =0 i.e 4:2"~S P =0 E"""'S V = 0.BC DE & & g ~ ~ g& P

The representation (4.3) is the classical analog"
of what Dirac calls the remarkable unitary repre-
sentation of SO(3, 2}." The latter representation
is associated with the Majorana equation. " Note
that the invariants in (4.7) are quite different from
what one obtains in the quantum version, where
S„„S""=—', and V V'= —,

' (in units of g2).15

We wish to construct a Lagrangian out of the
internal variable Q, a space-time position four-
vector x', and their derivatives g,x", with re-
spect to an evolution parameter s. It must have
these properties: (i) it must lead to q, and q, be-
ing a canonical pair, and q„q, another; (ii) it
must be Lorentz and chronometric invariant.
Keeping in mind the identities (4.7}, one finds
that the most general such Lagrangian is

0 0 1 0

0 0 0 1

0 0 0

0 -1 0 0

a, b=1, 2, 3, 4.

(4.2)

l l
S02 2(q3q4 qlq2)1 03 2 (qlq3 q4q2) 1

S„=-(q, '+ q, '+ q, '+ q, '), S„=2 (q,q, —q,q,),
l l

25 2 ('ql'q4+ q2q3) & 35 4 (ql q3 + q2 q4

(4.3)

'The ten independent quadratic forms in the q's al-
low one to write a set of generators of SO(3, 2) as
follows:

l l
S12= 2(q2q3 qlq4)1 S23=2 (qlq2+ q3q4) 1

1 2 2 2 2 1S„=—,(q, '+ q, ' —q, ' —q, '), S„=;(q,' —q,
' —q, '+ q, '),

y' Q+ 4-x f($), (4.8)

with f an arbitrary function of one variable. The
first term in 2 is fully SO(3, 2) invariant, whereas
the second one is only invariant for SO(3, 1). (Q is
invariant under space-time translations. ) Since
the dependence on the "velocities" Q is no more
than linear, the application of canonical methods
with respect to this variable leads to constraints.
But as is easy to check, a prior application of the
Dirac formalism leads to the anticipated result
that q„q, and q„q, form canonical pairs. Here-
after, we may assume this "in principle neces-
sary" analysis has been completed, and concen-
trate on the constraint due to the functional form
of f We need .now to set up a canonical conjugate
to x" alone:

These have the SO(3, 2) Poisson brackets
~, =f'V „+ . , (hf' -f~&„.9$ (4.9)

AB 1 CD) gAC BD gBC AD+ gAD CB gBD CA&

ABCD= 0, 1,2, 3, 5. (4 4)

{S„„,Qj = 4(r„r„rp'„)0—. —
(4.5)

Restricting to the subgroup SO(3, 1) for A, B= p. ,
v=0, 1,2, 3, S„,=V„ transforms as a four-vector„
and S„„asan antisymmetric tensor. The column
Q of (4.1) is a real four-spinor under SO(3, 2), and
under the subgroup SO(3, 1) in particular we have

&'=(kf')'-f', & V=&(kf'-f). (4.10)

It is natural to define the generic case as obtain-
ing when neither P nor P ~ V reduces to a con-
stant. Then we can eliminate ( between these two
variables to obtain a single primary constraint
of the form

The chronometric invariance must lead to a
Lorentz-invariant primary constraint 4 which
can only depend on the scalars P' and P ~ V. These
have the values

Note that all the y„are real and obey

{~„,~„)=2g... g„=-1 (4.6)

4 =Z'-~(P. V) =0, (4.11)

with u being a nontrivial function. To recognize



22 COMPOSITE SYSTEMS VIEWED AS RELATIVISTIC QUANTAL. . . 1945

this as a mass-spin relation, we remark that the
conserved generators for Poincare transforma-
tions in the present model are P„ for translations
and

M„„=x„P„-x„P„+S„ (4.12)

for homogeneous Lorentz transformations. Hence
the Pauli-Lubanski vector is

(4.13)

Using some of the identities (4.7) for S„„,V„we
find its square has the value

S„.= v-n'(P V)(P„V„-P„V„),
V„=vn'(P ~ V}S„„P".

