PHYSICAL REVIEW D

VOLUME 22, NUMBER 8

15 OCTOBER 1980

One-electron atom as a probe of spacetime curvature

Leonard Parker
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
(Received 14 April 1980; revised manuscript received 7 July 1980)

We consider a one-electron atom in an arbitrary curved spacetime. After reviewing the generalization of the Dirac
equation to curved spacetime, we develop the perturbation theory of degenerate stationary states taking into account
the Hermiticity properties appropriate to curved spacetime. We then calculate the Hamiltonian of the Dirac
equation in Fermi normal coordinates to first order in the Riemann tensor, including the corrections to the
electromagnetic field. As an application of these results, we obtain expressions in terms of the Riemann tensor for
the shifts produced by the local curvature in the nonrelativistic 15, 25, and 2P energy levels, and in the relativistic

18,5, 28,5, and 2P, energy levels.

I. INTRODUCTION

The energy levels of an atom will be shifted when
the atom is placed in a region of curved space-
time. The energies of the various levels will be
altered in different ways, so that the effect of
curvature can be distinguished from other effects,
and the atomic spectrum can in principle be used
to measure or put an upper limit on the curvature
of spacetime at the position of the atom. For that
purpose, one requires expressions for the energy-
level shifts as a function of the local Riemann
curvature tensor in an arbitrary curved spacetime
(we do not consider nontrivial topologies or
twisted fields).

Although the hydrogen atom has been studied in
particular curved spacetimes, there are contra-
dictory conclusions in the literature, and to our
knowledge no one has given explicit expressions
for energy-level shifts, as we do here. Refer-
ences and a critique of the previous literature are
given by Audretsch and Schéfer,! who considered
the hydrogen atom in certain cosmological met-
rics. The problem of finding the perturbations of
the energy levels of an atom placed in a curved
spacetime is of considerable theoretical interest,
as well as possible observational interest.?

We find that for the perturbation of the energy
levels of hydrogen to be as large as the Lamb
shift (4.4 x 10"% eV), the required characteristic
radius of curvature, D, of the spacetime would
have to be as small as 10" cm. Although the ex-
istence of accessible regions of such large curva-
ture may seem unlikely from the viewpoint of the
general theory of relativity, it is nevertheless of
interest to have a measuring instrument which can
objectively test for regions of large curvature
which may be at large distances from us. The
atom and its spectrum provides such an instru-
ment.

We first review the formalism of the Dirac

equation generalized to curved spacetime, and

set up the necessary perturbation theory. Then

we calculate the curvature-induced energy-level
shifts for the relativistic 1S,,s, 2S,,,, and 2P, ,,
states, working to first order in the Riemann
curvature tensor. The Hamiltonian given here can
be used to calculate the shifts of any energy levels,
as well as other effects. For the 1S, ,, levels, we
work to all orders in the fine-structure constant,
while for the 2S, ,, and 2P, /, levels our results are
valid to lowest order in the fine-structure con-
stant. The nonrelativistic limit of the theory is
also discussed, and the shifts of the 1S, 2S, and
2P levels are calculated.

We make use of coordinates which are locally
inertial (normal) at the position of the atom. In
particular, we use Fermi normal coordinates be-
cause they are normal along the entire spacetime
path of the freely falling atom, and thus seem ap-
propriate (in view of the time-energy uncertainty
relation) for a problem involving energy levels.
The metric is expressed in terms of the value of
the curvature tensor at the center of mass of the
atom. That value is assumed to be slowly changing
on time scales of the order associated with the
atomic processes under study.

Differences between the calculated energy levels
correspond to the frequencies of the emitted ra-
diation as measured by a detector placed near the
atom and at rest with respect to it (or more pre-
cisely by a hypothetical detector at the center of
mass of the atom). The frequencies observed far
from the atom will have additional Doppler, cos-
mological, and gravitational shifts. These latter
shifts are the same for all spectral lines. They
can be determined by observation of a small num-
ber of lines and subtracted away. The remaining
shifts can then be compared with the calculated
expressions for the shifts as a function of the
Riemann tensor at the position of the atom.

We assume (i) that a metric description of space-
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time is valid, (ii) that the Dirac equation gener-
alized to curved spacetime governs the system,
(iii) that, to good approximation, the atom is in
free fall along a geodesic of the spacetime during
the time required for an atomic transition, and
(iv) that the time rate of change of the Riemann
tensor as measured along the spacetime path of
the atom is sufficiently small on an atomic time
scale that well-defined energy levels exist. The
third assumption is plausible because the motion
of the atom as a whole is mainly governed by the
nucleus, and for the range of curvatures under
consideration the external Riemann tensor does
not change significantly over the dimensions of
the nucleus.

In Secs. II and III we review the formalism of the
Dirac equation in curved spacetime and define the
conserved scalar product for the Hilbert space of
one-electron states. In Sec. IV, we discuss the
Hermiticity of the Hamiltonian with respect to the
scalar product. In Sec. V, we develop the pertur-
bation theory of degenerate energy levels. In
Secs. VI, VII, and VIII, the Hamiltonian of the
Dirac equation for the one-electron atom is ob-
tained in Fermi normal coordinates, including all
terms of first order in the Riemann curvature ten-
sor (the calculation of the electromagnetic field to
that order is given in Sec. VII). The nonrelativis-
tic limit is considered in Sec. IX, and the pertur-
bations of the 1S, 2S, and 2P levels are found. The
relativistic 15, ,,, 2S,,,, and 2P, ,, levels are dis-
cussed in Sec. X and XI. Finally, the results are
summarized and put in generally covariant form
in Sec. XIL

II. DIRAC EQUATION IN CURVED SPACETIME

To write the Dirac equation in a curved space-
time of metric g,,, one introduces coordinate-de-
pendent matrices ¥* (x), which satisfy the equa-
tion® 5 B

M)y (x) + " (x)y M(x) = 2¢"(x) . (2.1)

One also introduces spinorial affine connections
T ,(x), which are matrices defined by the vanish-
ing of the covariant derivative of the y matrices:

V.Y,=087,-TLy,-Ty,+yl,=0, (2.2)

where the indices on y* have been lowered with
the metric tensor. The covariant derivative acting
on a spinor field ¥ is then

v,9=(8,-T )0, (2.3)

and the generally covariant form of the Dirac
equation is

[y“x)v,+m]ix)=0, (2.4)

where m is the mass.

