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Dirac particles in Rindler space
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We show that a uniformly accelerated observer experiences a "thermal" flux of Dirac particles in the
ordinary Minkowski vacuum.

It has been known for several years' 3 that the
particle interpretation of quantum field theory in
a general Riemannian manifold is not unique, but
depends on the observer's coordinate frame. The
particle concept, endowed with a nonlocal nature
by the uncertainty relation, depends on the global
topological structure of that submanifold which is
naturally connected with the observer's state of
motion.

In this article we show that a uniformly acceler-
ated observer in -Minkowski space Sli experiences
a flux of Dirac particles in the ordinary Minkowski
vacuum. To do this we utilize amethodof Rumpf,
allowing one to define particle and antiparticle
states in quite general circumstances.

Owing to the dynamics of the uniformly acceler-
ated observer, two-dimensional Minkowski space
is divided into four. sectors, as can be seen from
Fig. 1: right (I), left (II), future (F), and past (P)
with respect to the origin x=t=0. Minkowski co-
ordinates (t, x) may be transformed into Rindler
coordinates (v, u) according to [the following con-
ventions are used: S=c=1, (x'=t, x'=x) in Ott,

(x'=v, x'=u) in I UII, and (x'=u, x'=v) inF UP]

(timelike) Killing vector, we may solve for sta-
tionary states 5(v, u) =tf~(u) exp(-iev):

(4)

For spin-up states the only normalizable solution
reads'

g)(u)=, , Q„' =HI„)( 2(imu)

with g'„obeying the differential equation

u u ~= m u — co+ ~ cocR ~

(6)

It is interesting to note that the difference in the
boson case is the term 2i in Eq. (6) which does not

t =u sinhv, x =u coshv,

v = arctanh(t/x), u = sgnx(x2 —t2)' ~2,

t =u coshv, x =u sinhv,

v = arctanh)x/t), u = sgnt(t -x )' .'.
This leads to the line element

ds =u dv -du in I, II,
ds =du -u dv in I",I'.

in I, II (1a)

in F,P (1b)

(2a)

(2b)

It is well known that a world line u = const in I
corresponds to the trajectory of a uniformly ac-
celerated observer. In I the timelike coordinate v

is connected with the observer's proper time via
v =g7 where g is the observer's acceleration. %e
start calculating Dirac wave functions in the four
sectors of Minkowski space. The covariant Dirac
equation reads'

[iy "(6,+ I', ) -m]tI~ =0.
Let us first concentrate on sector I. 8„being a

FIG. l. Owing to the dynamics of the uniformly ac-
celerated observer, two-dimensional Minkowski space
is divided into four parts: right (I), left (II), future
(E), and past (P).
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appear in the Klein-Gordon Equation. This term
A

arises due to the nonvanishing derivative of HR

[Eq. (4}]. .Let us denote the solution of the Dirac
equation in sector I as

+4"

I~ -$ cov 8(t+x)8(x -t),

0

indicating that I( It; is the support of '0„. The
norm of 'g„ is given by

(8)

where the Dirac scalar product (, ) is defined as

(9}

on some spacelike hypersurface Z. In the future
sector (E), u and I) interchange their meaning as
spacelike or timelike coordinates. Equation (3)
therefore takes the form

urp=
l

in u'"-—u'/2+y mu i(t), (10)

F~(-) e -$ ev (1)
i 0'4I = (ldd1/2()22u) i

(1la)

p~ —zp

where y3 is the Dirac matrix in Minkowski space.
We obtain the following two independent solutions
for Eq. (10):

normal basis of particle (antiparticle) wave func-
tions g„"' of the homogeneous Dirac equation in all
X. b»oi»ng ' e„and'. a& . To this end we use
Rumpf's definition of particle and antiparticle
modes: A solution of the Dirac equation is an out-
going/ingoing particle (antiparticle) mode if it ad-
mits an analytical continuation in m such that it
remains regular, except in the past/future, if m2

acquires a negative/positive (positive/negative)
imaginary part.

To apply this definition, we use the asymptotic
representation of v)'„ for large times u (in sector
+)

5„'=N(a( Ib„+a2 (t„"+a2 (/)„+a4 (t)-,

g„=M(b( )j)„+b2 (t„'+b2 (b„' +b& (I)),
(14)

where the constants a, and b& have to be deter-
mined by the requirement that 5'„should obey the
homogeneous wave equation in 9R.