(4.19)

x~(s) =x~(0)+ ~,[ ]
—, , ~4(s)

-p, [S~"(s)-S~"(0)]P„,

Recognizing that P„and P ~ V are conserved, we
can exhibit the solution to these equations explicitly
in terms of one arbitrary function Q(s) corres-
ponding to the arbitrariness in v:

W'=S„„P" S"'P,= $'($f' -f)'
l.e. ,

W'=(P V)' (4.14)

Q(s) =
~

cos — " sin ~Q(0),

V,(s)=P„, + I V, (0) P„-, cosQ(s)
P V(O) & P. V(0)

fx. ,P„j=5„. (4.17}

We get the equations of motion for x, P, and Q

by computing their Poisson brackets with R:
x"=v[2P~ —n (P V)V ], P„=O,

Q = -avn'(P ~ V)P" r„Q .
(4.18)

Those for S„„and V, follow from the Q equation
of motion, or directly from R:

Thus though the constraint (4.11) is not, as it
stands, a relation between mass and intrinsic
spin, it can easily be so interpreted.

Before proceeding with the generic case, let
us dispose of the exceptional cases. Assuming
P ~ V=constant leads to P' constant, and vice
versa. These correspond to f of the form

f($) = C )=0C, I), P2 = -4C,C„P~ V = -2C, .

(4.15)

The vice versa means that zoe do not have a class-
ical version of the Majorana equation, at least
within the framework of the present Lagrangian
approach; we can get at most a projection onto
one mass level of that equation. In fact, it is also
impossible to obtain any trajectory of the form
P'= ag ~ V+ a,(P ~ V)' without each side separately
being constant, i.e. , again r'estricting to one mass
level. Thus, in particular. , trajectories with mass
proportional to spin are excluded in our model.

Now we resume the analysis of the generic
case. Since there is only one primary constraint
and 8 is homogeneous of degree one in the ve-
locities, the Hamiltonian is an arbitrary multiple
of 4, there is no constraint analysis needed, and

4 remains first class:

(4.16)

The nonvanishing Poisson brackets among the
basic variables are of course just (4.2) and

1
+ S„.(0)P"sing(s),-P (4.20)

S,„(s)=S„„(O)-, [P„V„(0)-P„V„(0)]sing(s)
1

+ —,[P„S„,(0) -P„S„,(0)]P'[1—cosP(s)],1

l.e. y

=-4v's'
i

&0,, , n(z})'
)

—

(4.21)

Q(s) = vn'[P V(0)] v'-P', p(0) = 0.
Thus, allowing for the fact that Q, being a spinor,
cannot be "represented" in space-time, the clas-
sical space-time "trajectory" for our model is
completely known. The initial values P, and Q(0)
are of course restricted by the constraint (4.11),
which restricts the motion to an 11-dimensional
region in the full 12-dimensional phase space.

Let us indicate by general arguments that
choices for the "trajectory function" n(P V)

exist which l.ead to physically acceptable struc-
tures at the classical level. For the moment,
write z for P V. A sufficient condition that would

ensure the absence of spacelike solutions for P"
in (4.11) is to take for n(e) a negative definite
function of g. It does not matter that (4.11) con-
tains P both on the left-hand and on the right-hand
side; there can be no solutions to (4.11}with P'
&0 if n(e) is negative for all (real) z. Next let us
imagine for simplicity that n(e) is an even func-
tion of z; then positive and negative timelike P"
are present symmetrically. Let us now ask if
n(z) can be so chosen as to make the world line
x~(s) everywhere timelike; in other words, we
require x'&0. From the x equation of motion and

the constraint (4.11) this is

x'=4v'[P' —P Vn'(P V}]=4v'[n(e) -en'(e)]
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n(z)ii
z j ds ~s