For the purpose of defining a conserved proba-
bility current density S* which transforms as a
four-vector, Bargmann (Ref. 4) defines a matrix
€(x) by means of the following conditions:

e+e'=0, (2.5)
€Z”+z“75=0, (2.6)
V,=9,e+Te+el,=0. (2.7)

Then the probability current density
St=—yley ™y (2.8)

" can be shown to transform as a four-vector under

general coordinate transformations, and to satisfy
the conservation equation

v,St=0, (2.9)
Define a vierbein field 5% ,(x) such that

gup(x)=77a5b°‘u(x)bﬂu(x) ) (2-10)

where 7, is the flat-spacetime metric tensor with
Moo= =1, M ="Mp=733=1. Under transformations
of the coordinates, indices u,v,A,... are regarded
as tensor indices, while indices «,B,... act
merely as labels (thus the 5*, constitute four dif-
ferent vector fields). In addition to the covariance
of the formalism under general coordinate trans-
formations acting on the spacetime indices u, v,
the formalism is also covariant under Lorentz
transformations applied to the vierbein indices a,
B. Under such Lorentz transformation, the y* are
invariant, while the  transform as in special rel-
ativity forming a spinor representation of the Lo-
rentz group. On the other hand, under coordinate
transformations one can regard y as invariant (or
alternatively, as undergoing an arbitrary matrix
transformation, with a corresponding matrix
transformation also applied to the y*, in addition
to the tensor transformation of the index w.
Vierbein indices are lowered with n_,, while
spacetime indices are lowered with the metric
&~ Also introduce the constant special-relativ-
istic matrices v, defined by

Ya¥et+Ve¥a= 2Mgp- (2.11)
These matrices can be chosen such that
Yi= v, Yi=v, (i=1,2,3). (2.12)

It follows from Egs. (2.1), (2.10), and (2.11) that
Yulx)=0%,(x)y, . (2.13)

Expressed in terms of the vierbein and the con-
stant y matrices, the solution of Eq. (2.2) is

T, =—57,70%, 8"V b5 +igA 1, (2.14)
where
V,%bﬂ)‘: 8,08 - rombﬂu . (2.15)
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The second term on the right-hand side of Eq.
(2.14), which is proportional to the unit matrix, is
not determined by Eq. (2.2). However, it is clear
from Egs. (2.3) and (2.4) that the constant ¢ may
be interpreted as the charge of the particle de-
scribed by ¥, and the vector field A, as the vector

potential of the electromagnetic field acting on the .

particles (we thus take g and A, to be real).
The matrix e appearing in Egs. (2.5)-(2.8) can
be taken such that

e=7°, (2.16)

where y°=1°%y = —y,. We prove this as follows.
Clearly, Eq. (2.5) is satisfied by the above choice
of €. Also one has

7"2’_“+)_"‘Ty°= -2 (Yor o + YY) =0,  (2.17)

as a consequence of Eqs. (2.11) and (2.12). Thus,
Eq. (2.6) is satisfied. Finally, the left side of Eq.
(2.7) becomes, with the present choice of e,

V,€=50%, 8"V bE (Vv Ly o+ voyaYe) -
But using yly,= -vsr, and Eq. (2.11), one finds
that

7’;7’;70'*‘ Yo¥o¥e= 2Yollap -
Hence

Vu€= %Yonaﬂbavgulvubﬂxz 0 ’
which proves that Eq. (2.7) is satisfied. The last
quantity vanishes because 7, is symmetric, while
be,g"*v b®, is antisymmetric in @, 8. (The latter
follows from 7*f=5%, g"*b®,, and v n*#=0 n*¢=0
because 7*® is a scalar under spacetime coordi-
‘nate transformations.) The choice e=7° of Eq.
(2.16) is invariant under coordinate transforma-

tions, and we will work with a vierbein such that
Eq. (2.16) holds.

III. SCALAR PRODUCT AND HILBERT SPACE

Let us define the scalar product
(¢,¢)E—fd3xv—g¢*7°1°(x)d), (3.1)

where the integration is over a constant x° Cauchy
hypersurface. This scalar product is linear in ¢
and antilinear in ¢. If ¢ and y satisfy Eq. (2.4),
then

d
'&‘Z(¢9¢)=09 (32)
where £=x° This follows from

V(oW )=0, (3.3)

where we used Eq. (2.4) and its adjoint, as well as
Egs. (2.17), (2.7), and (2.2) (we assume throughout

that ¢,y vanish sufficiently rapidly at spatial in-
finity or obey suitable boundary conditions in a
closed universe, so that the spatial components of
(3.3) give vanishing contributions upon integration
and the various products are well defined).

One readily finds, as a consequence of Egs.
(2.12) and (2.17), that

(¢7¢)*=(¢’¢) ’ (3.4)

where the asterisk denotes complex conjugation.
Thus (y, ¥) is real. We show it is positive definite
as follows. One has

W)= [ ax/=gs, (3.5)

where S* is the four-vector defined in Eq. (2.8).
At an arbitrary given point x, one can choose a
locally inertial coordinate system such that y*(x)
=y* at the given point, so that S%x) =y (x)d(x) is
positive definite. As in special relativity it follows
that S“(x) is a timelike vector lying in the forward
light cone. The general coordinate transformations
under consideration are required to preserve the
direction of time and to preserve the timelike or
spacelike character of vectors. Hence in the gen-
eral coordinates x*, it follows that S* is timelike
with S° positive definite at all points. Therefore,
(¥, ) of Eq. (3.5) is positive definite, vanishing if
and only if ¢ vanishes.

The above properties of the scalar product
(¢, ) imply that the spinors ¢ with (s, ) finite
form a Hilbert space, which we take as the space
of states of the system. We call (¢, ) of Eq. (3.1)
the curved scalar product, in contrast to the flat
scalar product (¢, ), defined by

@,90= [ ax o' (3.6)

This latter scalar product is not appropriate to the
Hilbert space of physical states because it is not
conserved when i and ¢ satisfy the Dirac equation
in curved spacetime, and the formalism based on
it would not be generally covariant. One may base
the usual probability interpretation of this quan-
tum-mechanical system on the curved scalar pro-
duct (¢, ), but not on the flat scalar product

(¢, 9)o-

IV. THE HAMILTONIAN AND ITS HERMITICITY

Multiplying Eq. (2.4) on the left by ¥°(x) and di-
viding by g°(x) allows us to write the Dirac equa-
tion in the form

idgy=Hy, ' (4.1)
with the Hamiltonian

H=-i(g%) %8, =T )+il, -i(g%)y'm, (4.2)
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where repeated Latin indices are summed from
1 to 3. The vanishing of d(y,$)/dt implies that

W, H) = (EY, =i [ x5 (=g ).