Since the wave functions '"5„, ' g„"' vanish
outside of their support they are not solutions of
Dirac s Eq. (3) in 3R but possess distributions as
source terms on the light cone through the origin
of Sk. By calculating the source terms for the
various wave functions the following complete,
orthonormal set of wave functions is obtained:

m i/2
g+ )/ )( (Ig rid/2 Pg( )d

I48 I)
t)(2

rri/2 P$(-) ~ rri II/ )-

exp imu —i —+ (i(d-+-,')
u~ P~+ ] 4

From the properties of the complex exponential
function it is obvious that "(t„') ( (I)„' ') must be clas-
sified as part of a particle (antiparticle) mode.
The mode classification in P is obtained from Eq.
(13). Thus, by Rumpf's definition, $'„may be ex--
pressed as

F~ &+) -k aov (2)H; „,( /2(mu)—9'~+ ~W~

0 (lib) + S rdi /2 Pi (+) + i II~,

with

6
(/ (t)„, (t„.'& = 6((r) —(r)') 5()) (i, k =+) .

The usual quantum field theory on 5R is obtained
by means of the following spectral representation
of the Dirac operator g:

(12}

We obtain analogous wave functions in II and I'
through

(I)= g Jt d(d((2, ,8„',, +b„',,g, ,),
~00

a„lo,& =b„lo„&=o

(16a)

(16b)

Qrd(tix) Sdi( ti x) i

g „"'(t,x) = (I)„'"(-t,-x) .
(13)

We may now obtain the usual quantum field the-
ory in Minkowski space by constructing an ortho-

(s now sums over spin states).
Suppose a uniformly accelerated observer moving

on a u =const trajectory in I(:3R (Fig. 1). Unruh
and Rumpfs' have shown that he measures only
wave functions on sectors which are causally con-
nected with himself. His world is therefore de-
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scribed by the unique normalized wave functions
of the homogeneous equation in B=-I ~ I' ~ P:

This can be interpreted that the observer mea-
sures a number of created particles per unit in-
terval of proper time:

„,(q [2 cosh(vcr)'&„+e '"~
96 coshjm~ jj

O'S " d(d/271

d . '" +1 ' (21)
3 ra) /2 E,f, (+) + e &~ / 2 P, f, ( )

tf'co

&0) /2 P f (+)']
Egg ] ~

P = g i der(c„„g~„„+d„,, g „„),
s 0

defining the Bvacuum

(19a)

(19b)

We may calculate the number of 8 particles in the
ordinary Minkowski vacuum as (ur, &o' & 0)

('0~ ic„„c„,, i0&& =8„5(ur —ur')5„. . (20)

II
Note that g„does not contain g„because the ob-
server's information is decoupled from II cSR. It
is at this point where the global aspect of the sub-
manifold Bplays a crucial role for the particle in-
terpretation of $.

The observer modes are related to the Minkow-
ski modes according to

(18)

with

~so /2 "~co /2

[2 cosh(~~)]'~' ' " [2 cosh(«o)]'I

Now Unruh and others have shown that the accel-
erated observer experiences a spectral represen-
tation of g according to positive and negative val-
ues of &'.

where the factor of 2 is introduced by the two spin
projections. 'This means that he measures a
"thermal" flux of Dirac particles where the effec-
tive "temperature" is the Fulling-Unruh tempera-
ture

Ts =
2

——10 '
g

'K sec'/cm .gh ' (22)

Thus one expects that the action of the Dirac
field onto a particle detector corresponds to the
action of an isotropic temperature bath of temper-
ature T~. Note that the change from the boson to
fermion statistics resulted from the details of the
Dirac equation, i.e. , the additional term —,i in the
Dirac equation changes the behavior of the wave
functions at u =0 as compared to the Klein-Gordon
equation. This leads to P„=(e '"+ 1) '~ instead
of P„=(e '" -1) ' as was found by Fulling' and

Rumpf for scalar particles.
We finally note that a pure quantum state defined

on the whole Minkowski manifold may. appear as a
mixed state when measured on a submanifold for
the following reason: Since the observer modes
$„vanish on sector II(-%, tt generates only a
subalgebra of the whole Minkowski field algebra.
Let PI3 be the projector onto the set of all states
generated by ~0~&. Then P~ ~0~& will be a mixed
state containing particle antiparticle excitations.
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