(4.27)

The pair of constraints4, X is now second class, with

$x, ej=2P'- v'n'(P v). (4.23)

Demanding that X=O be preserved for all s fixes the
hitherto arbitrary function v of (4.16):

—=0 ~ +v(X, C)=0~v =[2P' —V'n'(P V)] '.BX

dS BS
(4.24)

We may now convert the constraints 4 =0, X=O into
identities by passing from Poisson brackets to the ap-
propriate Dirac brackets:

(f,ZP =(f a]+ [2P' V'~'(P V)] 'E f, x'g-+, g)
—ff, c H",g]].

(4.25)
This produces a nonsingular bracket defined on a ten-
dimensional phase space, for which the independent
quantitiesx, P, and gare canonical coordinates. In
fact, these variables have standard values for their
Dirac brackets:

(x,x']" =(P, P'J" =(x', q]" =P",q]" =O,

(x', P"P = 5,.„(q., q,]*=y'.,
(4.26)

The general equation of motion prior to imposing
X=O reads

We examine the consequences of demanding that for
all real z, o.'(z) be negative and n(z)/z a monoton-
ically increasing function of z. It is clear that this
cannot be achieved if o.'(z)/z is continuous through
z =0, for then this function would have to be posi-
tive when z & 0, negative when z & 0, and be mono-
tonically increasing. However, if we permit a
discontinuity in n(z)/z at z =0, both conditions can
be met. A simple example is

o.(z) = -z/sinhz .
We do not intend that this n be taken seriously
but present it just to show that models with time-
like'P' and x' certainly exist. In a practical case,
it could also happen that the physical range of z
may be a half-line and not the entire real line,
in which case less restrictive conditions than were
described above may suffice.

It is useful, for this. as yet noninteracting model,
to establish the connection with what we have called
the Thomas form of the generators of the Poincare
group. "'"To do this we carry the analysis one step
further, in analogy with Ref. 2, and demand that the
parameter s equal the laboratory time xo. This is
done by imposing the gauge constraint

X=x' —s =0.

Here v is completely arbitrary, and f of course
can be any function of x ", P„, Q, and s. Once v

has been fixed by (4.24) and we adopt the Dirac
bracket (4.25), a general dynamical variable f
must be thought of'as some function of x, P, Q,
and s; and its equation of motion will appear in
the Hamiltonian form with a suitable dynamical
variable playing the role of the Hamiltonian within
a Dirac bracket. In fact, if we imagine the con-
straint 4 = 0 to be solved for P',

c = p' p' - -~(p v - p'v') = o,
P =H(V, V. P, P P),

(4.28)

we have the equation of motion with respect to
x'=t,

df &f

dt et
(4.29)

P, H(VO, V P, P P), J,,=x, P, x~P, +S,„, -
K,. =x,.H —tP,. +So, , gk =1,2, 3 . (4.30)

Presenting the Poincare generators of our model
in this form is exactly analogous to presenting
them for the ordinary free Dirac equation in the
form

P, H=o.'P+pm, Z~, =x, P, —x,P, —. i —,'h[o.„o.,], .

K,. =x,.II- i —2hn, , (4.31)

in which the Hamiltonian "has not been diagonal-
ized." In particular, we shall see in Sec. V that,
as in the case of the Dirac equation the form (4.28)
for the Hamiltonian of our system is the proper
one in which interaction with an external electro-
magnetic field is correctly represented by the
minimal replacement for %.
For the free case in our model, we get the

Thomas form of the Poincare generators if in
place of the position three-vector x we use the
Newton-Wigner position. This three-vector can
be defined in terms of the generators given in