(4.3)

Thus, in general H will not be Hermitian with re-
spect to the conserved scalar product (nor with
respect to the flat scalar product). This may re-
flect the fact that in the presence of a time-chang-
ing gravitational field the single-particle sector of
the Hilbert space of the many-particle theory is
not self-contained, as the number of particles
present can change. However, we will not dwell
on that question, as our interest here is in the
stationary states of a one-electron atom. For
stationary-state solutions of Eq. (4.1) to exist in
a locally inertial rest frame of the atom, we must
treat the time dependence of the Riemann tensor
in such a frame of reference as adiabatic (slow),
in accordance with assumption (iv) of Sec. I. This
implies that in the region where the probability of
finding the electron is significant, the quantity
8(V=gy°)/ ot is sufficiently small that the right
side of_Eq. (4.3) can be neglected (as can be seen
directly from the explicit expressions for g, and
7° given later). Then

(v, HY) = (Hy,9) , (4.4)

and one can regard H as Hermitian with respect to
the curved scalar product [for a stationary metric
Eq. (4.4) is exact].

1t follows in the standard way (but using the
curved scalar product) that the eigenvalues E of
H are real, and that eigenfunctions 3,, 3, belonging
to different eigenvalues E,, E, are orthogonal with
respect to the curved scalar product. We interpret
H as the observable corresponding to the energy
in a locally inertial rest frame of the atom.

V. DEGENERATE-STATIONARY-STATE
PERTURBATION THEORY

The Dirac Hamiltonian in flat spacetime is

Hy=iy% (0, —igA®) — gAL +iy°m. (5.1)
Let us suppose that the operator
H,=H-H, (5.2)

can be regarded as small. Here H is the Hamil-
tonian of Eq. (4.2), which includes the electromag-
netic field A, through the I, of Eq. (2.14). The
application of perturbation theory to the problem
of finding the eigenvalue of H is complicated by
the fact that H, is not, in general, Hermitian with
respect to either the curved or flat scalar pro-
duct. That is because H, is Hermitian only with

respect to the flat scalar product of Eq. (3.6),
while H is Hermitian only with respect to the
curved scalar product of Eq. (3.1). Therefore,
the orthonormality properties of their respective
sets of eigenfunctions refer to different scalar
products, and one must exercise caution. Never-
theless, one can carry out the perturbation theory
almost as in flat spacetime.

Consider an eigenvalue E® of H, which is n-fold
degenerate. Then we can write

Hyp=ED¢, a=1,...,n (5.3)
with
(65°5 85”)0= 04p - (5.4)

The # eigenfunctions ¢ °’ span the space ¢, of
eigenfunctions of H, belonging to the eigenvalue
E@| and are orthonormal with respect to the flat
scalar product. If we imagine curvature in the re-
gion of spacetime where the atom is located to be
parametrized by a quantity A, such that as A ap-
proaches 0, the region of spacetime becomes flat,
then there will exist n eigenvalues E; of H which
approach E as X vanishes. Thus, we can write

HZP,=E‘Z[)‘., i=1,...,n (5.5)
with
(l,bi, z/)’)z 0 for i#j. (5.6)

The 3, are orthogonal with respect to the curved
scalar product. Also, because H approaches H,,
each y, will approach an eigenfunction 3 of H,
belonging to the space 3, as A vanishes.

Assuming analyticity and working to first order
in A, we can write

H=H,+\H,, (5.7)

=@+, (5.8)
and

E,=E@\E®, (5.9)

where AH, in Eq. (5.7) is the first term in the ex-
pansion of Eq. (5.2) in powers of X (thus, it might
more accurately be written as AH{*’). One can
continue in the same way to higher orders in i,
but we will work to first order in the curvature
here. It follows from Eq. (5.5) that
Hozpi(o)= E(0)¢:o) s (5.10)
and )
H[ZI):O)"’HOZP?):E(O)lpsl)“"E:l)w:o’ . (5.11)

The ${ lie in 3¢, as a consequence of Eq. (5.10),
so that we can write

= 3 000, 9, - (.12
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Equation (5.11) implies that
(¢:°),Hz¢‘f°))o+(¢';°)’Holp:“)0
=E (¢, 0+ ESN$, 9. (5.13)

Using the Hermiticity of H, with respect to the
flat scalar product and Egs. (5.3), (5.12), and
(5.4), one obtains

2 (60 H 0o ~EL 0,6, #)o=0.
b

(5.14)
Thus, the equation for the energy shifts E{*’ is
det[((f’:O)sHl‘P;m)o -E:”éab] =0. . (5.15)

That equation has the same form as in the usual
perturbation theory of a degenerate energy eigen-
value. However, H, is not Hermitian. The reality
of E! is guaranteed by Eq. (5.9) because E and
E© are each real, being eigenvalues of operators
that are Hermitian with respect to the curved and
flat scalar products, respectively. The diagonal
matrix elements (¢!, H,¢!’), are also real, de-
spite the fact that H, is not Hermitian. That is a
consequence of ¢ ” being an eigenfunction of H,,.
One can write to first order in A,

(9,9)=(¢,¥)o+ ¢, L¥)o, (5.16)

where AL arises in Eq. (3.1) from the first order
term in the expansion of V- gy%x) in powers of
the curvature [the expansion is given explicitly in
Eq. (8.18)]. Therefore, to first order in i,

(0, HpL) = EO($, ) 4 M, H,6.*), .
(5.17)

The left-hand side is real because H is Hermitian
with respect to the curved scalar product, and the
first term on the right-hand side is clearly real.
Hence (¢, H, ¢, is real. We will use Eq.
(5.15) to calculate to first order in the Riemann
curvature tensor the perturbations of the relativ-

istic 18, ,,, 2S,,,, and 2P, ,, energy levels, and of

the nonrelativistic 1S, 2S, and 2P energy levels
of a one-electron atom.

VI. METRIC AND AFFINITIES IN FERMI NORMAL
COORDINATES

We assume that to good approximation the atom
is falling along a geodesic G of the spacetime dur-
ing the emission process. In Fermi normal coor-

dinates,® ® each spacelike hypersurface of con-
stant x° is normal to this geodesic and contains

the set of spacelike geodesics normal to G. The
time x° of an event in the hypersurface is the prop-
er time along G at the point P where it intersects
the hypersurface. The spatial coordinates x¢ of an
event occuring at time x° are given by x?