The generators of the Poincare group behave an-
alogously. That the Poisson brackets among the
ten quantities P', M'" correspond to the Poincare
algebra is kinematically obvious. We now set
X =0, and imagine these generators to be expressed
in terms of x, P, Q, and t: it is then automatic
that the Dirac brackets among these expressions
again correspond to the Poincare algebra. This is
assured by the fact that the Poisson brackets
$P, , C), (M „,C] vanish. We then end up with the
set ot Poincare generators (with respect to the
Dirac bracket)
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(4.30), and the space part V((' of the Pauli-Luban-
ski vector, a,s

tion relations suggested by the classical Dirac
brackets (3.18):

K PxW
H fViH(M +H)

(4.32)

However, whereas for the free system the Thom-
as form of the generators and the form (4.30) are
canonically equivalent, the latter is to be pre-
ferred because of its capacity to allow for mini-
mal electromagnetic coupling.

[P„P„]= [P„a„.]= [a„,a,] = 0,
[x., P„]=i@g.„, [x., a„]=-i+.P„/P2,

[b„P„]=0,

[b„a„]= iS(g„„—g,a„—P, P„/P'),

[x~, x„]= i5(a„b„—g„b „)/P,
[x~, b„]= i5b P„-/P',

[b„,b„]=if(a b„a„b,)—.

(5.1a)

(5.1b)

(5.1c)

V. QUAN 1'IZATION AND THE ELECTROMAGNETIC
INTERACTION

This section is divided into three subsections in
which we discuss, in turn, the quantization of the
free vectorial model, that of the free spinorial
model, and finally, minimal coupling to an ex-
ternal electromagnetic field followed by quantiza-
tion. Under the last mentioned heading the major
part of our analysis will relate to the spinor mo-
del.

A. Quantization of the free vector model

In Sec. IIIA the description of the generic clas-
sical model of type A was left in the following
form: we had a system of manifestly Lorentz-in-
variant Dirac brackets among the four-vectors
P~, z~, x", and b'; and only one primary con-
straint in the form of a trajectory relation (3.6)
was still to be imposed. These Dirac brackets,
listed in (3.18), resulted in elimination of the two
trajectory-independent second-class constraints
P a=0, P b=0. There are now two possible ap-
proaches to quantization of this classical model.
The first one would be to impose a gauge con-
straint X=X' —s=0, conjugate to C, (in the sense
of the Dirac brackets already defined), and using
the iterative property of Dirac brackets one could
now eliminate the pair 4 „Xand arrive at a final
set of Dirac brackets. These last would be brack-
ets among three-dimensional quantities x, P, a, b,
and could be converted into a set of commutation
relations for Hermitian operators. However, this
reduction of the kinematics to three-dimensional
form results in commutation relations that depend
on the trajectory function n and so are hard to
solve. We shall therefore adopt an alternative
approach. We convert the Dirac brackets (3.18)
into a system of manifestly Lorentz-invariant
commutation relations and find the simplest and
most natural solution to them, in a suitable Hil-
bert space. The constraint 4, = 0 is then imple-
mented as a generalized Klein-Gordon-type wave
equation on wave functions.

We begin then by postulating a set of commuta-

(There should be no risk of confusion between the
operators of the present discussion and the clas-
sical variables of Sec. III.) One may now check
the following points: (i) all the Jacobi identities
are obeyed; (ii) one may consistently demand
that P, g, x, and b all be Hermitian; (iii) one may
also consistently demand that g' —1, P g, and
P b vanish identically. [However, one cannot de-
mand g ~ b =0; this would conflict with the result
b a —a b =(a b)~ —a b =2ik that follows from
Hermiticity and the [b, a] commutation relation. ]

We now find a solution to (5.1).. Clearly, one
may assume P~ and p" to be simultaneously diag-
onal. To avoid a proliferation of symbols, we
shall use the same symbols P, z for operators
and their eigenvalues. In other words, our re-
presentation space shall consist of wave functions
$(P, a) where P and a are two independent real
four-vectors. The conditions P g = 0, g' —1 = 0
are implemented by defining the norm of $ via

U(&) =1+i& ~ x, V(e) =1+is ~ b . (5.3)

We want these to be unitary operators and, ac-
cording to (5.1b), to obey

U(e)PU '(~) =P —Se,

U(e)aU (6) =a+@6'aP/P,
v(~)pv-'(e) =p,
V(e)aV '(e) =a —he+hag& ' a+@PE 'P/P'.

(5.4)

Thus, though g may be imagined as being defined
on an eight-dimensional space of pairs of four-
vectors P, g, it is only the values of P on the six-
dimensional manifold defined by P ~ z = z' —1 = 0
that are relevant. The commutation relations
(5.1a) are then automatically obeyed. We turn now
to the set (5.1b): they essentially tell us how the
operators x, and b„when applied to a wave func-
tion ((P, g), alter the arguments of g. For an in-
finitesimal vector &" let us define
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( V(~)P}(P,a) = p(P, a, ; ~)
(5.5)

x ((P, a —ha+Sac a+hPg P/P') .

Here ~ and p, are two multipliers to be determined
presently. One can confirm that, to first order in

&, if the arguments P, a on the left-hand sides in
(5.5) obey the restrictions P ~ a =a' —1=0, the ar-
guments of g on the right-hand sides obey the
same restrictions. To fix ~ and p, we invoke the
unitarity of U(e) and V(&). In the former case,
let us write P' =P —he. , a' =a+A& 'aP/P'. Then
the measure appearing in the inner product (5.2)
behaves as follows:

dp, (P', a') =d P'd a'5(P' 'a')6(a' —1)

=d'Pd'a~ I+8,— 5(P a)4 4 ( & P

P'a
x5 a' —1+M& 'a

I+0 —,(diJ, (P, a) .

This way of presenting the commutation relations
(5.1b) tells us that U(e) and V(e) must act on a
wave function g(P, a) in this way:

( U(t )g) (P, a) = &(P, a; &) g(P -RE, , a + ha aP/P ),

mution relations (5.1c) is also obeyed.
We thus have a Hermitian set of operators P,

a, x, b satisfying the commutation relations (5.1)
and acting on a Hilbert space of wave functions
$(P, a) with inner product (5.2). It is amusing to
note that in this operator system we have a ~ b
=-i@, whereas in the classical model a ~ b van-
ished. We must also note that the norm (5.2) is
not the physical norm to be used for quantum-
mechanical interpretation. That norm must be
set up by a natural modification of (5.2) after im-
posing a "wave equation" on g(P, a) and restricting
attention to the solutions. In doing this we shall be
guided by what we would have done in an analogous
treatment of the Klein-Gordon equation. '

Equation (3.4) shows that, in a classical vector-
ial model of type A, the four-momentum P, is
definitely timelike (provided, of course, the vari-
ables in the classical Lagrangian have real val-
ues). At the classical level this will imply that
the function u(b ) is non-negative. On quantization,
b becomes the Hermitian operator (5.8); and in
taking over the classical constraint C, =P'+ u(b')
=0 into quantum theory, we will assume that
u(b') is a Hermitian positive definite operator.
With P„and b„ the operators of the present dis-
cussion, we now impose on g(P, a), a general
wave function of our representation space, the
suave equation

Unitarity of U(e) then gives us ( 'P+(ub)}g( ,P)a=0. (5.9)

the simplest and most natural solution to which is

g oP
&(P, a,' «) =I +5' (5.8)

In an analogous fashion we find

p, (P, a, e) =I+%a (5.7)

One can then write our proposed solution to (5.1b)
in the form

z@ P. . I'8 a.
2 P' &&P' P' sa ) '

8 8 P„„b=-ih a+i', —a,a'

(5.8)