'=1(dx?/dl)p, where [ is the proper distance mea-

sured along the geodesic in the constant x° hyper-
surface which joins the event to point P. The
metric in these coordinates to second order takes
the form”

800= =1 =Ry;omx'x™, (6.1)
80;=8%== LRy mx'a™, (6.2)
£:y=0y =3 Ryymx'a™, (6.3)
g%=<1+Ry, o x'2™, (6.4)
gij=51j+§Ri,jmx'x'" , (6.5)

= -1+ 3(R;, - 2Roj0m) #'5™ , (6.6)

where Latin indices go from 1 to 3, and the Rie-
mann tensor is evaluated at the point at which G
intersects the constant x° hypersurface. Our sign
conventions are those of Ref. 8, where R%,
=9,I'g—-++. Egs. (6.1)-(6.6) contain all terms
linear in R, ¢ (higher-order terms involve deriva-
tives or products of R,,). We find that the vier-
bein defined in Eq. (2.10) is

%= 6“0‘%Ra10mx1xma (6.7)

b= 0% ~ L R* . x'x™, (6.8)

and the affine connections are
F?I= %(Rﬂijm*'Rolim)xm’ ng= ROiOmxm ,
9%=0, Th=3(R, m+Ryymx™, (6.9)
r(l;j=R0mjixm’ P30=R050mxm ,

where we are working to first order in R 4. Us-
ing Eq. (2.14), the spinor affinities are found to be

o= 3Y0Y; Rloomx™+ 57 ;R o x™ +iqA,, (6.10)
and
Fi=éyoleo’,mx"#%gy,,y,R"’mx”%iqA{, (6.11)

where indices are raised with the Minkowski met-
ric n*¥, Here the v, are the usual gamma ma-
trices defined in Eq. (2.1), and A4, is the electro-
magnetic vector potential.

VII. ELECTROMAGNETIC FIELD

Expressing the electromagnetic field in terms of a vector potential,

Fuv=VuAv -VuAu ’

(7.1)



and imposing the Lorentz gauge condition
v,A*=0,
one finds that the Maxwell equations are®®

g¥Vv,V,A, ~-R A, = -41J
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(7.2)

(7.3)

where v, denotes the covariant derivative, and J, is the current vector (in Gaussian units). Using the ex-
pressions for the metric and affine connections given in Sec. VI, and working to first order in the Riemann

tensor, we obtain for the Maxwell equations

648,8, Ag+ L R,y x'5™040/ A+ § R 100 48 A0+ 2R" 15, x™0'A, — LR}, 5™, A= —4nd,, (7.4)

and

048,80, Ap+ 5 Ryyypmx'x™00'A, = RV A, — £ Rloo, Ay + £ 69(R%,, + R, )2™0, A,

Time derivatives of A, have been neglected as be-
ing.of higher order. That follows from our earlier
assumption that derivatives of R, are of higher
order, as can be seen from the solution for the

A, below. For a one-electron atom with a nuclear
charge of Ze, one has

Jo= =Zeb(F), J,=0, (7.6)

where e= |e|, and the minus sign arises from
lowering the index on J° with the metric at »=0.
(Such effects as the finite size of the nucleus are
regarded as perturbations which affect the energy
additively and can be ignored in calculating the
perturbation in the energy produced by the space-
time curvature.)

To lowest order the solution for A, is the Cou-
lomb field. Thus,

Ag==Zer*+ A (1.7
and , ,
A =AM, (7.8)

where A% vanishes when R, vanishes. To first
order in R, ., one has

648,0,A8" + 5 Zer (3R, = R, )x'x™=0, (1.9)
and
648,80, A1+ % ZeR%r™ + 5 ZeR®,,, x'x™r 3= 0.
(7.10)

We are working in normal coordinates, so that the
deviation from the Coulomb field should vanish as
one approaches the origin. Therefore, the ap-
propriate boundary conditions are

A&=0, A®=0 atr=0. (7.11)
The solutions are
Ag'= L Ze(R+4Ry)r
+ = Ze(3R%,, = Ry )x'x™r™ (7.12)

=+ Rioonx™0; A, = TR, 20, Ay = —47d,.  (1.5)

T
and

Al =2 ZeRyr+ £ ZeR%  x'x™r™ (7.13)

We note that the Lorentz-gauge condition of Eq.
(7.2), to first order in the curvature, takes the
form

649,A' =% ZeRy, x™r™, (7.14)
which is satisfied by Eq. (7.13), as required for
consistency.

VIII. DIRAC EQUATION AND HAMILTONIAN

In Sec. IV, we found that the generally covariant
Dirac equation took the form

19,0 = Hy (8.1)
with
H=—i(g®)My%¥8, =T ) +il —-i(g %) "y°m,
(8.2)
where
Yux) =% (), . (8.3)

Let us write H to first order in R, in Fermi,
normal coordinates. ,
Using Egs. (6.4), (6.5), (6.7), (6.8), and (8.3),

we obtain

_(gorJ)-1zozi= YoV = %R,,,mx’x""’yo)”
= 2 Roiom 2'x ™ vo¥;
- %Ro,,mx’x”"y"‘yi = Ry mx'x™,
(8.4)

where indices on the y, are raised with the space-
time metric, while indices on the y, are raised
with the Minkowski metric (-1,1,1,1), and re-
peated Latin indices are summed from 1 to 3. In
terms of the standard Dirac matrices & and 8,
such that
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oo+ o;a,=25,,, apf+pBa,=0, gi=1, (8.5)

one has
Yo=iB and y,=-ifa;. (8.6)
Hence,
(&%) ™% = —a; = LRy onx'x™ 2 = L Ry x'x™ O
=t Roymx'x™ @p~ L Roppxia™.
(8.7)
Then

i Lymaigi
=Ryymx'xma’d

H=-ia'd, -3 Rojomx'x™atd, - 5

_ERoumx'xmaja'ai_ERoumxlxma‘

+iail +ily —i(g %) y’m (8.8)

where indices on @, and 9, are raised with the

The terms involving the electromagnetic vector
potential are evaluated using Egs. (7.7), (7.8),
(7.12), and (7.13):