For ease in computation we may imagine that our
wave functions $(P, a) are defined for all indepen-
dently chosen arguments P, a, and the&partial de-
rivatives sIBP', 8/sa' also treat the eight vari-
ables P„, a as being independent; the specific
combinations of operators appearing in (5.8) are
guaranteed to respect the restrictions P ~ a = a' —1
=0. Keeping this remark in mind, one can now
verify without difficulty that the last set of com-

Not every g(P, a) in the representation space will,
of course, obey this equation. We must isolate
those that do, find a natural description of them,
and set up a quantum-mechanical inner product
among them alone. In (5.9), P' is a numeric,
since in our representation P is diagonal, while
b' is a differential operator acting on the compo-
nents a, . However, since u(b ) is positive defin-
ite, we may assert that every solution g(P, a) to
(5.9) vanishes for spacelibe P, I et it be here-
after understood that we deal with such g(P, a)
alone, though P~ may be either positive or nega-
tive timelike. So we are only concerned with
functions $(P, a) defined in the region determined
by P'&0, P a=0, a' —1=0. At this point, in
order to handle the operator u(b') in the wave
equation, it proves expedient to switch from the
variables P~, a" to a pair P", a'" in this way. As
P" is timelike, we can set up a Lorentz matrix
A(P), the one that relates P" to its rest frame
form, in this way:

PO

M

A', =5,,+ ' '
~

& ——1 ~, (5.10)P,.P, t' P'
P P k 3i )'

g = signP0, M = g-P' .
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We then define g'" as
a'" =A"v(P)a". (5.11)

above, we alter this expression for [jP[[' by sus-
pending the integration over the invariant mass'
and thus arrive at

Any wave function Q(P, a) can be rewritten as some
Q(P, a'). The point of introducing a'" is that now
the (unphysical) norm (5.2) takes the form (since
at2=a' and p a=eMa")

ii(tl('= f& Pd o'&('I'o")&(~'*- )(Iy(P a')I*

4

aQ(a')( (I)(P, a)(' . (5.12)

Effectively, Q is a function of a (timelike) four-
vector P" and a unit vector a' in three-dimension-
al space. The differential operator expression for
6& in (5.8) can be rewritten now in terms of a' and
s/aa', suitable for application to a $(P, a'), and
one finds after a little algebra that, hereafter set-
ting 5=1,

6 = 1+I ' L, L'= —i a'&V~ (5.13)

(That is, L' is the ordinary orbital angular mo-
mentum operator associated with a'. ) It is natur-
al now to expand g(P, a') in a series in terms of
the spherical harmonics Y,„(a'):

4(P, a)=4(P, a')=/ 0 (P)& (a') . (5.14)

The inner product and. the wave equation then be-
come

Ii((l*=f ~ E I e (I')I', .
(P'+u (l)) y, „(P)=O,

u(l ) =— u [1+l (l+1)].

(5.15a)

(5.15b)

(5.15c)

The wave equation tells us (I),„(P) can only be
nonzero if P Iles on the mass hyperboloid M'= u(l ).
In turn this means that a f(P, a) obeying (5.9) can
have a nonzero value only if P lies on one of these
mass hyperboloids, and then its general form is
determined by the right-hand side of (5.14): it is
now to be understood that the "component" Q,„(P)
is defined only for P' = —u(l ), or in other words
this is a function of p alone (except for the possi-
bility that P'= a[p p+u(l )]'~' can be of either
sign). The physical quantum-mechanical inner
product is now inferred in this way: Prior to im-
positiori of the wave equation (5.9) or (5.15b), we
write the [/Q[[' as

"dM2 dP
i=.- Mm)i(2 I @i~(P)l

tlt

(5.16)

After solving the wave equation as described

1 d'P
= ~ 2~ (I ) [ p

—
( )]xg 2 ~ 4 (m(p)l

(5.17)

(The sum over positive and negative signs of P'
is, for simplicity, left unstated. ) With this ex-
pression for the physical norm of our solution of
the wave equation, the quantization of the free
relativistic vector model (of type A) is complete.
It appears as a direct sum of unitary irreducible
representations [u(l)'~', l] of the Poincare
group, with l = 0, 1, . . . ; l represents the intrinsic
spin and u(l)'~' the rest mass. Both positive and
negative energies occur symmetrically.