-qa'A; - qAy= =tr™ + L LRy, x'x™ Aty
+ % R, a'r - 11? &R+ 3Ry op)x ™™
+ l‘—zg(R+4Roo)r, (8.10)

where we used g= —e, and defined the quantity

t=Ze?, (8.11)
The last term in H is found to be
-i(g%)"y’'m= mﬁ+ Ro,o,,,x x™B
- tmR o, x'x"Balt. (8.12)

Finally, substituting these results in Eq. (8.8),
we obtain

Minkowski metric. H=Hy,+H,, (8.13)
Using Egs. (6.10) and (6.11), we obtain
i 3 with
oL 7 =— i m l i .x™m .
i@l +ilo=7 @ (R, = Rojom)% +g @ &Ry i % Hy= —iaio s mB—trt, (8.14)
-qatd; -qA,. (8.9) and
1
H = iR lmia iR lymqigi iR Lymoyd 3ig iR l,mgi
1= =5 RoiomX 2710, = ¢ Ry x'x" 070" — & Royyy 6'x™ 00 @18 — 5 Roy 2’
+Z @(R;, = Rojom)x™ +Z iRy X"+ T LRy xixmairt v + LR, alr
= 2 LR+ BRopon)¥'x™r ™ + 55 E(R + 4Roo)7 + 3 MRy10 X'x™B — MR 1, x xRt . (8.15)
I
This includes all terms in H which are of first or- (8.17)~(8.19), that
der in R . Here the Riemann tensor is evaluated
i (¢, Hy)=(Ho,v), (8.20)

at the spatial origin of the Fermi normal coordi-
nate system at time x° and is regarded as a
slowly varying function of x°.
The curved scalar product defined in Sec. III

is

(¢,9)=~ f d’xV -go % . (8.16)
In Fermi normal coordinates to first order in the
Riemann tensor, one has

(¢9¢)=(¢9¢)0+(¢’L¢’)0y (8.17)
where

L==2(Rip+Rojon)x's™ = £ Roymx'x™at, (8.18)
and

(9, 9)o= [ a0t (8.19)

is the flat scalar product. We have checked by
direct calculation, using Egs. (8.13)~(8.15) and

so that H is Hermitian with respect to the curved
scalar product. We therefore interpret H as the
observable corresponding to the proper energy of
the atom. To be more precise, we note that H
generates the evolution of the state of the system
from one spacelike hypersurface to the next in
Fermi normal coordinates. These are the natural
hypersurfaces of constant time for a hypothetical
observer located at the nucleus (or center of
mass) of the atom. The Fermi time coordinate
corresponds essentially to the proper time of the
nucleus (for the range of curvatures under con-
sideration one can associate a proper time with
the nucleus). Therefore, it is natural to interpret
the difference between two energy levels of H as
the energy of the photon emitted in the correspond-
ing transition measured by a hypothetical detector
located at the nucleus of the atom. (A detector lo-
cated at the nucleus would have a finite probability
of detecting the photon generated by an atomic
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transition.) The values of the energy of such a
photon as measured by a detector located outside
the atom and by a detector located at the nucleus
would evidently be related by the usual gravitation-
al red (or blue) shift. It is in the above sense that
we speak of H as corresponding to the proper en-
ergy of the atom, and of differences of the energy
levels as corresponding to photon energies or fre-
quencies measured by a detector located near the
atom and at rest with respect to it.

Note that H is not Hermitian with respect to the
flat scalar product. Also, H, is Hermitian only
with respect to the flat scalar product, while H,
is not Hermitian with respect to either scalar pro-
duct. The perturbation theory under these circum-
stances has been worked out to first order in the
Riemann curvature tensor in Sec. V, with the re-
sult given in Eq. (5.15). We will use that expres-
sion to calculate the perturbations of the relativ-
istic 18, ,,, 2S,,,, and 2P, ,, energy levels, includ-
ing all terms in H, which are linear in R ;.. How-
ever, first let us estimate the order of magnitude
of the various terms in H, [or more precisely, in
(92, H,{),], and then find the nonrelativistic
limit of the generally covariant Dirac equation.

By the term “nonrelativistic limit” we mean, as

usual, the limit in which the average velocity of

the electron is small with respect to the speed of
light, and not the limit of vanishing curvature.

IX. NONRELATIVISTIC LIMIT

The orders of magnitude of the matrix elements
of the various terms in H, are obtained by making
the following substitutions in Eq. (8.15):

I ~
x~mt, 9~ tm,

- (9.1)
a'~¢,B~1, Rya,~D7,

where D is a characteristic length or radius of
curvature of the spacetime at the location of the
atom. The quantity ¢ defined in Eq. (8.11) is of
the order Z/137, which we take to be small. The
average electron velocity is of order ¢£. In con-
sidering the nonrelativistic or low-velocity limit,
we retain only the largest term in Eq. (8.15), ob-
taining '

H = $mRy;0,x'x™B, (9.2)
which is of order ¢{~?m™D 2 Then

H= @' P+mB =r™ + 3mRo;on %'%™B, (9.3)
where

py=—id,. (9.4)

Using the standard representation

0 o I 0
al= [ ’ B= ’ (9- 5)
ot 0 0 -1
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and writing
) oo
b=y ) :

one obtains from Eq. (8.1) the two-component
equations

GoPx+(m =Ert+ gmRy o x'x™ ¢ =Ep,  (9.7)
and
G Pp=(E+m+r™+3mRynx'x™X. (9.8)

For the gravitational $mR,,,x'x™ term not to
disrupt the atom, it is necessary that the term not
be as large as the electrostatic »™ term, which
implies that £?m™D2<¢?m, or

D> 2 m™ =231 %107 cm). (9.9)

Solving Eq. (9.8) for x and substituting into Eq.
(9.7) gives

(E+m)™ D% — (E+m) (&r™ + $mRy 0, %' x™D°¢
=~ (&7 = $mRy 0 x'x™ D = (E =m)op , (9.10)

where we used (&*P)?=D* and expanded the denom-
inator of the term involving p®. The first and
third terms multiplying ¢ on the left side of Eq.
(9.10) are each of order ¢2m, while the second
term is of order ¢*m and can be neglected in the
ronrelativistic limit. It is then consistent to re-
in 3mR ., x'x™ in the third term on the left side
of Eq. (9.10) only if one requires that £~ %n~*D"2
>*m, or

D<{3m™t=2"3%(1%x10"* cm). (9.11)

If D exceeds the limit in Eq. (9.11), the gravita-
tional effects will be too weak to include in the
nonrelativistic limit of the Dirac equation. Thus,
noting that (E+m)™p%= (2m)™p*+ 0(¢*m), and
neglecting terms of order ¢{*m, we obtain the non-
relativistic limit

Hypp=Wo, (9.12)
with

Hyn=(2m)™P® = &r™ + 3mRy o, x'5™ . (9.13)
and

W=E ~m. (9.14)

For the classical Hamiltonian corresponding to
Hyyg, one has

dpi/dt= —BHNR/&W'= —Exir ~mRyonx™ .
(9.15)

The last term in Eq. (9.15) is the same as the
well-known classical geodesic deviation force
(Ref. 8, p.34), with m being the reduced mass.
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In the nonrelativistic regime defined by Eq.
(9.11), one expects the gravitational ghifts in the
proper energy levels to dominate over the fine
structure produced by the relativistic effects of
the electron’s velocity and spin. In the nonrela-
tivistic regime, one can readily carry out the per-
turbation theory based on the nonrelativistic hy-
drogenic wave functions with the curvature interac-
tion term appearing in Eq. (9.13). One finds that
the shift in the energy of the 1S level to first order
is

EY(18)= 382m R, - (9.16)
and that of the 2S level is
E®(28)=1 £2m™Ry,. (9.17)

For the 2P states, the matrix elements appear-
ing in Eq. (5.15) are
%mROiOJ(d)Zlm’xixj¢21m’)OEHmm" (9.18)

As Ry,; is symmetric in i,j, one can choose the
orientation of the spatial axes of the normal coor-
dinates such that R;,; is diagonal. With R,
diagonal, the matrix elements of Eq. (9.18) are

Hoo=3572m™(Roo+ 2Ry, ) »
Hy,= 37 m™ (2R, _Rozoz) ’

Hy, ,=H., ,=3"m™(Royy, = Rosor) » (9.19)

Hy=Ho=H, ,=H, =0,
and the solutions of the cubic equation

det[H,,,. -E*5,,.]=0 (9.20)
are

EM(2P) =38 m™(Roo+ 2Roy0,) (9.21)

E{M(2P)=3¢7*m™ (Roo+ 2Ry0,) (9.22)
and

E,(2P)=3¢"2m™(Ryo+ 2R ,0,) - (9.23)

Note that the perturbations of the 2P levels do not
vanish when R, vanishes. We now return to the
relativistic regime, in which D> ¢®m™ and the ef-
fects of curvature are perturbations on the rela-
tivistic fine structure.

X. GRAVITATIONAL PERTURBATION OF THE
RELATIVISTIC ONE-ELECTRON ATOM: THE 1§, ,,
STATES

In the relativistic regime, the gravitational
interaction of Eq. (8.15) acts as a perturbation of
~ the relativistic fine structure. Therefore, the
known exact solutions of the Dirac equation for
the one-electron atom in flat spacetime serve as
the basis for the perturbation theory. Other small

perturbations, such as nuclear effects, radiative
corrections, and the relativistic correction to the
value of the reduced mass, would of course be
added to the gravitational perturbation calculated
here. In the present paper, we will deal with the
1S,,,, 2S,,,, and 2P, , levels. The 2P, ,, levels
are the lowest lying of the =2 energy levels
(when the Lamb shift is taken into account). Elec-
tric dipole transitions from the 2P, ,, to the 15, ,
and 25, ,, levels are permitted. In this section,
we carry out the calculation for the 1S, ,, states
to all orders in ¢. In the next section, we calcu-
late the perturbations of the 2S,,, and 2P, ,, levels
to leading order in ¢.

For the one-electron atom described by the un-
perturbed Hamiltonian H, of Eq. (8.14), one com-
monly uses a representation which diagonalizes
the commuting observables H,, J2, J,, and K,
where

J=L+43 (10.1)
is the sum of the orbital angular momentum I and
the spin angular momentum $3§’, where

. [T0
o' = ,
0%

and & consists of the 2 X 2 Pauli matrices in the
standard representation. The operator K is given
by

K=p&L+1).

(10.2)

(10.3)
The eigenvalues . of the operator K are such that
|B|=(T+3), (10.4)

where J(J+1) is an eigenvalue of J2 The energy
eigenvalues are

E"J=m{1+ é‘z[n— Ikh‘(kz _§2)1/2]-2}-1/2’
(10.5)

where ¢ was defined in Eq. (8.11) and =1,2,... is
the principal quantum number.

The eigenstates of H, are labeled by the quantum
numbers n, J, M, and @, where M is the eigen-
value of J, and

O=k/ |k | (10.6)

is the sign of the eigenvalue of K. The parity op-

erator is

P=gpP©, (10.7)

where P is the usual “orbital” parity operator
which takes T into -F. The energy eigenfunctions

¥ ; can be shown to have parity eigenvalue
P'=(=1)742, (10.8)

The orbital angular momentum quantum number,
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1, of the nonrelativistic state corresponding to
% ; (i.e., of the upper two, or “large”, compo-
nents of  in the standard representation) is given
by

I=J+3@. (10.9)

l\:h—-

There are two 1S,,, (n=1, 1=0, J=3) states,
corresponding to M =+3, for which ®=~1 and P’
=1 (even parity). Those states can be wrltten in
the standard representation as'®

r

F(r)
1 0
V.= rvar | -iG(r)cosb (10.10)
L— iG(7) sinfei®
and
( 0
1 F(r)
Zp-:rm —iG(7) sinfe™® (10.11)
L iG(r)cosé

where ¢, corresponds to M= 3 and y_to M= — 3,

and ‘

F(7r)=m* *N(1 + )" mr) exp(~=tmr), (10.12)

G(7r) = —=m* 2N(1 =) Hmr)" exp(-Lm7) ,

(10.13) .

with

y=(1-¢"2, (10.14)
and

N=(2g)r*/2[2r(2y + 1)] 7Y/ 2, (10.15)

The unperturbed energy of the 1S, ,, states is my.