B. Quantization of the free spinor model

The classical spinor model-is characterized by
a much simpler constraint algebra than the clas-
sical vector model. As a result the commutation
relations that provide the kinematic basis of the
corresponding quantum system are much simpler
to state and to solve. Ir. Sec. IV we brought the
classical description to a form where, with the
gauge constraint X=@'—s=0, the Dirac brackets
(4.26) are manifestly invariant only under the

. Euclidean group, and x' is a parameter rather
than a dynamical variable. We convert these Dir-
ac brackets into a set of commutation relations
for Hermitian operators x, P, q, :

[x, ,x, ]=[P,, P, ]=[@&,q, ]=[P~,q, ]=0,

[x, ,P, ]= iS 6~„[q„q, ]= im y',, .
(5.18)

These are immediately solved: with x, q„q,
diagonal, we have wave functions g(x, q„q, )
with the quantum-mechanical norm

(((i(*=f~"f ~~, f de. l((x, s„e.)I,
(5.19)

and the remaining operators are

~ () 8p= —N —,q = —sk
Bx

8
4

. Sq,

(5.2o)

As they stand, the expressions S„~ of (4.3) are now
Hermitian operators and generate the two unitary
representations of SO(3, 2) alluded to earlier.

To complete the quantization of the free spinor
model we must discuss the relativistic aspects.
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Let us assume the classical Lagrangian (4.8) leads
to a negative definite "trajectory function" n(P V).
We have a perfectly acceptable set of classical
generators for the Poincare group in the set of
variables J, K, P, H of (4.30), since via their
Dirac brackets they realize the Poineare algebra.
J and P can be taken over as they stand into quan-
tum mechanics and reinterpreted as operators.
We now assume we can order the noncommuting
factors in the classical expression H(V', V' P,
P P ), when V' and V are made into Hermitian
operators, such that (i) H becomes Hermitian and
remains positive definite, (ii) with the rearrange-
ment K&= ~(x&H+Hx&)+S,&, the nontrivial commu-
tation relations of the Poincare group,

[Kq, H] =i SP), [K~,K» ] = —i@ e(~, J, , (5.21)

are obeyed. With this we have a satisfactory rel-
ativistic quantum theory of the free spinor model.
In the rest frame the system exhibits each spin
value 0, ~, 1, . . .once, with mass determined by
spin via the trajectory relation.

is then

'i -'r'e+ (x')"f(&)+eA. (x)x",

~=x.V j( (5.23)

Now P„, the canonical conjugate to x", is

P~ =
&~ =f'V~+(gf'-f), ~", ~, +eA„(x) .

(5.24)

Writing II„=P„—eA„, the primary constraint
will now arise by eliminating $ between II' and
II ' V:

ll'= ((f')' f'-
ll V = ~(~f'-f) .

(5.25)

Comparing this with (4.10) and (4.11), we immedi-
ately see that the primary constraint is formed in
exactly the same way as in the free case, namely,

C. Electromagnetic interactions
4=(P —eA)' —u [(P —eA) V]=0 (5.26)

For the classical theories, the interaction with
an external electromagnetic field with potential
A~(x) is introduced easily enough by adding to the
free Lagrangian a term, homogeneous of degree
one in velocities, of the form

2;„,=eA„(x)
d

+g (-x') '~'S „„F""(x).6s
(5.22)

(S „„is to be interpreted appropriately in each of
the two models. ) Note the gauge invariance: re-
placing A„by A„+„A changes the Lagrangian by
dA/ds. Difficulties occur, however, when one
tries to quantize the vector models after intro-
ducing the above interaction. These are caused by
the occurrence, in the models of Secs. II and III,
of second-class constraints. This is a feature
common to all the internal vector variable models
and which, moreover, they share with Ref. 2.
Then the Dirac brackets are different from the
Poisson brackets, and in particular one finds
(x",x "$*40. This is, again, a general and in-
escapable feature, as argued following (3.19). At
this point one runs into factor-ordering problems,
as the components of the four-vector x" in A.„(x)
and F„„(x)in (5.22) do not commute with one
another. For this reason, we do not pursue the
vector models further.

The spinor model of Sec. IV does not share these
difficulties and, as we have seen, the x" remain
commuting quantities to the end. Let us restrict
ourselves to the "minimal-coupling" case with
g= 0 in (5.22): the complete classical Lagrangian

with the same function n as before. The canoni-
cal Poisson brackets among x", P„, and Q are
also, of course, unaffected by the presence of
interaction. More to the point, we may now
again impose the gauge constraint X

=x' —s=0, .

and then we find these consequences: (i) the Dirac
bracket resulting in elimination of 4' and X,

(f, ~F =(f,d+(2fl' V'~'(ll. v)) -'.l'f, "]I~,~] -(f,~}&,&]], (5.»)
leads to the interaction-independent values (4.26)
for the independent Dirac brackets; (ii) the quanti-
ty that now acts a,s the Hamiltonian is

H'=eA'(x, t)+H(V', V n, rT rr) . (5.28)

Thus we have obtained the result stated in Sec. IV,
that the description of the free spinor model as
given by us is the right one to account for the elec-
tromagnetic interaction via the minimal-coupling
principle. It is also reassuring that in this model
the quantum kinematics is unaffected by the inter-
action. The same commutation relations as in the
free case, namely, (5.18), may again be postula-
ted; and provided factor-ordering problems can
be solved we have a valid Hamiltonian operator
for setting up the Schrodinger equation.

The Hamiltonian (5,18) is interesting in that,
due to the presence of the internal vectorial object
V, one ean generate both orbital and intrinsic
magnetic moments for all the states on the tra-
jectory described by the free system. In fact, in
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principle the moments for the different spin states
are interrelated since everything is determined
by the single "trajectory function" a. This fea-
ture of producing magnetic moments via minimal
electromagnetic interaction (similar to what hap-
pens for the Dirac equation) is missing in the top
model of Regge and Hanson. This is because their
Dirac Hamiltonian [their equation (3.16)] does not
contain the term P„S"",which plays a role simi-
lar to P„V", but which in their case is equal to
zero by a constraint.

Two final remarks. First, the model can be
generalized so that it produces the spectrum of
the string model. " To do this one replaces the
operator V", of Sec. VB based on a degenerate
pair of oscillators by a sum of such operators,
each having its own degenerate pair of oscilla-
tors: V" -g"„,E V" '"', where the label 1U re-
fers to the Nth pair of oscillators.

Second, another straightforward generalization
gives a fully relativistic quantum-mechanical
SU(6) model with a minimal electromagnetic in-
teraction. This model is obtained from that of
Secs. VB and VC by replacing V" by a degener-

ate triplet: V" -Q'„.,V"'"'. One now has six
degenerate harmonic-oscillator variables and the
mass is an SU(6) singlet, whereas the multiplets
contain the familiar states with different spin
values. For a somewhat similar case this is dis-
cussed in Ref. 17 for no interaction. The electro-
magnetic interaction is again by minimal substi-
tution: P" -P" +i@A", where now, however, Q
is an operator which has eigenvalues 3 for all
quantaN =1, --,' for all quantaN = 2 and quanta
N = 3. Thus, labeling the total number of the quan-
ta of the three pairs of oscillators &„&„n„one
has for the charge Q = 3 n, ——,'n, —3 n„whereas
the rest mass is given as a function of the sum
(n, +n, +n, ).

A more detailed investigation of these questions
is in progress and will be reported elsewhere.
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