The gravitational perturbations are determined
by Eq. (5.15) with the ¢ given by ¥, and ¥_.
Thus, we need the matrix elements

<HI>abE (zl)qu‘pb) ’

where the subscripts a,b take on the values plus or
minus. Because both of the i, are of even parity,
only the terms in H, [Eq. (8.15)] which are even
with respect to the parity operator P [Eq. (10.7)]
will contribute (x*, 8,, «, are odd, while » and B
are even). The even terms in H, are the first,
second, fifth, ninth, tenth, and eleventh. After

a lengthy calculation, we obtain the following re-
sults for those matrix elements:

(10.16)

i .
-_R010m<x'xmala{>ab= _éab 13 (2y + Lym~ Roo s

2
(10.17)

L Ry a0ty = 5,y L (27 + Dm (R + 2Ry,

6 ﬂb 7z
(10.18)
% (R = Rojom){ @/x™g, =0, (10.19)
-5 t(R1m+ B8Rosom){x'x™r ™)y
= =0, ,,L (2y+1)m™(R+4R,,), (10.20)

11—2 E(R+ 4R (7= 0, 2 (2v + Ym™ (R + 4Ry, ,

(10.21)
MR 10m{ X' %™B) gy = Oy 15 £ 72y + 1)(2y + 1)m™ R, .
' (10.22)
Adding these results gives
(H ap= 84y £ £72¥(y + 1)(2y + m™ Ro,
+ 0, = (2r+ 1)m™(3R+4R) . (10.23)

It follows that both of the 1S, ,, levels are shifted
by the same perturbation:

EM(1S,5)= & 52 y(y +1)(2y + )m™ Ry

+ 7&2- (2y +1)m™(3R+4R,,). (10.24)

This is in Fermi normal coordinates with R and
R, evaluated at the center of mass (or energy)
of the atom. Equation (10.24) includes all terms
linear in R, ;, and is good to all orders in &.
The expression for E®)(1S, ,,) will be written in
generally covariant form in Sec. XII below. Ex-
panding y=(1 = ¢2)!/2 in Eq. (10.24) gives

E®X1S,,,)=3m™ Roo+ m™ (R = 3Ry)

+0(&*m™ D). (10.25)

The leading term in Eq. (10.25) agrees with the
corresponding expression in Eq. (9.16) for the
nonrelativistic regime.

XI. GRAVITATIONAL PERTURBATION OF THE
RELATIVISTIC 2S5, ,, AND 2P,;, LEVELS

For n=2 and J= 4, there are four eigenstates of
H, of Eq. (8.14), corresponding to the energy
eigenvalue

By a=m[l+ X (1+y)2] /2, (11.1)

Two of those states are the 2S,,, states (=2,
=0, J=73) and two are the 2P, ,, states (n=2, =1,
=1). According to Eqgs. (10.8) and (10.9), the

28, ,, states have even parity and the 2P, ,, states
have odd parity. Therefore, matrix elements of
the leading term, 3¢{mRy,,x'x™B, in Eq. (8.15)
will vanish between a 2§, ,, and a 2P, ,, state; to
order ¢*m™ D" there is no mixing of the 25,,, and
2P, ,, states. We calculate here the perturbation
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of the 2S,,, and 2P, ,, levels to leading order. In
later work we intend to calculate these perturba-
tions to higher order, including the mixing of the
2S,,,and 2P, ,, levels, and to calculate the pertur-
bations of the 2P, ,, levels.

The 28, ,, states have the same form as the 15, ,
states in Egs. (10.10) and (10.11), except that for
the 28, ,, states F(7) and G(7) are®®

H7)=m' 2N (1+ W) {mr)"
x exp[-tmr(2W)™*|(co+ cymr) (11.2)
G(7)= —=m* 2N(1 = W) {my)”
X exp[~tmr(2W)™ (24 ¢y + cym7) , (11.3)
with y defined in Eq. (10.14), and

w=[(1+)/2]*2, (11.4)
Co=2W, c,;==£W+1)W™(2y+1)™, = (11.5)
and
=1 y+1/ 2 -y _________,27/"'1 e
N=z(20)7%2w) 1((2W+1)I"(27+1))
(11.6)

The perturbations are determined by the matrix
elements (H,),, of the same form as in Eq.
(10.16), but involving the 2S,,, states,. rather than
the 1S, ,, states.” As we are now working only to
leading order in ¢, only the leading term in H,
need be retained:

H,= $mRy,,x'x™B + higher order in ¢.  (11.7)

One finds that for the 25, ,, states,

(% %™B)gp = 0,,0'™14L™m 2. (11.8)
Therefore
<H! >ab: 6abl7 g-zm-lRoo ’ v (11-9)

and both 2§, ,, levels are shifted, to order
£2m™ D2, by the same quantity:

E®(2S,,,)=1m™ Ry, , (11.10)

which is the same as the nonrelativistic result in
Eq. (9.17).

The 2P, ,, states in the standard representation
10

—F(7) cos@
1 ~F(7) sinfei®
¢+=ﬁ ’LG(’}’) ) (11.11)
0
and

~F(7) sinfei®

1 F(7) cosé
d)':'rm 0 , (11.12)
iG(v)

where 3, corresponds to M=+3, and

F(r)=m* "N (L+ W )

x exp[-tmr(2W) ™ |(co+ cym7) , (11.13)
G(7)= —=m*/2N(1 = W)/ 2my)"
X exp[~&mr(2W) 2 (2W + cymy) , (11.14)
with y defined in Eq. (10.14), and
W= [(1+y)/2]*/2, (11.15)
co=2(W-1), (11.16)
€, = =W -1)WH(2y+1)*, (11.17)
and
vtz (o)
(11.18)

In order to apply Eq. (5.15) with the ¢{°’ given
by ¥, and ¢_ for the 2P, ,, states, we must calcu-
late

(H o=y Hydy) (11.19)

- where the subscripts a, b take on the values + or

-, and to lowest order H, is given by Eq. (11.7).
To lowest order in ¢, one finds that

(%' %™B) 4y = 6,,0'™108™2m ™2, (11.20)
and hence,
(H) 4= 8,58 m™ Req . (11.21)

It follows that both 2P, ,, levels are shifted by the
same quantity to order {™*m™ D™, namely,

EY(2P, ,,)=5tm™ Ry, . (11.22)

Calculation of the energy shifts of the 2P, , levels
is underway. One expects those shifts to involve
R,,;,; in a manner analogous to the shifts of the
nonrelativistic 2P levels given in Egs. (9.21)-
(9.23).

XII. SUMMARY AND CONCLUSIONS

The energy shifts E®’ obtained above are those
which would be measured by a detector located
near the atom and at rest relative to it. A distant
observer would see additional Doppler, gravita-
tional, and cosmological shifts affecting all spec-
tral lines uniformly, and thus separable from the
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effects calculated here. The perturbations calcu-
lated here to first order in the Riemann tensor are
all of the form

3
EW=ARy+BR+ ), CHRy,

i=1

(12.1)

Where Ry, and R, ; are evaluated at the center of
mass of the atom in a locally inertial proper frame
with spatial axes oriented along the principal di-
rections of R,,,;,. The constants A, B, and C!! de-
pend on the state, and for the cases studied are as
follows (only the coefficients which do not vanish
to the order considered are listed).

Nonrelativistic regime:

1S level: A=3:¢"m™, (12.2)
2S level: A=T¢%m™, (12.3)
2P levels: (1) A=3¢2m™, CY=62%m™, (12.4)
(2) A=3:%m™, C*=6;7m™, (12.5)
(3) A=3¢m™, C¥=6¢72m™. (12.6)

Relativistic regime:
1S,,, levels: A= Il? 2y + )2y + Dm™ + -1% (2y+1),

B= %(2‘y+ 1)m™ (12.7)

2S,,, levels: A=1¢7m™, (12.8)

2P, ,, levels: A=5¢m™, (12.9)
where

t=2Ze?, y=(1-¢9'2, (12.10)

Here Eq. (12.7) is exact, while the other results
are valid to order {™?m™. For the relativistic
2Py, levels, as for the nonrelativistic 2P levels,
the constants C*# will not vanish,

Given a set of sufficiently narrow spectral lines,
and expressions like Eq. (12.1) for the perturba-
tions E® of the energy levels involved in the ob-
served transitions, one could hope to measure or
put upper bounds on components of the Riemann
tensor in the proper frame of the atom. Such an
analysis would give objective information about
the curvature at the position of the atom, inde-
pendent of the mechanism producing that curva-
ture.

Conversely, given a spacetime metric, one can
calculate the components of the Riemann tensor
in Eq. (12.1) in order to preduct the spectral fre-
quency shifts. The components of the Riemann
tensor appearing in Eq. (12.1) are evaluated at the
origin of a locally inertial rest frame of the atom
(referred to below as “the proper frame”). In the
following equations, indices with a caret refer to
the proper frame, while other indices refer to ar-
bitrary coordinates. The components in the proper

frame with spatial axes oriented along the princi-
pal directions of Rz;5; are related to the compo-
nents in arbitrary coordinates by the following
equations:

Ryp=R, u"u", (12.11)
where
u*=dx"*/dr (12.12)

is the four-velocity of the atom, having compo-
nents »*= 6“° in the proper frame. Also,

Rgj57= Ry u"tutts, (12.13)

where the three spacelike unit vectors ¢¥ (i=1,2,
3) are chosen (i) to be orthogonal to #* and (ii) so
that R, u* ';u"gj is diagonal in the indices i and j
(the diagonalization can be accomplished in gen-
eral because of the symmetry under interchange
of i and j).

It follows from Egs. (12.11)-(12.13) that motion
of the atom relative to a curved spacetime will af-
fect the rest energy of the atom. For example, in
the static Einstein universe, if the atom is at rest
relative to the globally static coordinate system
then Rg; vanishes and E“'(1S,,,) is of order m™R,
but if the atom is moving relative to the static co-
ordinate system then E®X(1S,,,) includes a non-
vanishing term of order {™m™Rs;. These effects
do not violate the principle of equivalence because
they are measurable only if the gravitational field
changes significantly over the dimensions of the
atom.

The results for the perturbations E®’ calculated
above are contained in the covariant expression

P*= E%*+ (AR ,,u*v’+ BR + CYR,, u"Lus L)u*,
(12.14)

where P* is the energy-momentum four-vector of
the atom, and E© is the rest energy of the atom
in flat spacetime. The constants A, B, and C¥
are the same as in Eqgs. (12.2)-(12.9), with the
ones not explicitly listed taken to be zero to the
order under consideration. The three spacelike
unit vectors ¢ {, which are orthogonal to »* and
point along the principal axes of R,y in normal
coordinates, are the same vectors as in Eq.
(12.13). The above equation for P* is the covariant
expression which reduces to Pi=0, P°=E©®+ E®
in the proper frame of the atom.

The energy-level shifts caused by the local
curvature of spacetime will be of the same order

" of magnitude as the Lamb shift in hydrogen when

the following condition is satisfied:
Pm™D2=4X10"% eV,

The characteristic radius of curvature leading to
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energy shifts of that magnitude is thus

D=2x10"* cm. (12.15)

Within the context of the theory of general relativ-
ity, one would expect regions of such large curva-
ture to exist in the vicinity of small black holes
left over from the early stages of the universe.
For the Schwarzschild metric with the atom at the
Schwarzschild radial coordinate »g and moving
along the radial direction, one can diagonalize
Rg;5; by choosing the x-axis of the normal coordi-
nates in the radial direction. Then one has” Rj;;;
==2M75®, Regsss=Rozes= +Mrg™3, where M is the
Schwarzschild mass (in the present units, G=c
=7i=1), and the velocity of the atom does not ap-
pear in this highly symmetrical example. In this
case, the 2P level is split into two levels with
[see Eqgs. (9.21)—(9.23)]

EMN(2P) = =128 2m™ My, (12.16)

and

E(2P)= E{(2P) =+6L*m™ Mrs™. (12.17)

The shifts of the relativistic 2P, , levels are ex-
pected to also be proportional to £ m™ My,
Thus, if one could observe the spectrum of a hy-
drogen atom falling radially into a black hole hav-
ing Schwarzschild radius of, say, 10™ cm, then
the above shifts would be of the order of 107 eV,

which is much larger (by a factor of 100) than the
relativistic fine structure. One can readily con-
ceive of other idealized situations in which the ef-
fect of the curvature on the atom is observable.

It would be desirable to construct plausible astro-
physical models for which this effect is observ-
able from far away.

From an experimental viewpoint, observations
of atomic spectra can be used as a probe in
searching for regions of significant curvature
which may exist on a smaller scale than has pre-
viously been studied. Knowing the detailed depen-
dence of the energy level shifts on the curvature
tensor would permit the effects of curvature to be
distinguished from other possible perturbations of
the energy levels. The framework set up in these
papers can serve as a starting point for calculating
the perturbations of more energy levels, and for
extending the work to higher order in the Riemann
curvature tensor. One may hope that, in addition
to their intrinsic theoretical interest, these re-
sults may eventually permit one to use spectra to
measure or put upper limits on the local curvature
of distant regions of spacetime.
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